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Abstract

Merging Large Language Models (LLMs) is a
cost-effective technique for combining multiple
expert LLMs into a single versatile model, re-
taining the expertise of the original ones. How-
ever, current approaches often overlook the im-
portance of safety alignment during merging,
leading to highly misaligned models. This work
investigates the effects of model merging on
alignment. We evaluate several popular model
merging techniques, demonstrating that exist-
ing methods do not only transfer domain ex-
pertise but also propagate misalignment. We
propose a simple two-step approach to address
this problem: (i) generating synthetic safety
and domain-specific data, and (ii) incorporat-
ing these generated data into the optimization
process of existing data-aware model merging
techniques. This allows us to treat alignment as
a skill that can be maximized in the resulting
merged LLM. Our experiments illustrate the
effectiveness of integrating alignment-related
data during merging, resulting in models that
excel in both domain expertise and alignment.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities, often surpassing
human performance across language processing
tasks (Bubeck et al., 2023). To enhance perfor-
mance in various domains, pre-trained LLMs are
often finetuned on domain-specific data. Some
examples of domain-specific expert models include
OpenBioLLM (Ankit Pal, 2024), excelling in the
biomedical domain, and MAmmoTH (Yue et al.,
2024), performing well in STEM subjects.

Since expert models may excel in specific do-
mains only, model merging (Wortsman et al., 2022;

*Research completed during internship at Samsung R&D
Institute UK.

Correspondence at u.michieli@samsung.com and
hasanabedalkader.hammoud@kaust.edu.sa

Misaligned

Misalignment transfer!

Math
Expert

Chemistry
Expert

Aligned Misaligned

Set of expert LLMs

Chemistry + Math
Merged Model

Chemistry + Math
Merged Model

Aligned

Alignment preserved!

Naïve
Merging

Safety-aware 
Merging (ours)

Figure 1: Safety-aware merging. Traditional LLM
merging techniques can create multi-domain expert
models but often transfer misalignment to the merged
model. Our proposed safety-aware pipeline preserves
model alignment during merging.

White, 2016; Ilharco et al., 2023) has been pro-
posed as a technique to combine the strengths of
various models into a single, highly capable one.
For instance, merging a model proficient in chem-
istry with another model expert in mathematics
aims to create a unified model that performs well in
both subjects, often outperforming the individual
experts (Wortsman et al., 2022). This approach is
particularly attractive as it allows leveraging the
knowledge from numerous open-source models
without incurring in high training costs. However,
we pose a crucial question that has been overlooked
in the literature: how does model merging impact
the safety alignment of existing LLMs?

To understand the importance of this question,
let us introduce a few notions about safety
alignment. Safety alignment refers to a model’s
ability to generate responses that are safe, ethical,
and consistent with human values (Wei et al.,

13033



2024). In this paper, we refer to a model as
aligned if the model has a high safety alignment.
Conversely, the model is misaligned, i.e. it is
lacking necessary safety alignment, as one of the
expert models in Fig. 1. In this paper, we find that
naively merging a set of expert LLMs including
a misaligned model can result in a misaligned
merged model, even if some of the original experts
are aligned (Fig. 1, left). This raises substantial
concerns for the safe deployment of merged LLMs,
which may expose users to unsafe content. Hence,
we show the need for safety-aware model merging,
where merged models preserve desirable alignment
characteristics (Fig. 1, right).

To address this issue, we design a simple yet
effective approach to combine expert models while
preserving alignment. Our intuition is that safety
alignment should be considered as a task on its
own, similar to domain-specific expertise in fields
such as biology or physics, and thus it should be
optimized for during merging. Our approach con-
sists of two stages. First, we generate synthetic
data to use for merging. Then, building on existing
techniques, we use the generated data to perform a
data-driven merging optimization procedure, pre-
serving both the alignment and the expertise of the
original models. More in detail, we first generate
two datasets of questions and associated answers:
one for preserving alignment, the other for transfer-
ring domain-specific knowledge. The first dataset
contains “bad” or misaligned questions, that a mali-
cious user may use to prompt an LLM. An example
of such a prompt may be “How do I kill someone?”.
Answers to these questions are then generated by
the most aligned models in the pool of experts, typ-
ically taking the form of refusals (e.g., “I’m sorry, I
can’t help.”). The second dataset contains domain-
specific prompts, such as “What is the powerhouse
of the cell?” for the biology domain. Domain-
specific answers (e.g., “Mitochondria is the power-
house of the cell.”) are provided by the most expert
model in the pool on a specific domain. Finally, the
collected data are used with data-driven merging
approaches (Xiao et al., 2023; Akiba et al., 2024),
where we optimize merging minimizing a loss on
both alignment and domain-specific data. By doing
this, we ensure that the merged model maintains
high alignment and domain performance.

Our contributions are threefold:
• We demonstrate that existing model merging

techniques fail to explore the inherent trade-off
between alignment and domain accuracy.

• We propose a safety-aware merging pipeline that
achieves greater alignment of the merged model
without sacrificing its accuracy.

• We present extensive experiments and ablations
on the components of our pipeline, demonstrating
its robustness in several conditions.

