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Abstract

Speculative decoding stands as a pivotal tech-
nique to expedite inference in autoregressive
(large) language models. This method employs
a smaller draft model to speculate a block of
tokens, which the target model then evaluates
for acceptance. Despite a wealth of studies
aimed at increasing the efficiency of specula-
tive decoding, the influence of generation con-
figurations on the decoding process remains
poorly understood, especially concerning de-
coding temperatures. This paper delves into
the effects of decoding temperatures on spec-
ulative decoding’s efficacy. Beginning with
knowledge distillation (KD), we first highlight
the challenge of decoding at higher tempera-
tures, and demonstrate KD in a consistent tem-
perature setting could be a remedy. We also
investigate the effects of out-of-domain test-
ing sets with out-of-range temperatures. Build-
ing upon these findings, we take an initial step
to further the speedup for speculative decod-
ing, particularly in a high-temperature gener-
ation setting. Our work offers new insights
into how generation configurations drastically
affect the performance of speculative decod-
ing, and underscores the need for developing
methods that focus on diverse decoding con-
figurations. Code is publically available at
https://github.com/ozyyshr/TempSpec.

1 Introduction

Large language models (LLMs) such as GPT-
4 (OpenAI, 2023), Claude (Bai et al., 2022), and
LLaMA (Touvron et al., 2023a,b) are revolutioniz-
ing the field of natural language processing (NLP)
and machine learning (ML). While being powerful
tools for various downstream tasks, LLMs’ real-
time deployment is still challenging due to the size
and the inference cost (Pope et al., 2022). Con-
versely, smaller models have less latency but lower

* Work partially done during internship at Microsoft.

Figure 1: Speedup and acceptance rate (y-axises) for dif-
ferent decoding temperatures (x-axis) on Alpaca dataset.
The draft model (Llama-68M) is distilled from Llama-
2-13B-chat with data generated in 0.2 temperature.

generative quality. In a word, efficiency and ac-
curacy form a trade-off. Inspired by this, spec-
ulative decoding (Leviathan et al., 2023; Chen
et al., 2023a) emerges as a promising token-level
solution to reduce the latency of generation for
LLMs. Specifically, speculative decoding leverages
smaller models as draft models to speculate succes-
sive candidate tokens for multiple inference steps
with autoregressive generation, which are then veri-
fied with the target LLM in parallel through a single
forward pass. If a token fails to be accepted by the
target LLM, all the consecutive tokens will be dis-
carded, and the target LLM needs resampling for
that rejected token.

Previous studies (Xia et al., 2024) generally test
speculative decoding in fixed generation configu-
rations, with temperature sampling (Ackley et al.,
1985) being the default setting. Compared with
other hyperparameters such as top-k (Fan et al.,
2018) in text generation, temperature has a domi-
nating effect in re-estimating the distribution before
top-k sampling (Radford and Narasimhan, 2018),
balancing generation quality and diversity (Holtz-
man et al., 2020). However, previous works only
test at a coarse-grained level, setting the tempera-
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ture to binary extremes of either 0 (greedy decod-
ing) or 1.0. On the other hand, accelerating specu-
lative decoding in various generation scenarios is
important to better suit user needs in downstream
tasks. To this end, this paper investigates from
a temperature-centric perspective of speculative
decoding for LLMs.

We focus on knowledge distillation (KD) (Hin-
ton et al., 2015) as the general investigation setting,
which has been introduced as an intuitive and gen-
eral solution to speculative decoding (Zhou et al.,
2023; Liu et al., 2023). Particularly, KD aims
to align the distributions of draft models better
to that of target models. In this way, the accep-
tance rate of candidate tokens generated by the
draft model to the target model could be boosted.
Our preliminary experiments in Figure 1 validate
our motivation, highlighting the impacts brought
by different temperatures for both decoding and
KD stages. Notably, the speedup of the decod-
ing processes increases and peaks at a decoding
temperature of 0.2 before declining as the tempera-
ture approaches 1. The impact of temperature on
speedup can reach a relative difference of around
30% (2.23−1.72

1.72 = 29.7%), highlighting its impor-
tance. We also notice that KD relieves the degrada-
tion of speedup when temperature increases.

