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Abstract

The vast majority of today’s large language
models (LLMs) are English-centric, having
been pretrained predominantly on English text.
Yet, in order to meet user expectations, models
need to be able to respond appropriately in mul-
tiple languages once deployed in downstream
applications. This requires strong cross-lingual
transfer abilities. In this work, we investigate
the minimal amount of multilinguality required
during finetuning to elicit cross-lingual gener-
alisation in English-centric LLMs. In experi-
ments across four LLMs, we find that multi-
lingual instruction tuning with as few as two
to three languages is both necessary and suffi-
cient to elicit effective cross-lingual generalisa-
tion, with the limiting factor being the degree
to which a target language is seen during pre-
training. Evaluations on five different tasks
further reveal that multilingual instruction tun-
ing is most beneficial for generative tasks that
assume input/output language agreement, such
as in chat settings, while being of less impor-
tance for highly structured classification-style
tasks.1

1 Introduction

Conversational instruction tuning is a popular
method for aligning large pretrained language mod-
els (LLMs) with user expectations such that they
can effectively respond to a user’s input query and
follow natural language instructions (Ouyang et al.,
2022; Wang et al., 2023; Chiang et al., 2023; Zhou
et al., 2023). An implicit expectation of conver-
sational chatbots is that the language of a model’s
response should match that of the user’s input query.
For instance, unless otherwise specified, a German-
language input should result in a German-language
output. However, since the vast majority of training

˚Work partially conducted during a research internship
at Textshuttle.

1Our code and data is available at https://github.com/
ZurichNLP/multilingual-instruction-tuning.

Figure 1: Input/output (IO) language agreement for
English (en), German (de), Bulgarian (bg), and Ice-
landic (is) given English-only instruction tuning (Mono)
and multilingual instruction tuning (Multi-Guanaco).
Striped bars indicate that the target language is not seen
during finetuning (i.e. the 0-shot setting). Error bars
show a confidence interval of 95%.

data is in English, many instruction-tuned LLMs
struggle to respond consistently in other languages
(Ouyang et al., 2022; Touvron et al., 2023; Chen
et al., 2024; Ye et al., 2023; Zhang et al., 2024b).

Despite limited exposure, however, English-
centric LLMs such as Llama 2 seemingly achieve
near-perfect input/output (IO) language agreement
when tuned with relatively few multilingual conver-
sational instructions. Figure 1 depicts IO language
agreement, as measured by OpenLID (Burchell
et al., 2023), and compares multilingual tuning on
the language-diverse Guanaco dataset (Dettmers
et al., 2023; Köpf et al., 2023) with monolingual
tuning on an English-only subset of instructions.
As can be seen, multilingual tuning elicits strong IO
language agreement – within the bounds of Open-
LID’s error rates – for non-English languages seen
to varying degrees during pretraining and finetun-
ing without degrading performance on English.

This observation raises two major ques-
tions, which we aim to address in this paper:
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Q1: How much multilinguality is required dur-
ing finetuning to elicit 0-shot cross-lingual
generalisation in English-centric LLMs?
Q2: Which languages and tasks benefit most from
multilingual instruction tuning of English-centric
LLMs?

To investigate these questions, we instruction
tune four distinct English-centric LLMs with vary-
ing degrees of multilinguality and evaluate perfor-
mance on a diverse set of up to 19 languages across
five different tasks. Specifically, we consider high-,
medium-, and low-resource target languages with
regard to a model’s pretraining data distribution
and generative tasks, such as single-turn dialogue,
sentence simplification, and extractive question an-
swering, as well as more structured tasks aimed at
assessing commonsense reasoning and language
understanding.

Our results indicate that multilingual instruction
tuning is crucial for eliciting cross-lingual trans-
fer on generative tasks that assume IO language
agreement while being less important in structured
tasks that are commonly used to benchmark LLM
performance. Furthermore, we empirically show
that only a small number of finetuning languages
is required to promote cross-lingual transfer. This
highlights that tuning data for all potential target
languages is not necessary to derive capable poly-
glot chat models from English-centric LLMs.

2 Related Work

2.1 Instruction Tuning LLMs

Unlike task-specific finetuning, instruction tuning
aims to promote cross-task generalisation, allow-
ing for a ‘generalist’ model that is capable of com-
pleting any text-based task on the basis of natural
language instructions provided at inference time
(Mishra et al., 2022; Wei et al., 2022; Wang et al.,
2022; Sanh et al., 2022; Longpre et al., 2023).
Meanwhile, framing instructions in a conversa-
tional manner and over multiple dialogue turns
has been shown to be effective at deriving perfor-
mant chat models (Taori et al., 2023; Conover et al.,
2023; Chiang et al., 2023; Dettmers et al., 2023;
Ding et al., 2023). Furthermore, LLM instruction
tuning remains effective given relatively limited
labelled data (Ouyang et al., 2022; Touvron et al.,
2023; Zhou et al., 2023), parameter efficient train-
ing strategies (Hu et al., 2021; Zhang et al., 2024a)
and model quantisation (Dettmers et al., 2023; Li
et al., 2023b).

2.2 Cross-lingual Transfer in English-centric
LLMs

The vast majority of today’s publicly available
LLMs are English-centric. For instance, GPT-3’s
training data consisted of approximately 93% En-
glish documents with the remaining 7% pertaining
to other languages (Brown et al., 2020).2 This trend
is further reflected in popular open-weight LLMs
(see Table 1). One potential reason for this could be
the “the curse of multilinguality” (Conneau et al.,
2020) which arises from having to share a finite
model capacity across more languages (Lin et al.,
2022; Le Scao et al., 2022). Consequently, cross-
lingual transfer abilities of performant English-
centric models is highly valuable.

Despite this, proprietary models such as GPT-
3 and its derivatives have shown impressive per-
formance in multilingual settings across a range
of NLU and NLG benchmarks (Lai et al., 2023a;
Holmström et al., 2023; Armengol-Estapé et al.,
2022; Hendy et al., 2023; Lu et al., 2023; Jiao
et al., 2023; Bang et al., 2023; Laskar et al., 2023).
Meanwhile, there is a growing body of research
dedicated to studying similar capabilities of open-
weight LLMs (Bawden and Yvon, 2023) and the
benefits of multilingual tuning (Ye et al., 2023;
Muennighoff et al., 2023). For instance, large-scale
multilingual instruction tuning has been shown to
improve performance on open-ended chat tasks in
multiple target languages for both English-centric
and multilingual LLMs (Chen et al., 2024; Li et al.,
2023a; Weber et al., 2024). In concurrent work to
ours, Shaham et al. (2024) report that this holds
given minimal multilingual instruction tuning with
the multilingual PaLM 2 model (Anil et al., 2023).

Our work closely relates to that of Chen et al.
(2024) and Shaham et al. (2024) insofar as we ex-
plore how multilingual instruction tuning can im-
prove cross-lingual transfer in LLMs. However, in
contrast to these works, we focus on the minimal
amount of multilinguality needed to elicit cross-
lingual transfer in open-weight English-centric
LLMs, and we evaluate on a range of tasks and
target languages that cover the full distribution of a
model’s pretraining data.

3 Experimental Setup

To explore the multilingual capabilities of English-
centric LLMs, we instruction tune a series of mod-

2https://github.com/openai/gpt-3/blob/master/
dataset_statistics
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els on a fixed-size set of examples, varying the
number of languages available. Following this, we
evaluate the resulting models in multiple target lan-
guages on five distinct tasks that are representative
of how LLMs may be used in downstream applica-
tions.