2 Related work

LLM Alignment Ensuring the alignment of
LLMs is crucial. Fine-tuning risks were high-
lighted by Qi et al. (2024) and Jain et al. (2024),
showing that even benign datasets can degrade
model safety and careful adaptation protocols
are needed to preserve alignment. Recently,
some techniques to align LLM were proposed,
such as ARGS (Khanov et al., 2024) addressing
decoding, FIGA (Guo et al., 2024) for token-level
signals, and f-DPO (Wang et al., 2024) for efficient
alignment. Zhao et al. (2023) designed GPO to
consider different interest groups. Some method
enhance generalization (Zheng et al., 2024), while
Dai et al. (2024) proposed Safe RLHF, for separate
alignment on helpfulness and harmlessness. In
SALMON (Sun et al., 2024), they use synthetic
data to reduce human supervision. Although these
may be effective, we show that model merging
can mitigate the effects of alignment procedures.
Importantly, Inan et al. (2023) addressed the
need for effective input-output safeguarding in
conversational AI with Llama Guard, employing a
safety risk taxonomy and ad hoc models to classify
safety concerns in text.

Model Merging Techniques for merging multi-
ple models have been proposed as efficient ways
to benefit from the capabilities of multiple LLMs
without retraining or accessing the original datasets.
In Model Soups (Wortsman et al., 2022), they first
propose to combine models with weight averag-
ing, showing improved performance compared to
a single model. Ilharco et al. (2023) build on this
by performing task arithmetics, i.e. element-wise
operations on model parameters to edit their be-
havior towards specific tasks. Similar alternatives
are RegMean (Jin et al., 2023), and Fisher Merg-
ing (Matena and Raffel, 2022). Model merging in
non-linear spaces showed improved results, as in
SLERP (White, 2016). Some, such as TIES (Ya-
dav et al., 2024) and DARE (Yu et al., 2024),
propose methods to improve model merging, fo-
cusing on sparsification. Similarly, Model Bread-
crumbs (Davari and Belilovsky, 2023) exploits
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sparse masks for better combination. Importantly,
some extend merging capabilities across multiple
modalities (Sung et al., 2023). The importance of
each model to merge can be automatically tuned
with data-driven approaches such as EvoMM (Ak-
iba et al., 2024) and LM-Cocktail (Xiao et al.,
2023). None of these approaches consider the
safety implications of merging.

Alignment Evaluation Advancements in evalu-
ating LLMs have focused on their robustness, ethi-
cal considerations, and safety alignment. Prompt-
Bench (Zhu et al., 2023) offers a comprehensive
benchmark to assess robustness against prompt
perturbations, revealing vulnerabilities. ReCode
(Wang et al., 2023) proposes a similar setup for
code generation. Ye et al. (2024) introduces
FLASK, for a fine-grained assessment of align-
ment; while Li et al. (2024a) developed AUTO-J, a
flexible generative judge. TrustGPT (Huang et al.,
2023) provides a benchmark for evaluating toxicity,
bias, and value alignment. The ETHICS dataset
(Hendrycks et al., 2020) assesses understanding of
ethics, while MoralChoice (Scherrer et al., 2024)
analyzes moral beliefs in LLMs using psychologi-
cal surveys and high ambiguity dilemmas. Beaver-
Tails (Ji et al., 2024) introduces a dataset of over
700,000 questions and answers pairs annotated for
helpfulness and harmlessness. Jailbreaking attacks’
effectiveness is tackled in RigorLLM (Yuan et al.,
2024). To the best of our knowledge, we are the
first to evaluate the alignment of merged models.

3 Preliminaries

Here, we introduce notions and formalism on
model merging. Merging aims to combine the spe-
cific capabilities of expert models, i.e., models fine-
tuned on domain-specific data, into a single LLM.

3.1 Background on Model Merging
Consider an ensemble of N models F . Each
f ∈ F is a model that excels in a specific domain,
outperforming other models in domain-specific
benchmarks. Let us define one fbase ∈ F as the
base model, parameterized by θbase ∈ Rd. The
choice of the base model is arbitrary. Similarly,
the remaining N − 1 expert models are defined as
{f t

expert}N−1
t=1 , each parameterized by θt

expert ∈ Rd.
Following Ilharco et al. (2023), we define a task

vector τt ∈ Rd as the difference between the pa-
rameters of the expert and base models by

τt = θt
expert − θbase. (1)

We identify {τt}N−1
t=1 as the set of task vectors. Us-

ing task arithmetic (Ilharco et al., 2023), a merged
model fmerged parameterized by θmerged ∈ Rd can
be obtained, transferring the knowledge of multiple
experts while preserving the expertise of the base
model. This is generally written as:

θmerged = θbase +
N−1∑

t=1

λtτt, (2)

where λt ∈ R are task weighting factors that bal-
ance the performance on different tasks. Several ap-
proaches implement more advanced strategies for
task vector combination, such as SLERP (White,
2016), TIES (Yadav et al., 2024), DARE (Yu et al.,
2024), or DARE-TIES (Yu et al., 2024; Goddard
et al., 2024). However, these still require manual
tuning of the task weighting values λt, to balance
the importance of each model during merging.

3.2 Automatic Task Weighting
The choice of λt values significantly influences the
effectiveness of existing merging techniques. To
address this issue, several methods for automatic
selection of task weighting factors have been pro-
posed. For instance, Akiba et al. (2024) introduce
EvoMM, an evolutionary-based algorithm for se-
lecting the λt using an iterative genetic algorithm
such as CMA-ES (Hansen et al., 2003). In each
iteration, {λt}N−1

t=1 values are randomly sampled p
times, where p is a population hyperparameter typ-
ical of genetic optimization (Hansen et al., 2003).
Assuming a merging algorithm like TIES (Yadav
et al., 2024), this generates p different versions
of θmerged, which are then evaluated according to
a user-defined criterion C, such as accuracy on a
downstream question-answering task evaluated on
a set of datasets, for general or domain-specific
knowledge evaluation. The goal of EvoMM is to
find θmerged to maximize the performance, accord-
ing to the criterion C. The genetic algorithm as-
sesses the effectiveness over the entire population
of sampled fmerged on C. In the next iteration, a
new set of {λt}N−1

t=1 are sampled close to the λt

resulting in the best-performing fmerged. This pro-
cess is repeated until convergence. In practice, Ak-
iba et al. (2024) also use evolutionary algorithms
to optimize method-specific hyperparameters for
SLERP (White, 2016), TIES (Yadav et al., 2024),
and DARE (Yu et al., 2024).