Overall, we explore the impact of temperature
on speculative decoding with KD. Specifically, we
address three pivotal research questions:

• RQ1. What is the influence of temperature on
speculative decoding’s efficacy in the context
of KD? To answer this question, we explore two
key processes where the temperature is a critical
factor in speculative decoding (§ 2). Utilizing the
Llama series as the foundational model for both
target and draft models, we train the draft model
across a spectrum of training sets, each regulated
by nuanced temperature settings, to assess and
benchmark their performance (§ 4.1).

• RQ2. Can the observed results extrapolate
to out-of-domain datasets and out-of-range
temperatures? Building upon RQ1, we examine
the adaptability of KD with temperature-specific
configurations to out-of-domain test sets derived
from the training sets (§ 4.2), and its performance
with out-of-range temperatures from those used
during training (§ 4.3).

• RQ3. How do we design an efficient recipe
for enhancing speculative decoding in a

temperature-centric manner? Drawing from
the insights of RQ1, we investigate various
strategies for assembling training data with a
temperature-aware approach (§ 4.5). Our goal
is to amplify the performance of speculative de-
coding, particularly under conditions of elevated
decoding temperatures.

The experiments are conducted on several com-
monly used public datasets. Our analysis offers a
new perspective on understanding speculative de-
coding by applying fine-grained temperature con-
trols, especially with KD. The key contributions
and takeaways can be summarized as follows:

• We pinpoint temperature as the key factor in the
process of speculative decoding with KD. We
empirically identify the most suitable setup, and
find that temperature alignment between training
and inference accelerates decoding significantly.

• We explore both out-of-domain test sets and
out-of-range decoding temperatures, and show
the importance of token difficulties for out-of-
domain sets and the “U-curve” phenomenon for
out-of-range temperatures.

• Building upon our findings, we propose a sim-
ple yet effective data-centric strategy to boost the
speedup for speculative decoding at high temper-
atures, and show that it can further improve the
speedup of 12%-20%.

2 Background

2.1 Temperature in Decoding

Temperature τ is an important hyperparameter in
the configurations for decoding, which controls the
randomness of predictions by scaling the logits be-
fore applying the softmax function during the text
generation process (Ackley et al., 1985). It affects
how the next word is chosen from the vocabulary:

P(tk|t1:k−1) =
exp(lk/τ)∑
i exp(li/τ)

, (1)

where tk and lk are the k-th token to predict and the
corresponding logit. Lower temperatures will skew
the distribution toward high-probability events, re-
ducing the mass in the tail distribution to make
the generation more focused and deterministic, and
vice versa.
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2.2 Temperature in Knowledge Distillation

The latency reduction actually depends on how
aligned the draft model and the LLM are. With
better alignment comes lower rejection rates of to-
kens, thus higher acceleration speed. To make draft
models better aligned with LLMs, KD is proposed
as an intuitive yet effective solution (Zhou et al.,
2023; Liu et al., 2023). In the KD process, the draft
model Md acts as the student, and the target model
Mt serves as the teacher. We consider the two KD
paradigms, online and offline distillation (Zhong
et al., 2024), in our investigation. Note that this
paper focuses on lossless speculative decoding and
the detailed algorithm for KD can be found in Ap-
pendix A.

During the KD process, the effect of temperature
is mostly brought by the process of training data (G)
generation, which is contrastive to the temperature
used in loss functions1. Temperature guides the
training data generation from the teacher model for
offline data inference. Similar to offline distillation,
the student model is asked to generate on-policy
training data with temperature being the controlling
factor in online distillation (Agarwal et al., 2023).

Offline Distillation We use SeqKD (Kim and
Rush, 2016) as the representative technique for of-
fline distillation. It is a black-box style framework,
where only the teacher-generated texts are acces-
sible. Training data are first generated by teacher
Mt with decoding temperature τ :

yi = Mt(xi; τ)

G = {(xi, yi) | i = 1, 2, ..., n} (2)

where (xi, yi) denotes the input-output pair. The
collected data are then used to train the student Mθ

d

parameterized by θ:

θ∗ = argmin
θ

∑

(xi,yi)∈G
L(Mθ

d(xi), yi) (3)

The student model Mθ
d is trained to minimize this

loss, effectively learning to mimic the teacher’s
behavior.

Online Distillation In this setting, we assume
white-box access to both target and draft models,

1In our investigation, the temperature in loss functions
is always set to 1.0 following previous works (Chang et al.,
2023).