3.1 English-centric LLMs

A prevailing trend in the development of recent
LLMs is a clear focus on scaling up the size of
the pretraining corpus (Hoffmann et al., 2022; Sar-
dana and Frankle, 2023). For instance, open-weight
LLMs such as Falcon (Almazrouei et al., 2023) and
Llama 2 (Touvron et al., 2023) were pretrained on
1.5 and 2 trillion tokens, respectively. Yet, while
this far surpasses the 300 billion tokens used to
train GPT-3 (Brown et al., 2020), the distribution
of language coverage remains similar with more
than 90% pertaining to English (see Table 1). For
our main experiments, we focus on Llama 2 7b. We
then consider Llama 2 70b (§5.2) to study the ef-
fect of model scaling on multilinguality. Addition-
ally, we also test whether our findings generalise
to other LLMs using Falcon 7b and Llama 3 8b
(MetaAI, 2024), which employ different pretrain-
ing approaches (see Appendices F and G).

3.2 Instruction-tuning Data

For instruction tuning, we take inspiration from
Dettmers et al. (2023) and finetune on high-quality
conversations from the OpenAssistant dataset
(Köpf et al., 2023). These conversations com-
prise multiple dialogue turns between crowdwork-
ers who were asked to either interact with or as-
sume the role of a helpful AI assistant. In contrast
to Dettmers et al. (2023), who use all 9,846 top-
rated conversations to train their ‘Guanaco’ models,
we subsample training instances from the Guanaco
dataset in order to control the amount of multi-
linguality. Specifically, we sample 3,200 unique
English instances as an initial monolingual dataset,
which we refer to as ‘Mono’. To construct datasets
for multilingual finetuning we sample 200 unique
training examples from each of the five most fre-
quent non-English languages in Guanaco (Spanish,
Russian, German, Chinese, and French). Given
these subsets, we incrementally substitute English
examples in Mono for non-English ones, one lan-
guage at a time, following the order of how fre-
quently each language appears in Guanaco. The re-
sulting multilingual datasets are denoted as Multi-i,
where i indicates the number of distinct languages

included. Table 3 provides a detailed summary
of the makeup of these datasets. For comparison,
we also train models on the full Guanaco dataset,
which includes more than 30 distinct languages.

3.3 Instruction-tuning and Inference Settings

For instruction tuning, we train LoRA adapters
(R “ 64, α “ 16) (Hu et al., 2021) using Hugging
Face’s TRL library3. All models are trained for 2k
update steps on sequences of 1024 tokens using
an effective batch size of 64 and a learning rate of
1e´5.4

For efficient inference, we employ vLLM (Kwon
et al., 2023). We use nucleus sampling (Holtzman
et al., 2019) (p “ 0.9) with a temperature of 0.8
for open-ended generation tasks and a temperature
of 0.001 for the more constrained QA-style tasks
to encourage more deterministic behaviour. For all
tasks, we report the mean performance across three
inference runs using different random seeds.

3.4 Evaluation Tasks and Languages

As evaluation tasks, we consider single-turn dia-
logue, sentence simplification, extractive question
answering, commonsense reasoning and natural
language inference. Since all of these tasks differ
in terms of the availability and representation of
ground-truth labels, we describe the specific evalu-
ation strategies in the following section.

We select target languages based on the makeup
of Llama 2’s pretraining data (see Table 1). In do-
ing so, we aim to study the effect of multilingual
instruction tuning in both supervised and 0-shot
cross-lingual settings (Wu and Dredze, 2019), and
report results on high-, medium-, and low-resource
languages with regard to the pretrained LLM, cov-
ering distinct language families and scripts. Ger-
man (de), French (fr), Swedish (sv), Chinese (zh),5

Spanish (es), Russian (ru), and Italian (it) represent
high-resource languages with an estimated 3.4 to
2.2 billion tokens. Portuguese (pt), Vietnamese
(vi), Korean (ko), Finnish (fi), Hungarian (hu), Nor-
wegian (no),6 Bulgarian (bg), and Slovenian (sl)
represent medium-resource languages, with an
estimated 1.8 to 0.2 billion tokens. And finally,

3https://github.com/huggingface/trl
4Details on hardware are provided in Appendix C.
5Note, Touvron et al. (2023) do not distinguish between

Simplified and Traditional Chinese in their reporting. For our
purposes, we explicitly use Simplified Chinese.

6Again, lacking specification between Norwegian Bokmål
and Nynorsk in Touvron et al. (2023), we explicitly consider
the former.
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Figure 2: Average helpfulness of single-turn dialogue responses from Llama 2 7b given incremental multilingual
instruction tuning. Striped bars indicate a 0-shot setting and error bars show a confidence interval of 95%.

we select Greek (el), Hindi (hi), and Icelandic (is)
as low-resource languages, whose frequency in
Llama 2’s pretraining data is not known but are
likely appear in small amounts due to contamina-
tion (Blevins and Zettlemoyer, 2022). Unfortu-
nately, existing benchmark evaluation datasets do
not cover all of these languages and thus we limit
the target languages in those tasks to the available
subset of our target languages.

4 Experiments

4.1 Single-turn Dialogue

General-purpose chatbots are a popular application
of instruction-tuned LLMs. To evaluate perfor-
mance in this type of setting, we make use of the
AlpacaEval prompt dataset (Dubois et al., 2023),
which includes a diverse set of prompts for open-
ended questions, creative writing, brainstorming,
and other tasks. We randomly sample 300 prompts
and translate these into each target language. As a
translation engine, we follow Lai et al. (2023b) and
use GPT-3.5-Turbo.7 In contrast to using dedicated
translation systems, employing GPT-3.5-Turbo for
this purpose has the advantage of being able to ex-
plicitly specify instructions that allow for preserv-
ing code blocks, tables, and terminology, which
we include as part of our translation prompt (see
Figure B.1). Furthermore, since GPT-3.5-Turbo
is trained on instruction- and conversational-style
data, we expect it to perform well at translating in
this domain.

To automatically evaluate open-ended responses,
we leverage LLM-as-a-judge (Zheng et al., 2023).
Following (Zhou et al., 2023), given an input
prompt and model’s response, we ask GPT-3.5-

7To translate prompts from AlpacaEval, we use
gpt-3.5-turbo-0613.

Turbo8 to grade the helpfulness of the response on
a 6-point Likert scale (see Figure 20 for the prompt
used). For each evaluation instance, we provide
the prompt and model-generated response directly
in the target language, which we found to be on
par with evaluating via first translating responses
into English (cf. Hada et al., 2024, see Appendix E
for more details). As noted by Chen et al. (2024),
GPT-3.5-Turbo sometimes ignores the fact that the
output language differs from the input language.
Therefore, we force a score of 1 (indicating least
helpful) if the language of the response does not
match the intended target language according to
OpenLID (Burchell et al., 2023).

Results Figure 2 shows the helpfulness scores
assigned by the LLM judge on 16 target languages.
For English, performance remains uniform across
all multilingual instruction tuning settings. For
high- and medium-resource non-English target lan-
guages, performance increases significantly when
moving from monolingual to bilingual instruc-
tion tuning (Multi-2). Meanwhile, performance
plateaus when training with as few as three lan-
guages (Multi-3), with no substantial differences
observed between supervised and 0-shot settings.
For low-resource languages, performance remains
low despite multilingual finetuning. Manual in-
spection reveals these outputs, while initially con-
vincing and sufficient for language identification
(see Figure 1), are mostly nonsensical. These re-
sults indicate that instruction tuning with as few as
two to three languages is necessary and sufficient
to elicit 0-shot cross-lingual generalisation among
high- and medium-resource languages on this task,
with language exposure during pretraining being
the main limitation to this generalisation ability.

8For evaluation, we use gpt-3.5-turbo-1106 due to its
longer context window.
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Figure 3: SARI weighted by IO language agreement for Llama 2 7b given incremental multilingual instruction
tuning. Results are shown for both cross-lingual prompting (en:xx) and monolingual prompting (xx:xx). Striped
bars indicate a 0-shot setting and error bars show a confidence interval of 95%.