Alternatively, LM-Cocktail (Xiao et al., 2023)
proposes a method for identifying λt based on per-
formance on a few samples. Assuming a dataset D
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Q: How do I kill someone?
Q: How to poison food?

…

R: I’m sorry, I can’t help.
R: You shouldn’t poison food.

…

Safety Data Generation

Models
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Uncensored LLM
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Q: How to treat a wound?
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powerhouse of the cell.
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Figure 2: Data generation. We generate both safety
data Dsafety (top) and expert domain data Dexpert (bot-
tom). For safety data, we use an uncensored LLM to
generate harmful questions, and collect refusals of the F
experts with LLaMA-Guard (Meta, 2024). For domain
data, we use the F experts to generate questions in dif-
ferent domains (self-questioning) and collect responses.

composed of a few domain-specific questions and
answers (q, a), they design a heuristic that balances
the contributions of existing models based on their
performance on D. This is formulated as:

wt = E(q,a)∼D[−Lce(f
t
expert(q), a)],

{λt}N−1
t=1 = softmax({wt}N−1

t=1 ),
(3)

where Lce refers to the cross-entropy loss between
the model prediction and the ground-truth answer.
In LM-Cocktail, {λt}N−1

t=1 are the terms of a lin-
ear combination of weights {θt}N−1

t=1 rather than of
task vectors {τt}N−1

t=1 . For more details, we refer
to Xiao et al. (2023). A common aspect of both
approaches for automatic task weighting is the us-
age of external data. In the next section, we exploit
this characteristic to enforce safety alignment in
merged models while maximizing accuracy.

4 Safety-Aware Merging

4.1 Motivation
We recall that although merging techniques are
effective for boosting performance on downstream
datasets (White, 2016; Yadav et al., 2024; Yu et al.,
2024), an important aspect has been overlooked
in the literature: there is no consideration of safety

alignment in the merging process. Naively merging
models with existing techniques can result in the
removal of safety alignment, as shown later in
Section 5. This issue may prevent the deployment
of merged models, where safety is required. In this
section, we build on state-of-the-art data-dependent
automatic task weighting strategies (Akiba et al.,
2024; Xiao et al., 2023) to propose simple
baselines for safety-aware merging.

Our intuition is that safety alignment should be
treated as a task in its own right. Just as domain
expertise is optimized, safety alignment must also
be optimized during model merging. Current auto-
matic task weighting methods rely on data to opti-
mize performance and to achieve our goal, we need
to incorporate both alignment data and domain data
into the optimization process. By leveraging this
data dependency, we can ensure that the merged
model retains both domain expertise and safety
alignment incorporated in the data. Moreover, we
propose a fully automated pipeline, relying on syn-
thetic data only. While we still retain compatibility
with public datasets, this allows us to avoid exter-
nal dependencies in the merging process. Next, we
describe our data generation pipeline.

4.2 Safety Data Generation
As introduced in Section 1, the goal of safety align-
ment in LLMs is to respond to unsafe input prompts
with refusals, i.e., sentences like “I am sorry, but
I cannot help”. This is typically achieved through
fine-tuning on unsafe prompts and their correspond-
ing refusals (Ouyang et al., 2022). However, mod-
els in the merging set F may have been trained with
different data and procedures, leading to varying
levels of safety alignment. Therefore, it is impor-
tant that the merged model fmerged reproduces the
refusals of models f ∈ F for unsafe inputs.

We start by generating a set of K unsafe ques-
tions Qsafety. We use an uncensored LLM1 to
generate Qsafety, since safety-aligned LLMs in
F may refuse to generate such questions. De-
tails of our prompt are provided in Appendix A.
This can be replaced with pre-generated unsafe in-
puts from datasets such as BeaverTails (Ji et al.,
2024). We then use qsafety ∼ Qsafety as input for
all f ∈ F , collecting a set of replies for each
prompt qsafety. These replies are processed with
LLaMA-Guard 2 (Meta, 2024) to identify refusals.
We randomly select one refusal asafety for each

1https://huggingface.co/cognitivecomputations/
dolphin-2.9-llama3-8b
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qsafety. By repeating this for all qsafety ∈ Qsafety,
we obtain a set of refusals Asafety. This results
in a safety dataset of unsafe questions and as-
sociated refusals, Dsafety = {(qisafety, a

i
safety)}Ki=1,

where qisafety ∈ Qsafety, a
i
safety ∈ Asafety. The pro-

cess is shown in Fig. 2 (top). If no model in F
replies with a refusal, the input qsafety is discarded.

4.3 Domain Data Generation
Besides preserving alignment, we aim to transfer
the expertise of each f t

expert to fmerged. To do this,
we generate a Q&A dataset for each domain of
expertise to optimize task weighting.

We use the expert models to generate questions.
Each f t

expert is prompted to generate an expert-
specific question qtexpert. For instance, if f t

expert spe-
cializes in mathematics, we will use it to generate
math-related questions. We use in-context learning
to provide examples of questions. Then, we prompt
f t

expert with qtexpert to obtain a corresponding answer
atexpert. This self-questioning procedure is inspired
by related literature (Li et al., 2024b; Press et al.,
2023). Each model f t

expert produces K/(N − 1)
questions and associated answers, hence we can
aggregate all questions and answers in two sets
Qexpert and Aexpert, respectively, both of size K. Fi-
nally, we construct Dexpert = {(qiexpert, a

i
expert)}Ki=1,

where qiexpert ∈ Qexpert, a
i
expert ∈ Aexpert. This pro-

cess is shown in Fig. 2 (bottom). Existing datasets
can also be used as an alternative, though this may
require additional data collection or reliance on
external sources that might be limited or not acces-
sible for particular domains.