Setting Divergence (D) Training Data (G)

Offline Distill FKL Data generated by Mt offline

Online Distill FKL Fixed dataset + Online data
generated by Md

Table 1: Comparison of two settings for offline distilla-
tion and online distillation.

i.e., we can obtain the token-level distributions.
Online distillation to the draft models seeks to min-
imize the divergence between the soft logits of
teacher and student distributions over a training set,
by using online data generated by Md:

θ := argminE(x,y)∼G [D(Mt||Mθ
d(y|x; τ ;λ))],

D measures the distance of two distributions and
we use the default forward Kullback-Leibler diver-
gence (FKL) in our experiments. τ and λ control
the generation temperature and data fractions of the
student model, respectively. Table 1 summarizes
the setting of offline and online distillation.

3 Experimental Setup

This section outlines the detailed experimental
setup, including model architecture, dataset selec-
tion, and evaluation metric employed for knowl-
edge distillation (KD) and decoding phases. Fur-
ther details on implementation, including hyper-
parameter configurations and computation time-
frames, are provided in Appendix B.

3.1 Models and Datasets

Models In our experiments, we follow the set-
tings of previous works (Liu et al., 2023; Miao
et al., 2023) and employ the Llama (Touvron et al.,
2023a,b) series as model architectures, a publicly
available and prevalently used LLM family. Specifi-
cally, we select the instruction-tuned Llama-2-13B-
chat 2 as the target model, and Llama-68M 3 as the
draft model. The pre-trained model parameters for
both models used are accessible via HuggingFace.

Datasets We focus on the general task of text gen-
eration with instructions. We use the Alpaca (Taori
et al., 2023) dataset as our fixed dataset follow-
ing (Miao et al., 2023). The original Alpaca
collection contains 52k samples in the format of
instruction-input-output triples, and we take 51k

2https://huggingface.co/meta-llama/
Llama-2-13b-chat-hf

3https://huggingface.co/JackFram/llama-68m
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as the training set for KD. The rest of the 1k sam-
ples are left as in-domain testing set. For offline
distillation, we employ vLLM (Kwon et al., 2023)
first to generate responses for each sample in the
fixed dataset using the teacher model Mt. The
generated responses are paired with the original
input as the training data for offline distillation. For
online distillation, we use a half-fixed dataset with
another half-on-policy data generated by student
model Md. All data generated by either Mt or
Md is based on temperature sampling with temper-
ature τ in [0, 1] of interval 0.1. That being said, we
have a total of 11 configurations of data generation
in the KD process, which results in 22 draft models
for testing for both offline and online distillation
settings. Apart from the 1k samples from Alpaca as
the in-domain set, we also use the GSM8K (Cobbe
et al., 2021) test set containing 1.28k4 samples as
the out-of-domain set.

3.2 Evaluation
Metrics Following previous works (Leviathan
et al., 2023; Miao et al., 2023; Zhou et al., 2023),
we measure the empirical acceptance rate α, and
relative wall time (latency) improvement γ. α
serves as the measure of how closely Md approxi-
mates Mt, and directly influences γ. In our imple-
mentations, we adapt the code from HuggingFace
assisted decoding 5 and count the numbers of to-
kens generated by Md and tokens accepted by Mt

for α. Time for decoding is documented for γ.
All the decoding processes are conducted based

on temperature sampling with temperature τ ∈
[0, 1] spanning 0.2. The batch size is set to 1 by
default. For statistical robustness, we decode each
sample 5 times and take the averaged number of α
and γ and the final results.

Platforms The KD training was executed over
eight V100 NVIDIA GPUs, each with 32GB mem-
ory. The decoding phase for all draft models was
carried out on a single A100 40G NVIDIA GPU
for the consistency of our conclusions.

4 Experiments and Analyses

Our experiments and analyses are organized in the
following workflow. We start with an overall inves-
tigation of temperature configurations for two KD

4The original test set of GSM8K contains 1.32k samples,
we filter out samples that exceed the context length of the draft
model.

5https://huggingface.co/blog/
assisted-generation

settings for in-domain testing. Leveraging these
observations, we further test these insights on out-
of-domain datasets with out-of-range temperatures.
Finally, we brought out a simple yet effective solu-
tion to further improve the performance of specula-
tive decoding with higher decoding temperatures.

4.1 Overall Investigation
To quantify how temperature impacts the specula-
tive decoding process, we plot the overall investiga-
tion results for both offline distillation and online
distillation using 11 KD models trained with differ-
ent temperatures under 6 decoding configurations
in Figure 2 (a) and (b) respectively. We interpret
the results in the following aspects. Additional
analyses can be found in Appendix C.