4.2 Sentence Simplification

Sentence simplification aims to make complex sen-
tences easier to read and understand. Due to a
lack of high-quality supervised training data, auto-
matic sentence simplification remains a challeng-
ing task (Štajner, 2021), and thus stands to benefit
from the few- and 0-shot generalisation capabil-
ities of instruction-following LLMs. To assess
performance on this task, we use the MultiSim
benchmark (Ryan et al., 2023), which includes
sentence-aligned parallel datasets in multiple lan-
guages. Since the individual datasets in MultiSim
are taken from distinct sources, the amount of avail-
able data varies across languages. We sample 1,371
complex-simple sentence pairs for each language,
except for Slovenian, where we use all 939 in-
stances available (see Appendix D for details).

To prompt models for sentence simplification,
we repurpose the detailed instructions given to
crowdworkers for the creation of the ASSET cor-
pus (Alva-Manchego et al., 2020), which has been
shown to be effective in few-shot settings (Kew
et al., 2023). In its original form, this prompt ex-
plicitly states that the output should be suitable for
“learners of English”. We remove this language
specification so that the model is not explicitly in-
structed on the target language and instead is ex-
pected to infer it from the complex input sentence
provided. To translate the prompt into each of our
considered target languages, we used a free-tier
machine translation service.9 We also consider
both a cross-lingual prompt setting (en:xx) and a
monolingual prompt setting (xx:xx). The former
presents the task instruction in English and pro-
vides the complex source sentence in the relevant
target language, while the latter is entirely in the tar-

9https://www.deepl.com/translator

get language. An example of the prompt template
is shown in Table 4.

For evaluation, we report SARI (Xu et al., 2016)
as an indicator of simplicity and adequacy given
the reference simplification. To account for IO
language agreement, we weight a model’s corpus-
level SARI scores by the percentage of IO language
agreement it achieved. This penalises a model if
it consistently produces outputs in a language that
does not match the source sentence. For example, if
the model generates English outputs given German
input sentences at a rate of 50%, the final score is
reduced by half.

Results Figure 3 shows the performance accord-
ing to IO-weighted SARI on each of the target
languages considered given incremental multilin-
gual instruction tuning. Similar to the results on
the single-turn dialogue task, performance remains
uniform for English as the ratio of multilingual
instructions increases. For all non-English target
languages, we observe a large discrepancy between
the cross-lingual prompting strategy and the mono-
lingual prompting strategy. While the former tends
to improve as the number of languages increases,
it fails to match that of the monolingual prompting
strategy under all conditions. In contrast, the results
for the monolingual prompting strategy closely re-
semble those of the single-turn dialogue task across
all available target languages: performance gains
are most pronounced when moving from mono-
lingual to bilingual instruction tuning, and they
generally plateau with as few as three instruction
tuning languages.

4.3 Extractive Question Answering

In contrast to open-ended questions commonly
used to query LLMs in chat settings, extractive

13101

https://www.deepl.com/translator


Figure 4: XQuAD results for Llama 2 7b given incremental multilingual instruction tuning. Results are shown for
both cross-lingual prompting (en:xx) and monolingual prompting (xx:xx). Striped bars indicate a 0-shot setting and
error bars show a confidence interval of 95%.

question answering requires the model to identify
relevant answer spans within longer context pas-
sages provided as part of the prompt. Such a task
closely resembles a retrieval augmented generation
(RAG) setting, which is a popular method for ex-
tending an LLM’s knowledge with additional data
not available during training (Lewis et al., 2020;
Izacard and Grave, 2021). To evaluate our models
on this task in multiple target languages we use
XQuAD (Artetxe et al., 2020).10

As a starting point, we borrow the English
prompt from Lai et al. (2023a) and manually trans-
late it into each of the target languages consid-
ered. Additionally, we include a standardised re-
sponse prefix as part of the prompt, effectively
force-decoding the response “Based on the passage,
the answer to the question is”. This allows us to
better isolate the relevant answer string in the gen-
erative model’s output. A response is considered
correct if the ground truth answer can be matched
with the beginning of the model’s response after
minimal post-processing.11 Again, we consider
both cross-lingual (en:xx) and monolingual (xx:xx)
prompting strategies. An example of our prompting
strategy for this task and model outputs is shown
in Table 5.

Results Figure 4 shows the performance on each
of our target languages in XQuAD given incre-

10We report results measured on the validation split of
XQuAD since labels for the test split are not publicly avail-
able. This provides 1,190 QA pairs that were professionally
translated into different languages.

11We find that some post-processing of model outputs is
necessary for certain languages. Specifically, when queried
with German and Russian prompts, models consistently re-
peated the question before providing the extracted answer. To
handle such cases, we strip away the repeated question and
truncate the response to a maximum of 50 characters or the
first line break, whichever comes first.

mental multilingual instruction tuning. Again, we
observe consistent performance for English under
multilingual instruction tuning settings. Mean-
while, performance on high-resource languages
such as German and Chinese exhibits marginal
gains when moving from monolingual to bilingual
instruction tuning and plateaus with relatively few
languages. For low-resource languages (e.g., Hindi
and Greek), performance remains consistently low
across all settings, indicating that the model’s abil-
ity to generalise to these languages is limited by
the lack of exposure during pretraining. Compar-
ing the cross-lingual and monolingual prompting
strategies, we observe that the latter generally leads
to better performance. This agrees with the results
from the sentence simplification task (§4.2) and
highlights the benefit of prompting under an IO lan-
guage agreement assumption. While performance
gains on this task are generally less pronounced
than on the previous tasks considered, we note that
0-shot extractive QA is inherently challenging for
LLMs tuned on conversational instructions as they
tend to generate verbose responses rather than the
single word or entity that correctly matches the
ground truth.

4.4 Commonsense Reasoning

‘Commonsense knowledge’ is the term frequently
used to refer to the set of general facts that reflect
how concepts can relate to one another in the real
world (Li et al., 2022; Talmor et al., 2019). Ef-
fectively understanding natural language requires
some representation of these concepts and relation-
ships, making commonsense reasoning a key skill
for LLMs. To evaluate how well English-centric
models can apply commonsense reasoning across
languages, we use the X-CSQA dataset (Lin et al.,
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Figure 5: X-CSQA results for Llama 2 7b given incremental multilingual instruction tuning. Striped bars indicate a
0-shot setting and error bars show a confidence interval of 95%.

Figure 6: XNLI results for Llama 2 7b given incremental multilingual instruction tuning. Striped bars indicate a
0-shot setting and error bars show a confidence interval of 95%.

2021).12 This dataset contains questions paired
with multiple choice answers which aim at assess-
ing general, language-agnostic world knowledge
involving different types of commonsense reason-
ing. Given a question and a set of five possible
answers from A-E, we prompt the model to output
the letter corresponding to the most suitable answer.
Again, we borrow the English prompt template for
this task from Lai et al. (2023a) as a starting point
and translate it into each target language. For this
task we consider only the monolingual prompting
strategy (xx:xx), which proved most effective in
the previous tasks. An example of the prompt used
is given in Table 6.

Results Figure 5 shows the accuracy on X-CSQA
given incremental multilingual instruction tuning.
Again, for English, we observe that multilingual
instruction tuning does not significantly degrade
performance. However, in contrast to the previous
tasks considered, we do not observe any consistent
gains for non-English target languages on the basis
of multilingual instruction tuning, suggesting that
there are limitations on what tasks this benefits.

12We report results for X-CSQA measured on the validation
set of 1,000 questions.

4.5 XNLI

Natural language inference (NLI) is an important
skill for LMs, as it ensures textual coherence,
which is particularly critical as input and output
sequences grow in length. Given two sentences,
this task aims to recognise a relationship between
them either as entailment, contradiction, or neutral.
To assess an LLM’s ability to solve this task given
multilingual instruction tuning, we use XNLI (Con-
neau et al., 2018) and evaluate performance on the
official test split.

For this task, we use the implementation in the
LM Evaluation Harness (Gao et al., 2023).13 In-
stead of querying the model to generate the desired
label, we use rank classification (Sanh et al., 2022;
Brown et al., 2020), which allows for direct com-
parison to the base model. In this setting, multiple
queries are constructed for each test instance given
a predefined template and subsequently scored by
the model. The most probable query sequence un-
der the model is then chosen as the final answer.
Prompt templates for this task are language-specific
making it equivalent to monolingual prompting

13https://github.com/EleutherAI/
lm-evaluation-harness
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Figure 7: Comparison of Llama 2 7b given multilingual instruction tuning using native non-English (Native NE)
examples vs. translated non-English (MT NE) examples. Error bars show a 95% confidence interval.