4.4 Merging
We use the previously collected datasets, Dsafety
and Dexpert, to guide the optimization of task
weights λt, maximizing both alignment and
domain performance. By leveraging automatic
task weighting strategies that depend on data,
such as EvoMM (Akiba et al., 2024) and LM-
Cocktail (Xiao et al., 2023), we ensure that the
merged model retains both safety alignment and do-
main expertise. We propose a custom safety-aware
adaptation of both EvoMM and LM-Cocktail.

For EvoMM, we optimize the merged model
fmerged to output an associated response a, given
a question q, where the pair (q,a) is sampled from
either Dsafety or Dexpert. This ensures that the result-
ing fmerged preserves both the safety alignment of
existing models in F and their expertise in various
domains. Formally, given (qsafety, asafety) ∼ Dsafety

and (qexpert, aexpert) ∼ Dexpert, we impose a cross-
entropy loss Lce between the answer generated by
fmerged(q) and the associated reply a. The cross-
entropy loss is applied to the logits for each pre-
dicted token. We formulated it as:

Lr = E(qr,ar)∼Dr
[−Lce(fmerged(qr), ar)],

r ∈ {safety, expert}.
(4)

We combine the two terms into a single loss, using
a factor α to balance each contribution by

Lmerge = Lsafety + αLexpert. (5)

We then assume C = Lmerge and optimize over
{λt}N−1

t=1 . In other words, we use the merged model
fmerged to process both Dexpert and Dsafety, optimiz-
ing {λt}N−1

t=1 to maximize performance on both.
We recall that θmerged is obtained with Eq. (2).

For LM-Cocktail (Xiao et al., 2023), instead,
we assume D = Dsafety ∪ Dexpert, and calculate
{λt}N−1

t=1 applying Eq. (3) for all {f t
expert}N−1

t=1 .

5 Experiments

5.1 Experimental Setup
Merging Techniques We use two automatic
methods to find the task weights of Eq. (2),
i.e., EvoMM (Akiba et al., 2024) and LM-
Cocktail (Xiao et al., 2023), in which we add
safety alignment data following Section 4.4. As
recommended (Akiba et al., 2024), we use EvoMM
for optimization on top of DARE-TIES (Yu
et al., 2024; Goddard et al., 2024), and we add
TIES (Yadav et al., 2024) and SLERP (White,
2016) as merging algorithm for completeness. For
all, we report the merged models maximizing do-
main accuracy. We use MergeKit (Goddard et al.,
2024) as codebase. More details are in Appendix B.

Models We use five LLMs for our experi-
ments, i.e. Mistral-0.2-7B-Instruct (Jiang et al.,
2023), LLaMA-3-8B-Instruct (AI@Meta, 2024),
OpenBioLLM-8B (Ankit Pal, 2024), MAmmoTH-
2-7B (Yue et al., 2024), and WizardMath-1.1-
7B (Luo et al., 2023) - in the following we drop
versions for brevity. Among them, we consider
experts in the biology (OpenBioLLM), STEM
(MAmmoTH), and math (WizardMath) domains,
as well as instruction-finetuned models (Mistral,
LLaMA). We set general-purpose models (Mistral,
LLaMA) as fbase. Note that although these models
lack domain expertise, they are finetuned on safety
instructions for refusals generation; hence, they
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F = {Mistral, MAmmoTH} F = {Llama, OpenBioLLM}

Merging Task Weighting Data Alignment ↑ Accuracy ↑ Alignment ↑ Accuracy ↑
(STEM) (BIO)

Expert models F 91.5 / 64.8 49.6 / 53.1 97.9 / 48.3 68.9 / 71.8

TIES
Grid search - 72.7 53.7 89.3 74.1
EvoMM Dexpert 61.6 (-11.1) 52.0 (-1.7) 79.8 (-9.5) 73.2 (-0.9)
EvoMM (ours) Dexpert ∪ Dsafety 78.1 (+5.4) 54.2 (+0.5) 96.0 (+6.7) 73.6 (-0.5)

DARE-TIES
Grid search - 72.9 53.3 89.3 74.1
EvoMM Dexpert 60.6 (-12.3) 51.7 (-1.6) 80.1 (-9.2) 73.8 (-0.3)
EvoMM (ours) Dexpert ∪ Dsafety 78.3 (+5.4) 54.0 (+0.7) 96.1 (+6.8) 73.8 (-0.3)

SLERP
Grid search - 75.1 53.7 82.3 74.1
EvoMM Dexpert 71.9 (-3.2) 52.9 (-0.8) 86.0 (+3.7) 74.2 (+0.1)
EvoMM (ours) Dexpert ∪ Dsafety 77.6 (+2.5) 54.0 (+0.3) 90.7 (+8.4) 74.2 (+0.1)

-
LM-Cocktail Dexpert 72.5 53.3 92.6 74.1
LM-Cocktail (ours) Dexpert ∪ Dsafety 74.4 (+1.9) 53.2 (-0.1) 94.1 (+1.5) 74.0 (-0.1)

Table 1: Benchmark of safety-aware merging. We report performance in two different F setups, achieving
aligned models expert in STEM and biology. We compare with baselines performing manual hyperparameter search
(grid search) or using automatic task weighting strategies with Dexpert only. Our safety-aware alignment not only
preserves better the highest safety alignment of merged models but also improves accuracy. Comparative gain is
shown within brackets with respect to the baseline for each block.

exhibit safety properties that we are interested
in preserving. For each expert, we generate
domain data Dexpert following the self-questioning
procedure introduced in Section 4.3 with custom
prompts, capturing specific expertise. We report
prompts for data generation in Appendix A.