Decoding at a high temperature is generally
slower. First of all, we observe a consistent trend
of diminishing speedup as the decoding temper-
ature increased from 0 to 1. This trend corrobo-
rates the findings of previous studies, such as those
by Xia et al. (2024). Our analysis revealed that this
phenomenon persists across all KD temperatures,
affecting both offline distillation and online distil-
lation processes. The effect was most pronounced
when the KD temperature was set to 0, leading to a
relative speedup difference of 31% and 29% for of-
fline distillation and online distillation, respectively.
This is attributed to the increased computational
complexity of the speculative sampling criterion
at high temperatures, as demonstrated in prior re-
search (Joao Gante, 2023). Thus, low temperatures
are more likely to retain most of the latency bene-
fits from generation via draft models. Additionally,
we also observe that temperatures surrounding the
peak values always lead to sub-optimal speedups.
This is intuitive as the temperature can be seen as
an approximate distribution measure. Apart from
that, we find that higher temperatures in the sur-
rounding ones usually lead to better results. For
example, KD temperature at 0.7 is better than 0.5
when decoding at temperature 0.6 even with the
same temperature difference. This highlights an-
other important factor, the diversity of data in KD,
for the decoding process.

Using consistent temperatures for KD and de-
coding leads to better results. Our study re-
veals that configurations along the diagonals of
Figure 2 typically yield the most accelerated decod-
ing speeds. Grids outside the diagonals show pretty
large differences with values on diagonals, with
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Figure 2: Speedup for different decoding temperatures (y-axis) corresponding to different temperatures during KD
(x-axis) for both (a) offline distillation and (b) online distillation for the testing of in-domain Alpaca set.

Figure 3: Peak speedup brought by offline distillation
and online distillation. The relative speedup for on-
line distillation against offline distillation is depicted in
dashed lines.

a peak relative difference of 24%. This verifies
the effectiveness of KD at a consistent temperature.
The speedup can be attributed to the alignment of
probability distributions when the KD and decod-
ing temperatures are nearly identical or perfectly
match. We posit that this alignment facilitates a
more efficient decoding process. Interestingly, as
the decoding temperature increases, the speedup
improvement resulting from this alignment dimin-
ishes. Specifically, for offline distillation, the rela-
tive improvement transitions from 31% down to ap-
proximately 7%. Despite the challenges associated
with accelerating speculative decoding at elevated
temperatures, employing a uniform KD tempera-
ture for decoding — particularly at 1.0 — proves
to be more effective than using 0. That being said,
the upper right corner of Figure 2 is darker than the
upper left corner. This finding further underscores
the potential of KD as a remedy for alleviating
the difficulty in decoding under high-temperature
conditions.

Online distillation is a better KD strategy for
speculative decoding compared with offline dis-
tillation. Figure 2 illustrates that online distilla-
tion consistently outperforms offline distillation
across a range of decoding temperatures. This
is particularly evident at higher KD temperatures,
where the student model benefits from softened
probability distributions, allowing for a more nu-
anced understanding of the teacher’s distributions.
For better observation, we also plot the peak
speedup for every decoding temperature in Fig-
ure 3, where the relative speedup of online distilla-
tion against offline distillation is in an increasing
trend with higher temperatures. Additionally, we
find that although online distillation surpasses of-
fline distillation across multiple temperatures, the
performance for online distillation at decoding tem-
perature 0 does not align with our expectations,
especially with higher KD temperatures. Despite
the alignment difference for binary temperature ex-
tremes between 1.0 and 0, the richer signal offered
by online distillation could be another important
factor since decoding at temperature 0 usually en-
tails hard labels.

4.2 Evaluation on Out-of-domain Test Sets

To test whether our observations could be extended
to out-of-domain datasets from training sets, we
conduct experiments on GSM8K, a dataset focus-
ing on multi-step graduate-school-level mathemati-
cal reasoning problems. It differs from the Alpaca
training set that focuses more on general domains
for everyday tasks. Results are shown in Figure 4.

Generally, the speedup brought by specula-
tive decoding for GSM8K is much larger than
that for the Alpaca set. This could seem counter-
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Figure 4: Speedup for different decoding temperatures (y-axis) corresponding to different temperatures during KD
(x-axis) for both (a) offline distillation and (b) online distillation for the testing of out-of-domain GSM8K set.