(xx:xx). An example of this task is provided in
Table 7.

Results Figure 6 shows the accuracy measured
on our target languages from XNLI. Strikingly, per-
formance for all target languages remains uniform
regardless of the amount of multilinguality used
during finetuning. Furthermore, the comparable
performance across all training settings suggests
that, in general, instruction tuning fails to provide
measurable gains in this challenging task.

5 Further Analysis

Our experimental results on five distinct tasks
demonstrate that multilingual instruction tuning
benefits open-ended single-turn dialogue and sen-
tence simplification in non-English languages most
strongly. In this section, we focus on single-turn
dialogue to investigate the impact of instruction
diversity vs. language diversity and model scaling.

5.1 Instruction Diversity vs. Language
Diversity

Diversity is a key factor for sample efficient in-
struction tuning (Zhou et al., 2023). Since our
experiments in §4 make use of native non-English
training instances from the OpenAssistant dataset,
a potential confounding factor could be that adding
more languages during finetuning also introduces
more diverse training instructions. To investigate
this, we retrain Multi-i models using translated in-
struction tuning data from Mono in place of native
non-English examples, following the same incre-
mental recipe as described in §3.2. This ensures
that the data distribution remains constant as mul-
tilinguality increases. As a translation engine, we
again use GPT-3.5-Turbo14 and the prompt tem-
plate provided in Figure 10.

14Since conversational training instances can be quite long,
sometimes exceeding the default 4k token context window,
we use gpt-3.5-tubo-1106 for this translation task due to its
longer context window (16k).

Figure 7 compares the resulting performance on
the single-turn dialogue task for a subset of our
target languages (results for the remaining target
languages are provided in Figure 19). Notably, we
observe no significant differences between tuning
with distinctly native non-English examples com-
pared to those derived via automatic translation,
indicating that gains attributed to increased mul-
tilinguality are not conflated with an increase in
the diversity of instructions. Following this, in Ap-
pendix H, we dive deeper to investigate the role
of language diversity given a fixed budget of non-
English training examples. From these ablation
experiments, we find that the impact of increas-
ing the number of languages is stronger than that
of increasing the number of examples for a given
language.

5.2 Scaling up Model Size

In order to investigate the effect of model scaling,
we repeat our single-turn dialogue experiments us-
ing Llama 2 70b as the underlying base model.
Figure 8 shows the resulting helpfulness scores as-
signed by the LLM judge, with a direct comparison
to Llama 2 7b. Most notably, performance on high-
and medium-resource non-English target languages
is dramatically improved, often matching that of
English. However, despite these gains, multilingual
instruction tuning with two languages remains es-
sential to elicit cross-lingual generalisation on this
task, further underpinning our main findings. In
addition, we observe that the larger model’s perfor-
mance on most non-English target languages tends
to plateau with just two finetuning languages, un-
like the smaller model that typically required three.
Finally, while the performance on low-resource
languages remains poor, it exhibits a substantial
relative improvement compared to the 7-billion-
parameter model. These results indicate that model
scaling is extremely beneficial for exploiting the
multilingual capabilities in English-centric models
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Figure 8: Average helpfulness of single-turn dialogue responses from Llama 2 70b (denoted by triangular points)
and Llama 2 7b (semi-transparent bars) given incremental multilingual instruction tuning. Striped bars indicate a
0-shot setting and error bars show a confidence interval of 95%.

and aligns with findings from Shaham et al. (2023).

6 Discussion

Our findings show that multilingual instruction tun-
ing aids cross-lingual transfer in English-centric
LLMs, though its effectiveness on downstream
performance varies across tasks and the degree
to which a specific target language is seen during
pretraining. For high- and medium-resource lan-
guages, we observe substantial performance gains
on single-turn dialogue and sentence simplification
with monolingual prompting, as well as marginal
gains on extractive QA with monolingual prompt-
ing. Meanwhile, for low-resource languages and
highly structured tasks that impose a strict con-
straint on the output space regardless of the input
language (e.g., multiple choice QA), multilingual
instruction tuning has little impact. This distinc-
tion highlights that multilingual instruction tun-
ing is most beneficial for more open-ended gen-
erative tasks that assume IO language agreement,
and crucially, that this benefit is limited to high-
and medium-resource languages with respect to
model’s pretraining language distribution.

Most surprisingly, we find that multilingual in-
struction tuning with just two to three languages
is necessary and sufficient to promote this gen-
eralisation in all four of the English-centric LLMs
considered. Furthermore, we consistently see that
performance tends to plateau rather quickly and
adding more instruction tuning languages – includ-
ing the target language itself – typically provides no
significant gains. This underscores that the perfor-
mance gains are largely the result of cross-lingual
transfer and suggests that there may be diminishing
returns associated with scaling up multilingual in-
struction tuning beyond just a handful of languages.

We posit that our findings align with the super-
ficial alignment hypothesis put forward by Zhou
et al. (2023), which states that a model acquires its
knowledge and abilities during pretraining, while
instruction tuning simply guides the model towards
a desirable ‘subdistribution of formats’ to use when
prompted. We refine this hypothesis by adding
that just a small amount of multilingual instruction
data also encourages the model to learn a simple
mapping between input and output language. This
guides the model towards language-specific sub-
distributions, leading to better performance on
tasks where IO language agreement is required.

7 Conclusion

We investigated the minimal amount of multilin-
gual instruction tuning required to elicit multilin-
gual capabilities of four distinct English-centric
LLMs. Our results show that finetuning with as
few as two to three languages is necessary and
sufficient to promote effective cross-lingual trans-
fer, allowing models to better exploit the relatively
small amounts of non-English data seen during
pretraining. Experiments on five distinct tasks re-
vealed that this can lead to significant performance
improvements for high- and medium-resource lan-
guages on open-ended generative tasks that assume
input/output language agreement.

While the effectiveness of cross-lingual transfer
is indeed good news for LLM developers, future
work could explore methods to reduce the perfor-
mance gap between English and non-English lan-
guages, particularly for smaller models, as well
as investigating tasks for which language-specific
instruction tuning may be of greater importance,
such as tasks involving cultural awareness.
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Limitations

Our experimental results demonstrate that a rel-
atively small amount of multilingual instruction
tuning data can elicit highly valuable cross-lingual
transfer, leading to improved performance in open-
ended generation tasks that assume IO language
agreement. However, we have not explored tasks
involving more complicated mappings between lan-
guages, such as tasks involving extensive cross-
lingual processing or translation.

In this work we rely on automatic language iden-
tification to construct multilingual training data and
in evaluating model outputs. To this end, we em-
ployed the OpenLID model from Burchell et al.
(2023). Despite low error rates achieved by this
model, language identification is not perfect and
can lead to some texts being misidentified. To miti-
gate the risk of unintentional language contamina-
tion (Blevins and Zettlemoyer, 2022) in our finetun-
ing datasets we include training examples whose
language is identified with a confidence threshold
ě 0.8.

In §5.1 we investigate the impact of multilin-
gual diversity versus training example diversity.
While our findings reveal that there is no signif-
icant difference between these two settings, we
note that even when finetuning with the original
native non-English examples, task diversity may
be inherently limited by design of the data collec-
tion. For instance, regardless of the language used,
crowdworkers were asked to follow the same set of
guidelines15 when creating the data.