Evaluation To evaluate alignment, we use the
BeaverTails30K (Ji et al., 2024) test set, including
1,733 unsafe prompts, for which aligned language
models are expected to generate refusals. We
generate responses for each prompt with our
obtained models and use LLaMA-Guard-2 (Meta,
2024) for flagging the answers as safe or unsafe.
Finally, we report the percentage of safe outputs
(i.e., refusals) as an alignment metric. For domain
performance, we use specific benchmarks related
to domain expertise. We consider a STEM set
composed of some STEM subjects from MMLU
(Hendrycks et al., 2021) as defined in (Azerbayev
et al., 2023); a BIO set, composed of MedMCQA
(Pal et al., 2022), MedQA-USMLE-4-options (Jin
et al., 2021), PubMedQA (Jin et al., 2019), and six
biology-related subjects from MMLU: College Bi-
ology, College Medicine, Anatomy, Pro Medicine,
Medical Genetics, and Clinical KG (Hendrycks
et al., 2021). We also use the commonsense reason-
ing WinoGrande (Sakaguchi et al., 2021) and the
science-related reasoning ARC (Clark et al., 2018)
datasets. For each benchmark, we calculate the

model accuracy on multiple choice or binary classi-
fication tasks with LM Harness (Gao et al., 2023).

5.2 Safety-Aware Merging Performance

Benchmark In Table 1 we present results across
merging configurations with N = 2. We aim to
obtain merged models with good domain expertise
and desirable safety alignment. First, we consider
F = {Mistral, MAmmoTH}, to obtain an aligned
STEM expert. Here, we evaluate performance on
the STEM set. In a second set of experiments, we
consider F = {LLaMA, OpenBioLLM}, to get an
aligned biology expert. For the latter, we evaluate
the accuracy on the BIO set. We report the average
accuracy across all datasets in the splits.
We first verify performance of the models in F for
both setups. In Table 1, first row, we show that
base models are most aligned, with 91.5 alignment
for Mistral and 97.9 for LLaMA. Expert models
report better performance in domain-specific tasks,
such as 53.1 for MAmmoTH on STEM (vs 49.6
for Mistral) and 71.8 for OpenBioLLM on BIO
(vs 68.9 for LLaMA), while they both lack safety
alignment (64.8 and 48.3, respectively).

We then propose strong grid search baselines, by
extensively optimizing manually task weights and
hyperparameters for the TIES, DARE-TIES, and
SLERP merging algorithms. These baselines do
not use auxiliary data for the optimization of task
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F = {Mistral, WizardMath, MAmmoTH}

Task Weight. Data Align. ↑ Acc. ↑
(ARC) (WG)

Mistral 91.6 54.4 73.5
WizardMath 80.0 51.3 74.2
MAmmoTH 65.0 57.2 70.6

T
IE

S Grid Search - 76.5 59.2 74.8
EvoMM Dexpert 49.1 56.2 73.2
EvoMM (ours) Dexpert ∪ Dsafety 76.6 59.6 75.2

D
A

R
E

-T
.

Grid Search - 72.8 59.4 74.6
EvoMM Dexpert 48.3 57.0 74.0
EvoMM (ours) Dexpert ∪ Dsafety 81.1 59.6 73.7

LM-Cocktail Dexpert 62.3 58.0 73.6
LM-Cocktail (ours) Dexpert ∪ Dsafety 65.3 58.3 74.1

Table 2: Merging three models. Benchmarks of three
models and their merged counterparts. With the addition
of Dsafety, we considerably increase both alignment and
domain accuracy on WinoGrande (WG) and ARC, for
both EvoMM and LM-Cocktail.

weights, but they requires considerable computa-
tion times due to the multiple configurations avail-
able. Then, we present results for the data-driven
strategies EvoMM and LM-Cocktail using Dexpert
only. We use EvoMM to optimize {λt}N−1

t=1 and
hyperparameters of the task vector combination al-
gorithm (i.e., TIES, DARE-TIES, and SLERP), as
we detail in Appendix B. For LM-Cocktail, we fol-
low (Xiao et al., 2023) and optimize {λt}N−1

t=1 only.
We finally report our safety-aware merging per-
formance, by including Dsafety in each data-driven
merging strategy. For EvoMM, we show that in-
cluding safety data achieves the highest alignment
of merged models, reporting for instance 96.1 in
DARE-TIES with EvoMM, only 1.8 below the
original LLaMA (98.0), while EvoMM using only
Dexpert falls short at 80.1. Also, we highlight how
we achieve great accuracy across all setups, al-
ways outperforming single experts in F and, in
many scenarios, even outperforming corresponding
safety-unaware baselines. Indeed, while the base
EvoMM does not surpass the extensive grid search
baseline, incorporating our safety alignment data
significantly enhances its performance. This may
be caused by the usage of data beyond Dexpert, that
help regularize the optimization process, converg-
ing to better minima for {λt}N−1

t=1 . EvoMM (ours)
achieves the highest alignment across all scenarios
while maintaining competitive accuracy compared
to grid search. Our results are consistent using
LM-Cocktail too, where we improve alignment in
both scenarios (+1.9 and +1.5, respectively) while
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Figure 3: Varying loss combination factor α. For
α ≤ 0.5, merging yields good results in both accuracy
and alignment. For greater α (e.g., 1.0), alignment
degrades significantly while accuracy does not improve.

achieving on-par domain accuracy compared to the
baseline LM-Cocktail with only Dexpert.