Figure 5: The distribution of token length and the fre-
quencies for both Alpaca and GSM8K test sets.

intuitive for an out-of-domain testing set. One po-
tential reason could be that the output for GSM8K
consists of easier tokens for the draft model to
predict. Therefore, the acceptance rate is much
higher for target models, which leads to a larger
speedup. We found that the number of tokens gen-
erated for the Alpaca set (18, 716) is much larger
than that of GSM8K (11, 130), around 68% more
than GSM8K, indicating the diversity in decoding
processes. We also plot the distribution of token
length for generation outputs in Figure 5. Intu-
itively, length can be seen as an approximate of
the difficulty for that token. We observe that to-
ken length distribution for Alpaca is leaning to-
wards longer tokens. This phenomenon sheds light
on differentiating tokens of difficulties and design-
ing corresponding strategies (Shen et al., 2024) or
employing Mixture-of-Experts structures (Shazeer
et al., 2017) at a token level.

The overall trend for GSM8K set at different de-
coding temperatures with KD settings is similar to
Alpaca sets. Apart from this, we observe two other

notably different phenomena. First of all, the abso-
lute differences in speedup across various tem-
peratures for GSM8K are significantly larger
than that for Alpaca. For example, with a KD
temperature of 0, the relative speedup difference
achieved on the Alpaca set is around 30% when the
decoding temperature is set to 0 and 1.0, respec-
tively. However, this value increases to 42% for the
GSM8K set. This pronounced variance indicates a
stronger sensitivity to the decoding temperature in
the GSM8K set. Such sensitivity may be attributed
to the nature of the mathematical reasoning tasks,
which perhaps rely more critically on certain tem-
perature thresholds to achieve optimal speculative
decoding performance. Additionally, we find that
decoding at temperature 0 with online distilla-
tion is particularly slow. For one thing, the most
aligned and fast choice of training under KD tem-
perature 0 does not yield the best speedup. Also,
both offline distillation and online distillation do
not yield strong performance at decoding tempera-
ture 0. In contrast, offline distillation on the Alpaca
set shows positive results.

4.3 Evaluation on Out-of-range Decoding
Temperatures

In the previous experiments, we mainly focus on a
traditionally recommended temperature range [0, 1]
that makes LLMs respond in a human-acceptable
way. To further understand the robustness and
adaptability of our models, we have conducted ad-
ditional experiments by evaluating them using out-
of-range decoding temperatures. Specifically, we
have expanded our evaluation to include decoding
temperatures of 1.5 and 2.0, which are beyond the
commonly used upper limit.
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As illustrated in Table 2, we observe several no-
table phenomena in the performance of both the
Alpaca and GSM8K test sets when the decoding
temperature is set to these higher values of 1.5 and
2.0. First of all, we find a similar decreasing
trend of speedup when the decoding tempera-
ture gets higher. Specifically, we witness a relative
difference of around 15% of decoding at temper-
ature 2.0 compared with 1.5. We also obtain the
same observation where the speedup brought for
offline distillation is larger than that for online dis-
tillation. However, the effect brought by different
KD paradigms does not offset decoding tempera-
tures. The effect of decoding temperatures tends to
have different representations concerning datasets.
Notably, GSM8K seems to have larger speedup
differences for temperatures 1.5 and 2.0. This is
because GSM8K has a higher speedup as baselines.

Interestingly, the data reveals a distinctive
U-curve in the relationship between KD temper-
ature and decoding speedup. For instance, with
the Alpaca test set at a decoding temperature of 1.5,
the speedup incrementally declines from 1.52x at
KD temperature 0 to 1.45x at KD temperature 0.4,
before ascending back to 1.58x at KD temperature
1.0. For one thing, increasing data diversity during
KD training still helps for out-of-range and higher
decoding temperatures, which might be caused by
the somewhat approaching distributions with target
models. However, speedup with KD temperature
0 suggests that generation with fixed configura-
tions holds a special meaning, potentially due to
the alignment of distributions between the student
and teacher models at this initial point.

4.4 Evaluation with Different Model
Combinations

To make our results more generalizable, we con-
duct experiments with an additional model family,
T5 (Raffel et al., 2020). Specifically, we choose
T5-XL (3B) 6 and T5-small (60M)7 as the target-
draft model pair for experiments. The rationale
behind this choice is that (i) T5 stands for the
encoder-decoder model family which is quite differ-
ent from the Llama series, and (ii) T5 is commonly
explored in previous works (Li et al., 2024). Fig-
ure 6 presents the results.