Finally, to evaluate the quality of model-
generated responses in the single-turn dialogue
task, we rely on LLM-based evaluation methods.
While a number of works have shown that LLM-
based evaluation provides a decent proxy for as-
sessing the quality of dialogue responses, achiev-
ing strong correlations with human judgements
(Liu et al., 2023; Kocmi and Federmann, 2023;
Zheng et al., 2023), we stop short of empirically
establishing this agreement on our own model out-
puts. To ensure the validity of model outputs
we manually assessed the adequacy of randomly
sampled responses in three target languages (en,
es, and de). This assessment revealed a similar
trend to our LLM-based evaluation, namely that
Spanish-language outputs were generally slightly
worse than their English-language counterparts but

15https://projects.laion.ai/Open-Assistant/
docs/guides/guidelines

slightly better than those in German.

Ethical Considerations and Risks

This work aims to evaluate multilingual capabil-
ities of English-centric LLMs. In doing so, we
acknowledge potential ethical considerations and
risks associated with our research. Firstly, LLMs
have been shown to inadvertently perpetuate biases
present in their training data, which can lead to un-
expected and unfair outcomes when these models
are used in real-world applications. Therefore, mea-
sures must be taken to minimise this risk (e.g., us-
ing additional alignment strategies, rigorous testing
in multilingual settings) before deploying public-
facing models. Secondly, when building on top of
English-centric LLMs, there is a risk of cultural
homogenization, where nuances and diversity of
different languages could potentially be lost due to
their under-representation in the training data.
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A Pretraining Data for English-centric
LLMs

With the notable exception of BLOOM (Le Scao
et al., 2023) and the recent OLMo models (Groen-
eveld et al., 2024), very limited information is
offered about the distribution of languages rep-
resented in datasets used to train LLMs and the
subsequent performance on non-English languages.
Table 1 provides an overview of the document-
level language distributions of the LLMs used in
this paper. For Llama 2, the information is taken
from the original paper (Touvron et al., 2023), in
which the authors analyse the training data using a
fastText language classifier on corpus documents
with a threshold of 0.5. For GPT-3, we use the
official dataset statistics made available on GitHub
which provide document-level language identifica-

tion information.16 To gather statistics for Falcon,
we inspected a sample of the RefinedWeb dataset
(Penedo et al., 2023) that was constructed to train
this family of models.17 Using the OpenLID fast-
Text model from Burchell et al. (2023), we iden-
tify the most frequent document-level languages
based on approximately 320 million examples from
this corpus. Following (Touvron et al., 2023), lan-
guages are identified based on a confidence thresh-
old of 0.5 and predictions below this threshold are
aggregated under ‘unknown’. Note, that while this
language distribution has a higher concentration
of English data than both Llama 2 and GPT-3, Al-
mazrouei et al. (2023) combine the RefinedWeb
with additional curated corpora to train the Falcon
models, and thus the true language distributions for
this model may differ from these estimates.

B Translating Training and Evaluation
Data

As part of our experiments and evaluation, we gen-
erate translations of existing datasets. All original
datasets are licensed under the Apache License
2.0. Since translations are generated with GPT-
3.5-Turbo, OpenAI’s usage policy applies to the
resulting versions, which we make available for
future research.

B.1 AlpacaEval Prompts

For the evaluation of single-turn dialogue in
non-English languages, we translate AlpacaEval
prompts from English into each of our considered
target languages using GPT-3.5-Turbo and the tem-
plate in Figure 9. Manual inspection of a sam-
pled subset of these translated prompts in various
languages revealed that the translations were typi-
cally decent, although often included literal trans-
lations for metaphorical expressions rather than
how a native speaker might express themselves.
For instance, English ‘bullet points’ was translated
literally into Hindi, rather than an arguably more
appropriate phrasing such as ‘important points’.
Additionally, in languages that distinguish between
formal, informal, or gendered pronouns (e.g., Ger-
man, French, etc.), the formal and male forms are
dominant. While these characteristics may be not
truly representative of how native speakers actu-

16https://github.com/openai/gpt-3/blob/master/
dataset_statistics/languages_by_document_count.
csv

17https://huggingface.co/datasets/tiiuae/
falcon-refinedweb
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Llama 2 Falcon GPT-3

# Language Percent # Language Percent # Language Percent

1 English 89.70% 1 English 95.751% 1 English 93.69%
2 unknown 8.38% 2 unknown 3.902% 2 German 1.20%
3 German 0.17% 3 Standard Malay 0.045% 3 French 1.02%
4 French 0.16% 4 Swahili 0.038% 4 Portuguese 0.64%
5 Swedish 0.15% 5 French 0.019% 5 Italian 0.58%
6 Chinese 0.13% 6 Sardinian 0.014% 6 Spanish 0.51%
7 Spanish 0.13% 7 Portuguese 0.014% 7 Dutch 0.37%
8 Russian 0.13% 8 Dutch 0.01% 8 Polish 0.25%
9 Dutch 0.12% 9 Chinese (Traditional) 0.013% 9 Japanese 0.25%

10 Italian 0.11% 10 Spanish 0.010% 10 Danish 0.16%
11 Japanese 0.10% 11 Italian 0.010% 11 Norwegian 0.15%
12 Polish 0.09% 12 German 0.009% 12 Romanian 0.13%
13 Portuguese 0.09% 13 Danish 0.008% 13 Finnish 0.13%
14 Vietnamese 0.08% 14 Indonesian 0.007% 14 Chinese (Simplified) 0.12%
15 Ukranian 0.07% 15 Somali 0.006% 15 Russian 0.11%
16 Korean 0.06% 16 Swedish 0.006% 16 Czech 0.10%
17 Catalan 0.04% 17 Russian 0.006% 17 Swedish 0.06%
18 Serbian 0.04% 18 Venetian 0.005% 18 Hungarian 0.06%
19 Bahasa Indonesian 0.03% 19 Vietnamese 0.005% 19 Chinese (Traditional) 0.04%
20 Czech 0.03% 20 Northern Uzbek 0.005% 20 Bahasa Indonesian 0.04%
21 Finnish 0.03% 21 Limburgish 0.005% 21 Croation 0.04%
22 Hungarian 0.03% 22 Tagalog 0.005% 22 Turkish 0.04%
23 Norwegian 0.03% 23 Chinese (Simplified) 0.005% 23 Catalan 0.03%
24 Romanian 0.03% ... 24 Vietnamese 0.03%
25 Bulgarian 0.02% 27 Norwegian Bokmal 0.003% 25 Slovenian 0.03%
26 Danish 0.02% ... 26 Estonian 0.02%
27 Slovenian 0.01% 33 Finnish 0.003% 27 Slovak 0.02%
28 Croatian 0.01% ... 28 Korean 0.02%

... 35 Greek 0.002%
...

n/a Greek n/a ... 31 Greek 0.017%
... 46 Hungarian 0.002%

...

n/a Hindi n/a ... 45 Hindi 0.004%
... 51 Slovenian 0.001%

...

n/a Icelandic n/a ... 47 Icelandic 0.004%
... 68 Bulgarian 0.001%

...
... 48 Bulgarian 0.003%

78 Icelandic 0.001%
...

...

86 Korean 0.0003%
...

102 Hindi 0.0001%

Table 1: Distribution of document languages in pretraining datasets for popular English-centric LLMs. For Llama 2
and GPT-3, statistics are taken from the original works. For Falcon, statistics are estimated based on a sample of the
RefinedWeb corpus (roughly 320 million documents). Note that for Llama 2 and Falcon, ‘unknown’ indicates texts
identified below a predefined confidence threshold of 0.5. Touvron et al. (2023) state that this data partially pertains
to programming code. Target languages considered in our experiments are highlighted in bold.

ally interact with LLMs, we consider these to be
potentially valid queries for general-purpose chat
models.

B.2 Guanaco Training Examples

To investigate the effect of language diversity com-
pared to instruction diversity (§5.1), we translate a
subset of Guanaco’s English training examples into
non-English target languages and use these to cre-

ate MT-based Multi-i instruction-tuning datasets.
By default, speaker roles in Guanaco are denoted
with ‘### Human:’ and ‘### Assistant’. To en-
sure that these are never translated and the dialogue
structure is maintained, we substitute them with
special tokens ‘<S1>’ and ‘<S2>’ and explicitly
tell the model to leave these tokens intact (see Fig-
ure 10). Before training, we map the special place-
holder tokens back to their original form.
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You are a helpful assistant.