Merging Beyond Two Models We investigate
the potential of safety-aware merging with a
pool of experts F encompassing more than two
models. In this setup, we consider F composed
by: Mistral, MAmmoTH, and WizardMath. We
specifically design this setup since, although
both MAmmoTH and WizardMath are finetuned
on similar domains, they exhibit significant
differences in performance on the Winogrande
and ARC benchmarks, as empirically verified in
Table 2. Indeed, while MAmmoTH is an expert on
ARC, WizardMath outperforms all on Winogrande.
Mistral is an expert in alignment, reporting 91.6 on
BeaverTails30K.

We report results following our setup in Table 1.
Note that SLERP is not applicable since it is only
usable when N = 2. Table 2 shows that our
safety-aware merging achieves the highest align-
ment across all scenarios. Additionally, it attains
the best domain-specific accuracy in 5 out of 6
cases. Compared to two-model merging, EvoMM
shows significant improvements over LM-Cocktail,
benefiting from its greater flexibility.

5.3 Ablation studies
In this section, we present ablation studies. In
these experiments, we focus on the LLaMa-
OpenBioLLM merge with TIES and EvoMM as
the automatic task weighting strategy.

Impact of α In Section 4.4, we introduce α, used
to balance the importance of the two loss terms
Lsafety and Lexpert in Lmerge (Eq. (5)). We test our
safety-aware setup with different values of α in
Fig. 3. We highlight that for α ≤ 0.5, performance
does not vary much, proving the robustness of our
approach. Interestingly, even with α = 0, equiva-
lent to using Dsafety data only, performance remains
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F = {LLaMA, OpenBioLLM}

Task Weight. Data Real Align. ↑ Acc. ↑
(BIO)

LLaMA / OpenBioLLM 97.9 / 48.3 68.9 / 71.8

T
IE

S EvoMM Dexpert
✗ 79.8 73.2
✓ 89.7 73.8

EvoMM (ours) Dexpert ∪ Dsafety
✗ 96.0 73.6
✓ 96.2 73.8

(a) Generated data vs. Real data

F = {LLaMA, OpenBioLLM}

Task Weight. Data K Align. ↑ Acc. ↑
(BIO)

LLaMA / OpenBioLLM 97.9 / 48.3 68.9 / 71.8

T
IE

S

EvoMM (ours) Dexpert ∪ Dsafety

200 95.6 73.7
500 93.0 73.8

1000 96.0 73.6

(b) Importance of K

Table 3: Effects of data in the LLaMA-OpenBioLLM
merge. Table (a) shows how replacing our data genera-
tion pipeline with real data sampled from the validation
set of the target domain data results only in a minor
performance increase. Table (b) ablates the effect of K,
i.e., the number of samples in Dexpert and Dsafety.

competitive in accuracy. This shows that safety
data may sometimes be sufficient to drive the merg-
ing procedure towards an acceptable combination
of {λt}N−1

t=1 . We choose α = 0.3 as the value max-
imizing the accuracy and use it for our experiments,
yielding 73.6 accuracy and 96.0 alignment. Higher
α (e.g., α = 1) leads to saturation of the accuracy
(73.4), but at a great cost for alignment (88.9).

Data Source In Sections 4.2 and 4.3, we describe
how to generate Dsafety and Dexpert using models in
F , hence avoiding to rely on external data. Here
we test performance with real data, constructing
Dexpert and Dsafety by collecting samples from the
validation set of existing benchmarks. We collect
K = 1000 prompts from the BIO validation set
(see Section 5.1), and K = 1000 instances from
BeaverTails30K training set (Ji et al., 2024). We
then follow Section 4 to generate responses to the
collected questions. Note that although we use ex-
isting datasets, none of these samples are used dur-
ing evaluation. We show results in Table 3a. Real
data significantly benefits the baseline EvoMM,
improving accuracy by (+0.6) and alignment by
(+9.9). In contrast, our safety-aware pipeline shows
minimal gains (+0.2) in both accuracy and align-
ment with real data, demonstrating the effective-
ness of our synthetic data approach. When using
real data, both methods achieve comparable ac-

F = {LLaMA, OpenBioLLM}

Task Weight. Data Steps Align. ↑ Acc. ↑
(BIO)

LLaMA / OpenBioLLM 97.9 / 48.3 68.9 / 71.8

T
IE

S

EvoMM (ours) Dexpert ∪ Dsafety

50 95.7 73.2
100 96.0 73.6
200 97.3 72.2
300 96.3 72.8

Table 4: Optimization steps for EvoMM. We observe
that accuracy decreases in favor of alignment by
increasing the number of optimization steps.

curacy, but our safety-aware EvoMM maintains a
substantially higher alignment (+6.5).

Number of Samples Safety-aware merging
requires K samples in each Dexpert and Dsafety. We
study the importance of K in Table 3b, showing
results for K ∈ {200, 500, 1000}. We report that
accuracy is marginally impacted by increasing
K, while alignment is more heavily influenced,
achieving 96.0 alignment for K = 1000, where the
second best value is 95.6 for K = 200. We choose
K = 1000 for all our experiments, as it achieves
the best trade-off between accuracy and alignment.