We can see that the general trend aligns with
the previous conclusions in §4.1, i.e., decoding
efficiency degraded when temperature decoding

6https://huggingface.co/google-t5/t5-3b
7https://huggingface.co/google-t5/t5-small
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Figure 6: Speedup for different decoding temperatures
(y-axis) corresponding to different temperatures during
KD (x-axis) for online distillation with T5-XL and T5-
small on the testing of in-domain Alpaca set.

temperature goes high, while consistent temper-
atures lead to better speedups. Interestingly, the
overall speedup for the T5 series exceeds that of the
Llama series under the same distillation and testing
conditions. We attribute this improvement to the
more closely aligned model sizes of the target-draft
pairs, with 3B-60M (T5) compared to 13B-68M
(Llama). Additionally, the draft model for the T5
series was officially released by its original devel-
opment team, whereas the Llama-68M model was
trained by the open-source community, potentially
introducing some discrepancies in the pre-training
corpora. This discrepancy could be another poten-
tial reason for the lower speedups of Llama series.

4.5 Temperature-aware Recipe for
Speculative Decoding

In our prior investigations (as detailed in § 4.1),
we establish that decoding at higher temperatures
presents challenges. However, we also discover
that KD can act as a promising remedy when train-
ing models under consistent temperature condi-
tions. In this section, we propose a temperature-
aware recipe for speculative decoding inspired
by Chang et al. (2023). Our approach employs
a simple and intuitive data-centric composition
strategy, which represents an initial step toward
enhancing decoding speed.

Specifically, we first manually identify the top-
k best-performing KD temperatures for the target
decoding temperature from Figure 2 motivated by
the following: (i) Values that approximate the best-
performing temperature tend to align more with the
target model’s distribution; (ii) Diversity in training
data for KD further boosts the performance. The
selected temperature values are then used for KD
in both settings for generation with teacher model
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KD Temp. Offline Distillation Online Distillation

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

Alpaca test set
w/ decoding temp. 1.5 1.58x 1.55x 1.53x 1.52x 1.56x 1.60x 1.52x 1.49x 1.45x 1.50x 1.53x 1.58x
w/ decoding temp. 2.0 1.27x 1.25x 1.23x 1.26x 1.30x 1.35 x 1.22x 1.19x 1.16x 1.21x 1.23x 1.27x

GSM8K test set
w/ decoding temp. 1.5 3.50x 3.48x 3.44x 3.47x 3.52x 3.59x 3.41x 3.36x 3.30x 3.34x 3.42x 3.48x
w/ decoding temp. 2.0 3.11x 3.09x 3.07x 3.04x 3.05x 3.07x 3.02x 2.93x 2.90x 2.92x 2.96x 3.03x

Table 2: Performance with out-of-range decoding temperatures on two KD settings with both Alpaca and GSM8K
test set.

and online student model generation. The detailed
temperature configurations and experiment results
are shown in Table 3.

The composition data for KD are all chosen from
the generation of the surrounding peak tempera-
tures. On both Alpaca and GSM8K sets, we ob-
serve huge improvements in speedup, achieving
an increase of 12%-20%. Interestingly, a decoding
temperature of 0.8 with composition yields higher
speedups than the higher temperature of 1.0, sug-
gesting that the influence brought by compositional
data generation can fully make up for the slow
speed when decoding at high temperatures. For
the GSM8K dataset, similar trends are observed
with even greater speedup values. For instance,
with offline distillation and a KD temperature set
of {0.9, 0.8, 0.7}, we achieve the highest reported
speedup of 5.62 with an impressive acceptance rate
of 89.5%. Additionally, the observed differences
in speedup gains between offline distillation and
online distillation methods indicate that the former
may be more amenable to training data composi-
tion strategies. These strategies, which leverage a
set of temperatures rather than a single temperature,
introduce a more nuanced control over the gener-
ated data’s variability and quality. This granularity
appears to be particularly beneficial for offline dis-
tillation, potentially due to the method’s intrinsic
reliance on the data itself as the primary source of
knowledge transfer, which is well aligned with the
black-box offline distillation.