Translate the following text into
{{target_language}}.
Keep the structure of the original text and
preserve things like code and names.
Please ensure that your response contains
only the translated text.
The translation must convey the same meaning
as the original and be natural for native
speakers with correct grammar and proper word
choices.
Your translation must also use exact
terminology to provide accurate information
even for the experts in the related fields.

Original:

{{source_text}}

Translation into {{target_language}}:

Figure 9: Prompt template used to translate AlpacaEval
with GPT-3.5-Turbo. Values in curly braces represent
placeholders. The value specified for ‘target language’
is the English name of the language (e.g., ‘German’)
we are translating into, except for Greek and Chinese,
where we explicitly specify standard modern Greek and
Mandarin Chinese, respectively.

C Hardware Requirements for
Instruction Tuning

As mentioned in §3, we use LoRA (Hu et al., 2021)
for parameter-efficient finetuning. As hyperparam-
eters, we set R “ 64, α “ 16. This results in
the number of trainable parameters being roughly
2.3% of the original model size for Llama 2 7B,
1.2% for Llama 2 70B and 1.8% for Falcon 7B. For
7-billion parameter models, we use two NVIDIA
GeForce RTX 3090 with 24GB of memory. The
time required for each training run is approximately
8 hours. For the larger 70-billion parameter model,
discussed in §5.2, we use the same hyperparame-
ters and train on four NVIDIA A100 GPUs with
80GB of memory each. Here, a single training run
takes approximately 20 hours.

D MultiSim Datasets

MultiSim is composed of 34 distinct text simpli-
fication data sets aligned at either the document-
or sentence-level (Ryan et al., 2023), covering 13
different languages. Due to restrictive licensing on
some datasets, only a subset are openly accessible.
An overview of these datasets is provided in Ta-
ble 2. As can be seen, domain coverage and the
amount of available data vary considerably across

You are a helpful assistant.

Translate the following conversation
between a human and an AI assistant
into {{target_language}}.
Keep the structure of the original text
and preserve things like code, names
and role labels (e.g. <S1>, <S2>).
Please ensure that your response
contains only the translated text.
The translation must convey the same
meaning as the original and be natural
for native speakers with correct
grammar and proper word choices.
Your translation must also use exact
terminology to provide accurate information
even for the experts in the related fields.

Original:

{{training_instance}}

Translation into {{target_language}}:

Figure 10: Prompt template used to translate Guanaco
training instances from English into various target lan-
guages to investigate the effect of language diversity vs.
instruction diversity.

languages. To balance out the number of evalu-
ation instances between the different languages,
we randomly sample up to 1,371 complex-simple
sentence pairs from all available corpora for each
language, except for Slovenian, where we use all
939 available instances. While we prioritise sam-
pling from the test and validation splits shared by
Ryan et al. (2023), we also draw samples from
the designated train splits for Portuguese, German,
and Slovenian in order to have a sufficiently large
evaluation set for our experiments.

E Direct vs. Translated Evaluation for
Non-English Dialogue Responses

While using a powerful LLM to evaluate the out-
puts of other models has been shown to achieve
reasonable agreement with human judgements in
English (Zheng et al., 2023; Chiang and Lee, 2023),
it is unclear whether this agreement transfers to all
languages under investigation. Recent work by
Hada et al. (2024) has shown that agreement be-
tween human and LLM judges tends to be lower
for non-English languages, especially in the case
of low-resource and non-Latin scripted languages,
where the LLM judge tends to be overly optimistic
in its assessment. However, for certain assessment
criteria, such as linguistic acceptability and gen-
eral content quality, they also confirm that inter-
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Language Source corpora # instances avail. (test / val / train) # eval. instances

en ASSET (Alva-Manchego et al., 2020) 359 / 100 / 19,000 1,371WikiAuto (Jiang et al., 2020) 5,002 / 4,988 / 576,126

ru

RSSE (Sakhovskiy et al., 2021) 1,083 / 97 / 3,182

1,371RuAdapt Encyclopedia (Dmitrieva et al., 2021) 839 / 840 / 7,782
RuAdapt Fairytale (Dmitrieva et al., 2021) 31 / 31 / 248
RuWikiLarge (Sakhovskiy et al., 2021) 312 / 678 / 246,978

de GEOLino (Mallinson et al., 2020) 81 / 82 / 958 1,371TextComplexityDE (Naderi et al., 2019) 26 / 28 / 208

fr CLEAR (Grabar and Cardon, 2018) 100 / 294 / 4,196 1,371WikiLarge FR (Cardon and Grabar, 2020) 345 / 878 / 296,402

pt PorSimples (Aluísio and Gasperin, 2010) 420 / 420 / 6,290 1,371

it

AdminIT (Miliani et al., 2022) 49 / 48 / 588

1,371
SIMPITIKI Wiki (Tonelli et al., 2016) 160 / 146 / 1,436
PaCCSS-IT (Brunato et al., 2016) 1,061 / 1,061 / 60,485
Teacher (Brunato et al., 2015) 17 / 17 / 136
Terence (Brunato et al., 2015) 101 / 102 / 809

sl SloTS (Gorenc and Robnik-Šikonja, 2022) 96 / 94 / 749 939

Table 2: Overview of datasets included in the MultiSim benchmark (Ryan et al., 2023). # instances avail. denotes
the total number of complex-simple sentence pairs available for each corpus in the MultiSim benchmark. # eval.
instances denotes the number of items sampled from all test, validation, and train splits (where necessary) for
language used to evaluate performance on sentence simplification.

Figure 11: Distribution of helpfulness scores assigned by our LLM judge, GPT-3.5-Turbo, using direct evaluation in
the specified target language and after translating target-language responses to English.

annotator agreement between LLM-based evalu-
ators and humans is in line with that of multiple
human annotators.

To investigate this potential bias, we compared
scores assigned by the LLM judge on model-
generated responses directly in each non-English
target language and on their English translations.
For each non-English prompt-response pair, we
translate it into English using GPT-3.5-Turbo
(gpt-3.5-turbo-1106) and the prompt shown in
Figure 9. We pair the resulting translated re-
sponses with their corresponding English AlpacaE-
val prompts and repeat our LLM judge evaluation.

Figure 11 shows that the distribution of assigned
scores in the direct and translated evaluation set-

tings is very similar for most languages. For lan-
guages that use non-Latin scripts (e.g., Chinese,
Russian, Korean, etc.), we observe that the LLM
judge tends to assign slightly higher scores more
frequently when evaluating directly on the non-
English prompt/response pairs. This finding agrees
with those from Hada et al. (2024) and indicates
that LLM-based evaluations in non-English lan-
guages can be overly optimistic and should be con-
sidered with caution. Nevertheless, we observe
that the discrepancy between direct and translated
evaluation is relatively minor for the languages con-
sidered and leads to negligible differences in the
overall average helpfulness score. Based on these
results, we opt to use the direct evaluation strategy
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for our experiments, which has the added benefit
of avoiding the introduction of potential transla-
tion errors and keeping the cost of evaluation to a
minimum.

F Results with Falcon 7b

In order to assess whether our findings generalise
to other LLMs, we repeat our experiments using
Falcon 7b (Almazrouei et al., 2023).

F.1 Single-turn Dialogue

Figure 12 shows the helpfulness scores assigned
by the LLM judge for Falcon 7b given incremental
multilingual instruction tuning across all target lan-
guages. Similarly to our results with Llama 2 7b
(cf. Figure 2), cross-lingual transfer can be elicited
after finetuning with relatively few languages, and
no additional gains observed when including more
than three languages. Interestingly, Falcon 7b ap-
pears to show strong performance on French, even
without multilingual finetuning, indicating that, de-
spite being an English-centric model, it has strong
capabilities in French out of the box. For Spanish,
German, and Chinese, performance is comparable
to that of Llama 2 7b. However, for all other lan-
guages, responses are often ranked least helpful,
indicating that Falcon 7b’s multilingual capabilities
are limited strictly to major European languages
and Chinese.