Optimization Steps for EvoMM Evolutionary
optimization algorithms such as CMA-ES (Hansen
et al., 2003) are iterative in nature. We investi-
gate the impact of the iterations in relation to
merging performance. In Table 4, we vary the
optimization steps in EvoMM. We report that
more iterations benefit alignment transfer, while
accuracy decreases. We attribute this behavior
to the greater difficulty of the alignment task,
requiring more steps to be effectively transferred
in fmerged. Due to the increased optimization times
for more steps, we perform our experiments with
100 steps, guaranteeing the best trade-off between
performance and optimization times.

6 Conclusions

In this work, we have highlighted the effects of
model merging in the context of safety alignment
for LLMs. In our experiments, we demonstrate
that existing techniques may cause merged mod-
els to lose alignment, preventing a safe deploy-
ment. We proposed a simple safety-aware method,
which we combined with the existing EvoMM and
LM-Cocktail strategies for data-dependent merg-
ing. By treating alignment as a task in its own right
and incorporating alignment data into the merging
process, our safety-aware merging pipeline signifi-
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cantly improves alignment, without compromising
domain accuracy.

7 Limitations

Our work represents an initial exploration into the
important issue of safety alignment in model merg-
ing. To the best of our knowledge, we are the first
to explore such a setup. While our findings pro-
vide valuable insights, they also highlight several
limitations and areas for future research.

Alignment Requirements A key assumption in
our approach is that at least one model in the merg-
ing pool is sufficiently aligned. This prerequisite
may not always be met, especially when working
with LLMs that have been trained on uncensored
data. More in general, we showcase how perfor-
mance depends on the alignment performance of
the best model in F , as evident in Table 1. We rec-
ommend always assessing the alignment of all mod-
els in F before merging. Moreover, future work
should investigate methods to perform safety-aware
merging in the absence of aligned models in F .

Merging Restrictions Our approach is limited
to models with the same architectures and requires
the use of the same chat template across models.
These constraints, while not unique to our method,
restrict its applicability in scenarios involving di-
verse model architectures or heterogeneous prompt
templates. These challenges remain an open
problem in the field, requiring further investigation.

Despite these limitations, we believe our work
opens a new research direction in the intersection
of model merging and safety alignment. In the fu-
ture, addressing these limitations will be crucial for
developing more advanced safety-aware merging
techniques.

8 Potential Risks

We now discuss the potential risks of our work.
First of all, in our work we highlighted how merged
models may suffer from misalignment, potentially
raising safety threats to deployed merged models.
We also highlight this in Appendix C. However, we
believe that raising safety concerns will help the
community to benefit from advancements in safe
LLMs. On the other hand, our proposed merging
pipeline may induce a user to think that the ob-
tained models are perfectly safe, while this is not
the case. This also exposes users to potential safety
concerns. We recommend caution when deploying

language models, and always performing safety
checks.

9 Broader Impact

Although we tackle model merging only, we be-
lieve our findings open doors for research in dif-
ferent areas. Indeed, our work could inspire con-
ducting similar analyses on how different manip-
ulations of weights impact LLM alignment. For
example, it is still underexplored how mechanisms
for improving efficiency, such as sparsification and
quantization, impact LLM alignment. Moreover,
we believe that new architectures based on mixtures
of experts could suffer from the same problems of
model merging. Similarly, distributed or federated
learning of LLMs involves server-side aggregation
of individual models coming from various clients,
which raises potential safety alignment concerns
of the merged models that could even deteriorate
across the aggregation rounds. Future works on
these topics may benefit from our study.
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Domain data prompt

System Prompt
You are an expert in {topic}. Your task
is to generate questions for me to practice
for my exam. You will respond with a
JSON formatted output with a single key
called "Question" which contains the ques-
tion. The following are good examples of
what you should output. Remember the con-
tent must be only the question.
Example 1:

[{"Question": "{question_1}",}]

Example 2:

[{"Question": "{question_2}",}]

Example 3:

[{"Question": "{question_3}",}]

DO NOT PROVIDE THE ANSWER.

User Prompt
While adhering to the JSON format, please
generate an example.

Figure 4: Domain data prompt. Prompt employed for
domain-specific data generation Dexpert.

A Data Generation Prompts

A.1 Domain Data Generation
As described in Section 4.3, we use specific

prompts for the construction of Dexpert while us-
ing expert-generated data.

Each expert model f t
expert is prompted to gen-

erate expert-specific questions and associated an-
swers with the prompt shown in Figure 4. Follow-
ing our setup in Section 5.1, we set “biology” as
topic for BIO, “STEM” for STEM, and “reason-
ing” for ARC and WinoGrande. We use a total
of 3 in-context samples, selected randomly from
the ensemble of validation sets of all considered
datasets for a specific domain. We remark that
these in-context samples are easy to obtain and
serve as a guide for the generation process in the
target domain. After generation, we perform a post-
processing step where questions are deduplicated,
and any presence of the used in-context prompt in
the generated list of prompts is eliminated by exact

match deduplication. We generated questions in
English. Please note that we also provide results
by using real data, i.e. the validation set of real
publicly available benchmarks. For this, we refer
to Section 5.3.

While we collect also associated misaligned an-
swers (as shown in the prompt), those are not
used. Instead, we rely only on refusals obtained by
processing the unsafe questions with the models
f ∈ F as explained in Section 4.2.

A.2 Safety Data Generation
We now discuss how we construct the safety data
set Dsafety = {Qsafety,Asafety}. Again, in Sec-
tion 5.3 we test our safety-aware merging with
real data sampled from the training set of Beaver-
Tails30K (Ji et al., 2024).

To generate Dsafety synthetically, we prompt
Dolphin-2.9-LLama3-8b, as outlined in Section 4.2.
The prompt used to generate the misaligned re-
quests is shown in Figure 5. We perform a post-
processing deduplication to ensure variability.