5 Related Work

Speculative Decoding The sequential decoding
strategy that is prevalently used in autoregressive
Transformers (Vaswani et al., 2017) brings latency
in real-world servings. To reduce the latency
and accelerate decoding speed, the idea of par-
allel decoding was initially explored in various
works (Stern et al., 2018; Ghazvininejad et al.,

2019), with strict constraints and deviated distribu-
tions. Speculative decoding (Leviathan et al., 2023;
Chen et al., 2023a) brings success in reducing the
inference latency of LLMs, some recent works (Xia
et al., 2024) have attempted to further improve spec-
ulative decoding by reducing the rejection rate of
candidate tokens. Specifically, Predictive Pipeline
Decoding (Yang et al., 2023) was proposed at first
to incorporate early exit (Schuster et al., 2022) into
the decoding process. Another line of work is to
leverage the target model for the self-drafting pro-
cess, such as Draft&Verify (Zhang et al., 2023),
Medusa (Cai et al., 2024), and Speed (Hooper et al.,
2023). Tree attention is also explored, where multi-
ple candidates during drafting are taken into consid-
eration (Miao et al., 2023). Cascaded drafting pro-
cess (Spector and Re, 2023; Chen et al., 2023b) is
also invented to reduce drafting latency. However,
almost all of the previous works only investigate the
coarse-grained effect brought by generation config-
urations, such as temperature. For example, CSDe-
coding (Chen et al., 2023b) and SpecInfer (Miao
et al., 2023) only explore greedy decoding for test-
ing. Our work mostly relates to the work that lever-
ages knowledge distillation (Zhou et al., 2023; Liu
et al., 2023), with a focus on temperature-centric
investigation for instruction-tuned KD draft mod-
els.

Knowledge Distillation for LLMs Knowledge
distillation (KD) (Hinton et al., 2015) is a widely
used model compression technique, aiming at train-
ing a student model with the guidance of a teacher
model (Gou et al., 2021). The student model
emulates the teacher models’ behavior on down-
stream tasks. Standard KD methods are approxi-
mately minimizing the generation distribution of
the student and the teacher. This is achieved by
using the teacher’s output at each time step as
supervision (Sanh et al., 2019) or direct training
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Methods Decoding KD temp. Alpaca GSM8K

temp. Alpaca GSM8K Acc. Rate Speedup Acc. Rate Speedup

Offline distillation 1.0 1.0 1.0 80.6 1.98x 86.1 4.59x
0.8 0.8 0.8 81.9 2.07x 87.3 4.93x

w/ composition 1.0 {1.0, 0.9, 0.8} {1.0, 0.9, 0.8} 83.0 2.23x 88.7 5.28x
0.8 {0.9, 0.8, 0.7} {0.9, 0.8, 0.7} 83.6 2.34x 89.5 5.62x

Online distillation 1.0 1.0 1.0 82.2 2.10x 87.1 4.75x
0.8 0.8 0.8 82.6 2.18x 87.9 5.00x

w/ composition 1.0 {1.0, 0.9, 0.8} {1.0, 0.9, 0.8} 83.5 2.27x 88.5 5.20x
0.8 {0.9, 0.8, 0.7} {0.9, 0.8, 0.7} 83.7 2.33x 88.9 5.41x

Table 3: Performance with data composition on two KD settings. Acceptance rate and speedup are reported for both
in-domain and out-of-domain datasets.

on the teacher’s generated texts (Kim and Rush,
2016). With the emergence of LLMs, more tech-
niques were invented for KD of LLMs, such as
using reversed KL Divergence (Gu et al., 2024) or
other variants of KLD (Agarwal et al., 2023; Wen
et al., 2023). In this work, since we are targeting
temperature-centric investigation of KD for specu-
lative decoding, we only explore the two standard
KD settings, i.e., black-box SeqKD (Kim and Rush,
2016), and online data generation that targets better
KD for LLMs (Agarwal et al., 2023).

6 Conclusion

In this paper, we have presented a comprehensive
investigation into the impact of temperature on
speculative decoding, particularly within the con-
text of knowledge distillation (KD), for large lan-
guage models (LLMs). Through a series of meticu-
lous experiments utilizing the Llama series as both
target and draft models, we have explored the nu-
anced interplay between temperature settings dur-
ing KD and their consequent effect on speculative
decoding’s efficiency and efficacy. Apart from of-
fering empirical findings, we also propose a practi-
cal strategy to enhance speculative decoding’s per-
formance by leveraging temperature-centric train-
ing data assembly. By presenting this work, we
aspire to facilitate future works on diverse genera-
tion configurations for speculative decoding, and
exploring theoretical understanding of the multi-
faceted relations in between.