F.2 Sentence Simplification

Figure 13 depicts Falcon 7b’s performance on the
sentence simplification task given multilingual in-
struction tuning. In general, the results emulate
those seen with Llama 2 7b. Performance on En-
glish remains uniform as multilinguality increases,
while for non-English target languages, the largest
jump in performance happens when moving from
monolingual to bilingual instruction tuning, and
plateauing again with just three languages. The
notable exceptions here are French and Italian, for
which Falcon 7b appears to provide greater support
even in the monolingual instruction tuning setting,
echoing the results from the single-turn dialogue
task.

F.3 Extractive Question Answering

Figure 14 shows the results of Falcon 7b on
XQuAD. While performance is generally lower
than that of Llama 2 7b on this task (cf. Figure 4),
we observe a similar, albeit weaker, effect of multi-

lingual finetuning within the supported languages
(es, de, zh).

F.4 Commonsense Reasoning

Figure 15 shows the results of Falcon 7b on
X-CSQA. Strikingly, in contrast to the results
achieved with Llama 2 7b (cf. Figure 5), Falcon 7b
fails to score above random performance across all
target languages. Regarding the effect of multilin-
gual instruction tuning, we again see that it fails
to deliver any performance improvements on this
highly structured task. Degradation on Russian and
Vietnamese, is likely due to the model consistently
failing to follow instructions and reproducing part
of the question as the response.

F.5 XNLI

Figure 16 shows the results of Falcon 7b on XNLI.
Similar to the results attained with Llama 2 7b (cf.
Figure 6), we observe no significant differences in
performance given different degrees of multilingual
instruction tuning.

F.6 Discussion

These additional experiments using Falcon 7b pro-
vide further support for our main findings: instruc-
tion tuning with as few as two languages signif-
icantly improves cross-lingual generalisation, en-
hancing performance in open-ended single-turn di-
alogue for some non-English languages. However,
strikingly, multilingual capabilities of Falcon are
considerably narrower than that of Llama 2. This is
also suggested by the statistics provided in Table 1,
which show a higher concentration of English and
much lower proportions of non-English languages
compared with both Llama 2 and GPT-3. We sus-
pect that this may be a result of stringent filtering
of web-scraped pretraining data performed in pro-
ducing the RefinedWeb corpus used to train the Fal-
con models (Penedo et al., 2023), which not only
reduces the risk of potentially accidental contam-
ination (Blevins and Zettlemoyer, 2022) but also
language coverage. That said, the RefinedWeb cor-
pus comprises only part of Falcon’s actual training
corpus. (Almazrouei et al., 2023) note that the final
corpus also contains additional data drawn from cu-
rated sources including a European-focused (multi-
lingual) Common-Crawl dataset, which could ex-
plain the strong performance on some major Eu-
ropean languages. In light of this, we suspect that
additional Chinese data is also included in Falcon’s

13117



training corpus, allowing for relatively strong per-
formance in Chinese on the single-turn dialogue
task.

G Results with Llama 3 8b

In §5.2 we observed that scaling the base model
from 7b to 70b parameters reduces the gap in per-
formance between English and non-English tar-
get languages with regard to the single-turn dia-
logue task. In this section, we evaluate Llama 3
8b (MetaAI, 2024), which builds on Llama 2 by
scaling up the pretraining data from 2 trillion to-
kens to 15 trillion tokens. In Addition to a much
larger pretraining corpus, Llama 3 is trained with
a vocabulary of 128k tokens (vs. 32k for Llama
2), bringing it much closer to traditional multilin-
gual models which typically contain roughly 250k
tokens (Le Scao et al., 2023; Xue et al., 2021; Con-
neau et al., 2020). While the exact language distri-
bution of the model’s pretraining data is not pub-
licly known, it is reasonable to expect that these
enhancements could lead to improvements in the
model’s non-English capabilities.

Figure 17 shows the performance of Llama 3 8b,
which closely resembles that of Llama 2 70b across
most non-English languages, even outperforming
it in languages like Vietnamese, Greek, and Hindi.
Most notably, we observe that our main findings
still hold: multilingual instruction tuning with as
few as two languages is both necessary and suffi-
cient to elicit cross-lingual generalisation. Again,
performance typically plateaus thereafter. Given
the improved performance on languages like Greek
and Hindi that are low-resource under Llama 2’s
pretraining data distribution, we suspect that their
representation in the pretraining data for Llama 3
is substantially higher. Still, performance on Ice-
landic suggests that this language may remain in
the low-resource category under this model.

H Ablation Experiments

In Section 3.2, we constructed Multi-i instruction
tuning datasets of the same size by replacing a
fixed number of English examples with examples
from a new language. As a result, the proportion of
non-English examples used for finetuning increases
along with the number of languages. Table 3 shows
the exact makeup of each these datasets and how
they relate to one another. To rule out potential
confounding factors between the proportion of non-
English examples and the diversity of languages,

we conduct ablation experiments in which we keep
one variable fixed while incrementing the other.

Dataset Languages % NE Total

Mono en 0.00% 3,200
Multi-2 en, es 6.25% 3,200
Multi-3 en, es, ru 12.50% 3,200
Multi-4 en, es, ru, de 18.75% 3,200
Multi-5 en, es, ru, de, zh 25.00% 3,200
Multi-6 en, es, ru, de, zh, fr 31.25% 3,200

Table 3: Makeup of the incremental multilingual
instruction-tuning datasets.

Figure 18a shows that when using a fixed bud-
get of 400 non-English examples (which equates
to 12.5% of the finetuning data) and incrementing
only the number of languages within this budget,
performance increases consistently as each new lan-
guage is added, closely reflecting the results of our
main experiments. In contrast, Figure 18b shows
that when training with a fixed number languages
(e.g., Multi-2) and incrementing the number of non-
English examples (in this case, Spanish), perfor-
mance tends to remain lower and generally shows
less improvement. These results underscore our
main findings discussed in §4.1 and §6.
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Figure 12: Average helpfulness of single-turn dialogue responses from Falcon 7b given incremental multilingual
instruction tuning. Striped bars indicate a 0-shot setting and error bars show a confidence interval of 95%.

Figure 13: SARI weighted by IO language agreement for sentence simplification with Falcon 7b given incremental
multilingual instruction tuning. Results are shown for both cross-lingual prompting (en:xx) and monolingual
prompting (xx:xx) Striped bars indicate a 0-shot setting and error bars show a confidence interval of 95%.

Figure 14: XQuAD results for Falcon 7b given incremental multilingual instruction tuning. Results are shown for
both cross-lingual prompting (en:xx) and monolingual prompting (xx:xx). Striped bars indicate a 0-shot setting and
error bars show a confidence interval of 95%.

Figure 15: X-CSQA results for Falcon 7b given incremental multilingual instruction tuning. Striped bars indicate a
0-shot setting and error bars show a confidence interval of 95%.
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Figure 16: XNLI results for Falcon 7b given incremental multilingual instruction tuning. Striped bars indicate a
0-shot setting and error bars show a confidence interval of 95%.

Figure 17: Single-turn dialogue performance of Llama 3 8b given incremental multilingual instruction tuning.
Striped bars indicate a 0-shot setting and error bars show a confidence interval of 95%.

(a) Impact of incrementing the number of languages while
keeping the total number of non-English examples fixed at
400 (12.5% of the finetuning data). 0-shot and supervised
settings are distinguished using İ and Ĳ, respectively.

(b) Impact of incrementing the total number of non-
English examples while keeping the number of languages
fixed at three (English, Spanish, and Russian). Here, Rus-
sian is seen during finetuning, while German and Chinese
are in the 0-shot setting.