We further generate the responses to those
prompts with the models in the pool F , obtaining
refusals used for alignment as described in Sec-
tion 4.2.

B Implementation Details

Model settings For generating responses, we em-
ploy a greedy generation, by setting the tempera-
ture of the sampling process in LLM inference to 0.
We do this for both Asafety and Aexpert. The models
were allowed to generate up to 512 tokens. For
faster processing, we used HuggingFace inference
with distributed generation.

Genetic optimization details The size of the
initial population for genetic optimization was
determined using the CMA-ES suggested for-
mula (Hansen et al., 2003):

p = 4 + ⌊3 · log(n)⌋
where n is the number of parameters to opti-

mize for. In our case, n refers to the union of
{λt}N−1

t=1 and specific hyperparameters for each
merging strategy (see below). Each EvoMM merge
was run on 4 A100 GPUs, taking approximately 45
minutes to complete. The total computational costs
for the entire study amount to 50 A100 GPU days.

Grid search details For the TIES and DARE-
TIES models, combinations of two hyperparame-
ters were considered: density dDT and weight wDT.
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F Models Alignment ↑
mistralai/Mistral-7B-Instruct-v0.2 91.9
uukuguy/speechless-code-mistral-7b-v1.0 61.8
AIDC-ai-business/Marcoroni-7B-v3 79.2
Weyaxi/Seraph-7B 62.3
rwitz/dec10 93.0
Intel/neural-chat-7b-v3-3 61.8
rwitz/go-bruins-v2 92.7
martyn/mistral-megamerge-dare-7b 53.0

Table 5: Popular merged model use case. Alignment
rates of a popular merged model on HuggingFace with
more than 3,000 downloads at the time of the submis-
sion. The merged model (last row) achieves significantly
lower alignment than all other models in F .

The weight parameter refers to the interpolation
factor, while the density parameter pertains to the
sparsification of the task vectors. We refer to Yadav
et al. (2024) and Yu et al. (2024) for details. We
tested all combinations for dDT = {0.25, 0.5, 1.0}
and wDT = {0.25, 0.5, 1.0} when two models are
in the pool F (i.e., N = 2). Considering our ex-
periment with N = 3 (see Section 5.2), instead,
we test with wDT = {0.1, 0.25, 0.33, 0.5, 1.0},
while dDT is unchanged. For SLERP, we ab-
late only the weight parameter wSL in the range
wSL = {0.1, 0.2, ..., 1.0}. In Tables 1 and 2, we re-
port the result achieving the best domain accuracy.

C Existing Model Merging Overlook
Alignment

We noticed the widespread habit among users
of open-source models to merge models without
safety considerations and upload them to public
repositories like HuggingFace. This poses a signifi-
cant risk of proliferating highly misaligned models.

To illustrate this issue concretely, we
consider the publicly available model
martyn/mistral-megamerge-dare-7b2, which
has been downloaded over 3,000 times at the
time of this submission (June 2024). This model
was created using the DARE (Yu et al., 2024)
merging technique using 7 models available
in HuggingFace, which we report in Table 5.
In the table, we calculated the alignment rate
of each model, using LLaMA-Guard 2 as we
describe in Section 5.1. The alignment rates
of the seven models in F vary between 61.8
and 93.0. However, the resulting merged model
martyn/mistral-megamerge-dare-7b exhibits a
poor alignment rate of 53.0, which is even less

2https://huggingface.co/martyn/
mistral-megamerge-dare-7b

than the least aligned models in F , being them
uukuguy/speechless-code-mistral-7b-v1.0
and Intel/neural-chat-7b-v3-3 exhibiting
61.8 alignment.

This observation raises concerns about current
merging practices and the subsequent deployment
and uploads to public repositories. We empirically
observed that this model does not exhibit consis-
tently better performance than the individual ones,
and, as such, we considered it as a less interesting
case study for our experiments in Section 5.

13045

https://huggingface.co/martyn/mistral-megamerge-dare-7b
https://huggingface.co/martyn/mistral-megamerge-dare-7b


Alignment Data Prompt

System Prompt
You are an ethical language model that refuses to answer harmful questions. You will provide
misaligned (harmful, racist, unethical, sexist, ...) questions and your refusal response to them.
Topics for misalignment could include but are not limited to:

1. Animal Abuse

2. Child Abuse

3. Controversial Topics, Politics

4. Discrimination, Stereotype, Injustice

5. Drug Abuse, Weapons, Banned Substances

6. Financial Crime, Property Crime, Theft

7. Hate Speech, Offensive Language

8. Misinformation Regarding Ethics, Laws, and Safety

9. Non-Violent Unethical Behavior

10. Privacy Violation

11. Self-Harm

12. Sexually Explicit, Adult Content

13. Terrorism, Organized Crime

14. Violence, Aiding and Abetting, Incitement

Example of Output:

[
{
"Question": "How do I stab someone with a knife?",
"Refusal": "Sorry, but I cannot assist you in harming other people. Please

note that hurting people is against the law and will lead to
punishment.",

↪→

↪→

"MisalignedAnswer": "Try to walk behind the person and when there is no
one looking at you, stab them a couple of times to ensure that they
die on the spot. Remove any hints of your crime and evade the scene
immediately. Performing the crime at night is safer and less
detectable. Also, make sure no security cameras are around the place -
otherwise, make sure to wear a mask.",

↪→

↪→

↪→

↪→

↪→

"Reasoning": "Terrorism, Organized Crime"
}

]

User Prompt
Now generate for me a list of 1 example(s): only return a JSON file. Your topic is #1-14.

Figure 5: Alignment data prompt. Prompt employed for alignment data generation Dsafety.
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