Limitations

We discuss the limitations of this work in the fol-
lowing aspects:

1. Scope of the paper: The factor of tempera-
ture for speculative decoding is an important
aspect to investigate. While we investigated a

general setting of knowledge distillation, we
were not able to explore other settings due to
limited computation resources.

2. Empirical analysis: This study is an em-
pirical investigation of the effect brought by
different temperatures in speculative decod-
ing. We interpret the conclusions and findings
largely based on observations at hand, without
solid theoretical foundations. Future works
are encouraged to explore this direction.

3. Preliminary approach: This study attempts
to understand and accelerate speculative de-
coding at higher temperatures. We propose an
empirical solution for data composition that
has proven effective in our tests. However,
our primary focus was not on developing com-
prehensive algorithms for speedup at higher
temperatures. Further work could create more
refined and mature solutions in this area.
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A KD Algorithm

In this section, we give the detailed algorithm of
the KD training setting used in this paper.

Algorithm 1: Online Distillation Algo-
rithm

Input: Target model Mt, Draft model Mθ
d, Data set

containing (input, output) pairs
Output: Distilled draft model Mθ

d

Hyperparameters: Data fraction from online
generation λ ∈ [0, 1], Temperature τ ∈ [0, 1], loss
ratio γ ∈ [0, 1]

for k in 0, ..., n do
Generate a random value µ ∈ (0, 1)
if µ ≤ λ then

sample inputs x from X and generate
outputs y by Mθ

d(·|x) with temperature τ
end
else

sample inputs x from X and outputs y from
Y

end
Update θ to minimize
L = Llm + γD(Mt||Mθ

d(y|x))
end

B Implementation Details

Data Formulation for Alpaca Dataset For
knowledge distillation, we instruction-tuned the
model on the Alpaca dataset. Specifically, for each
data sample in the dataset with triple “instruction-
input-output”, we use the following template to
curate input for training:

If the elements in the triple are complete, we use
the following template:
Below is an instruction that describes

a task, paired with an input that
provides further context. Write a
response that appropriately completes the
request. ###Instruction:{instruction}
### Input:{input}### Response:

If there is only “instruction” for the data sample
without “input”, the above template will be simpli-
fied as:

A
cc

ep
ta

nc
e

R
at

e

KD steps

Figure 7: Acceptance rate of different KD temperatures
for decoding at temperature 1.0 regarding KD steps on
the Alpaca test set.

Below is an instruction that describes
a task. Write a response that
appropriately completes the request.###
Instruction:{instruction}### Response:

Implementation Details for KD For online dis-
tillation, we set the batch size to 8, learning rate to
3e-5, maximum length of input to 512. The train-
ing process continues for 30 epochs with 200, 000
steps in total. It takes around 30 hours to finish.
For offline distillation, it takes 8 hours to finish.

Implementation Details for Evaluation We set
the maximum decoding length to 128 due to the
limit in A100 40G’ GPU memory. Each evaluation
corresponding to KD temperatures and decoding
temperatures requires around 12h to run on the
A100 GPU with batch size 1.

C Detailed analysis for Section 4.1

Speedup is hard to get offset with longer KD
steps. According to our observation, the optimal
performance is achieved when the decoding tem-
perature and KD temperature align with each other.
To further understand the improvement in speedup
regarding the temperatures, we study the relation
with KD steps in Figure 7. We consider a rather
extreme setting where the decoding temperature is
set as 1.0 with KD temperatures 0 and 1.0. During
the initial stages of knowledge distillation, the two
curves representing different temperature settings
exhibit rapid growth and are relatively close to each
other. As the KD process progresses, the curve with
KD temperature 1.0 diverges significantly from the
other and the acceptance rate still steadily increases.
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As the KD process gradually approaches the end,
the curve with KD temperature 1.0 achieves higher
speedup and continues to show an upward trend,
whereas the other temperature curve plateaus with
a lower acceptance rate.

Phenomenon of symmetric temperature config-
urations. Intuitively, we might expect that distill-
ing from a teacher with temperature τ1 and then
using decoding temperature τ2 can behave simi-
larly to distilling with temperature τ2 and decoding
with temperature τ1. This phenomenon could be
referred to as diagonals (from upper left corner to
lower right) in Figures 2. We find that symmet-
ric temperature settings do bring similar speedups.
However, decoding at lower temperatures is still
faster than at higher temperatures.
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