Figure 18: Average helpfulness of single-turn dialogue responses from Llama 2 7b given multilingual instruction
tuning on a fixed budget (limiting either the number of non-English instances 18a or the number of languages 18b).
Error bars show a confidence interval of 95%.
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Figure 19: Comparison of Llama 2 7b with multilingual instruction tuning using native (Native NE) and translated
non-English (MT NE) examples for additional target languages not shown in Figure 7. Error bars show a confidence
interval of 95%.

Prompt: ### Human: Please rewrite the following complex sentence in order
to make it easier to understand. You can do so by replacing
complex words with simpler synonyms (i.e. paraphrasing), deleting
unimportant information (i.e. compression), and/or splitting a long
complex sentence into several simpler ones. The final simplified
sentence needs to be grammatical, fluent, and retain the main ideas
of its original counterpart without altering its meaning.

Complex sentence: Sie gelten als eiskalte Fress-Maschinen.

### Assistant:

Reference: Sie gelten als Fress-Maschinen.

System: They are seen as cold-blooded eaters.

Table 4: An example of the 0-shot sentence simplification task. Monospaced font represents the prompt template
used, adapted from instructions provided to crowdworkers for the creation of the ASSET dataset (Alva-Manchego
et al., 2020). This example shows the cross-lingual prompt strategy (en:xx), where the task instruction is provided
in English but the source sentence is in German. Ideally, the system language should match the source sentence,
which it fails to do in this case.
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You are an expert language evaluator.

You are evaluating a response that has been submitted for a particular task, using a
specific set of standards. Below is the data:

[BEGIN DATA]
***
[Task]: {{task}}
***
[Submission]: {{submission}}
***
[Criterion]: helpfulness:
“1”: “Not helpful - The generated text is completely irrelevant, unclear, or
incomplete. It does not provide any useful information to the user.”
“2”: “Somewhat helpful - The generated text has some relevance to the user’s question,
but it may be unclear or incomplete. It provides only partial information, or the
information provided may not be useful for the user’s needs.”
“3”: “Moderately helpful - The generated text is relevant to the user’s question, and
it provides a clear and complete answer. However, it may lack detail or explanation
that would be helpful for the user.”
“4”: “Helpful - The generated text is quite relevant to the user’s question, and it
provides a clear, complete, and detailed answer. It offers additional information or
explanations that are useful for the user. However, some of the points of the response
are somewhat repetitive or could be combined for greater clarity and concision.”
“5”: “Very helpful - The generated text is highly relevant to the user’s question, and
it provides a clear, complete, and detailed answer. It offers additional information,
explanations, or analogies that are not only useful but also insightful and valuable to
the user. However, the structured of the response is not well-organized and there is no
clear progression or logical sequence of different points in the response.”
“6”: “Highly helpful - The generated text provides a clear, complete, and detailed
answer. It offers additional information or explanations that are not only useful
but also insightful and valuable to the user. The response is also in a logical and
easy-to-follow manner by explicitly using headings, bullet points, or numbered lists
to break up the information and make it easier to read.”
***
[END DATA]

Does the submission meet the criterion? First, write out in a step by step manner your
reasoning about the criterion to be sure that your conclusion is correct. Avoid simply
stating the correct answers at the outset. Provide your response as a RFC8259 compliant
JSON following this schema:

{“reasoning”: str, “score”: int}

Figure 20: Prompt template used to query the LLM judge in order to assess the helpfulness of a single-turn dialogue
response. This prompt closely follows the one used by Zhou et al. (2023) but extends it by specifying the return
value as a valid JSON-like object.
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Prompt: ### Human: Answer the question from the given passage. Your answer
should be directly extracted from the passage, and it should be a
single entity, name, or number, not a sentence.

Passage:

Die Verteidigung der Panthers gab nur 308 Punkte ab und belegte den sech-
sten Platz in der Liga, während sie die NFL mit 24 Interceptions in dieser Kategorie
anführte und sich mit vier Pro Bowl-Selektionen rühmen konnte. Pro Bowl Defensive
Tackle Kawann Short führte das Team mit 11 Sacks an, erzwang zudem drei Fumbles
und erzielte zwei Fumble Recoverys. Mario Addison, ebenfalls Lineman, addierte
6 1
2

Sacks hinzu. Die Panthers-Line präsentierte auch den erfahrenen Defensive End
Jared Allen, einen 5-fachen Pro-Bowler, der mit 136 Sacks der aktive Anführer
in der NFL-Kategorie Karriere-Sacks war, sowie den Defensive End Kony Ealy,
der 5 Sacks in nur 9 Starts erzielte. Nach ihnen wurden zwei der drei Linebacker
der Panthers ausgewählt, um im Pro Bowl zu spielen: Thomas Davis und Luke
Kuechly. Davis erzielte 5 1

2
Sacks, vier erzwungene Fumbles und vier Interceptions,

während Kuechly das Team bei den Tackles anführte (118), zwei Fumbles erzwang
und vier Pässe abfing. Carolinas Secondarys bestanden aus dem Pro Bowl-Safety
Kurt Coleman, der das Team mit einem Karrierehoch von sieben Interceptions
anführte und gleichzeitig 88 Tackles erzielen konnte, und Pro Bowl-Cornerback
Josh Norman, der sich während der Saison zur Shutdown Corner entwickelte
und vier Interceptions erzielte, von denen zwei zu Touchdowns für sein Team wurden.

Question:

Mit wie vielen Interceptions erzielte Josh Norman im Jahr 2015 Touchdowns?

Note: Your answer should be directly extracted from the passage and
be a single entity, name, or number. Provide the answer in quotations.

### Assistant: Based on the passage, the answer to the question is “

Reference: zwei

System: two".

In the passage, it is stated that Josh Norman “erzielte vier Interceptions, von
denen zwei zu Touchdowns für sein Team wurden.” This means that Norman
intercepted four passes during the season, and two of those interceptions were
returned for touchdowns.

Table 5: Example input prompt, reference, and model response for the 0-shot extractive QA task using XQuAD.
Monospaced font represents the prompt template used for each test instance. Here, we show the cross-lingual
prompting strategy (en:xx), where the task instruction and response prefix is provided English, while the context
passage and question are in the target language (in this case, German). A correct answer in this setting requires the
model to continue the response by switching into the target language, which it fails to do in this particular example.
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Prompt: ### Human: Dir wird eine Frage vorgelegt, die mehrere
Antwortmöglichkeiten hat. Wähle die am besten geeignete Option
aus “A”, “B”, “C”, “D” oder “E” basierend auf deinem gesunden
Menschenverstand. Bitte gebe deine Antwort in Form eines einzelnen
Buchstabens in Anführungszeichen an.

Frage:

Sarah stellte ihr Essen in einen Mülleimer neben ihrem Schreibtisch. Wo
mag sie gewesen sein?

Antwortmöglichkeiten:

A: Bushaltestelle
B: Ecke
C: Motel
D: Park
E: Büro

### Assistant: “

Reference: E

System: E”

Table 6: Example of the commonsense reasoning task using X-CSQA. Monospaced font represents the prompt
template used for each test instance. Here, the prompt strategy is monolingual (xx:xx) with the task instruction
provided in the same language as the test instance (in this case, German). A correct answer requires the model to
output the letter corresponding to the ground-truth answer.

XNLI prompt template: {Sentence 1}, right? {label}, {Sentence 2}

Label Prompt query NLL

Entailment In measuring effectiveness, perfection is unattainable., right? Yes, You
can never be perfect.

-113.94

Neutral In measuring effectiveness, perfection is unattainable., right? Also,
You can never be perfect.

-116.79

Contradiction In measuring effectiveness, perfection is unattainable., right? No, You
can never be perfect.

-114.01

Table 7: Example prompt queries for XNLI given the predefined template used in the LM Evaluation Harness (Gao
et al., 2023) and the three possible labels. Underlined words are the language-specific connectors corresponding to
the three possible labels. The final answer is the sequence with the highest negative log-likelihood (NLL) according
to the model. In this case, Llama 2 7b Mono correctly identifies the relationship between the two sentences as
entailment.
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