
Findings of the Association for Computational Linguistics: EACL 2024, pages 13243–13257
November 12-16, 2024 ©2024 Association for Computational Linguistics

Auto-Evolve: Enhancing Large Language Model’s Performance via
Self-Reasoning Framework

Krishna Aswani ∗ Huilin Lu ∗ Pranav Patankar †

Priya Dhalwani Iris Tan Jayant Ganeshmohan Simon Lacasse
Amazon

Abstract

Recent advancements in prompt engineering
strategies, such as Chain-of-Thought (CoT) and
Self-Discover, have demonstrated significant
potential in improving the reasoning abilities
of Large Language Models (LLMs). How-
ever, these state-of-the-art (SOTA) prompting
strategies rely on single or fixed set of static
seed reasoning modules like "think step by
step" or "break down this problem" intended to
simulate human approach to problem-solving.
This constraint limits the flexibility of mod-
els in tackling diverse problems effectively. In
this paper, we introduce Auto-Evolve, a novel
framework that enables LLMs to self-create
dynamic reasoning modules and downstream
action plan, resulting in significant improve-
ments over current SOTA methods. We evalu-
ate Auto-Evolve on the challenging BigBench-
Hard (BBH) dataset with Claude 2.0, Claude 3
Sonnet, Mistral Large, and GPT 4, where it con-
sistently outperforms the SOTA prompt strate-
gies. Auto-Evolve outperforms CoT by up to
10.4% and on an average by 7% across these
four models. Our framework introduces two
innovations: a) Auto-Evolve dynamically gen-
erates reasoning modules for each task while
aligning with human reasoning paradigm, thus
eliminating the need for predefined templates.
b) We introduce an iterative refinement compo-
nent, that incrementally refines instruction guid-
ance for LLMs and helps boost performance by
average 2.8% compared to doing it in a single
step.

1 Introduction

LLMs have demonstrated significant potential in
various Natural Language Processing (NLP) ca-
pabilities such as understanding, generating, and
reasoning (Brown et al., 2020; Chowdhery et al.,
2022; Anil et al., 2023; OpenAI, 2023b). Despite
the impressive progress, LLMs continue to have

*Equal contribution
†Corresponding Author: pppatan [at] amazon [.] com

challenges in solving multi-step reasoning tasks
that require systematic thinking and planning. In-
creasing model size alone is not enough to solve
these issues, emphasizing the necessity for devel-
oping novel techniques to improve LLMs’ reason-
ing capabilities (Srivastava et al., 2022; Rae et al.,
2021) .

Various prompting strategies have been devel-
oped to guide and facilitate the reasoning capabili-
ties of LLMs. CoT (Wei et al., 2022) has emerged
as a prominent approach, encouraging LLMs to
generate step-by-step explanations mimicking hu-
man reasoning. Subsequent research efforts have
focused on refining the generation process thereby
enhancing the quality and consistency of the ratio-
nales (Kojima et al., 2022; Fu et al., 2023; Zhou
et al., 2022; Wang et al., 2022). Self-Discover
(Zhou et al., 2024) improves models’ reasoning
capabilities over CoT by allowing models to select
the most appropriate reasoning path from a fixed
set of reasoning modules. However, our analysis of
the seed modules in Self-Discover revealed that a
subset of fixed seed modules dominated the usage,
limiting the framework’s reasoning coverage and
performance on diverse tasks (Appendix: Fig. 9).
CoT’s and Self-Discover’s reliance on a limited set
of reasoning seed modules such as "think step by
step" or "break down this problem" constrains the
approaches to tackling a problem, negatively af-
fecting their ability to generalize over diverse tasks.

Our framework, Auto-Evolve, builds upon the
strengths of previous prompting approaches while
addressing their limitations. Rather than relying on
a fixed set of seed modules, Auto-Evolve creates
custom reasoning modules on-the-fly for each task,
allowing LLMs to come up with a wider range of
reasoning structures (instruction guidance in JSON
format that LLMs can follow to solve a task step
by step) that are better suited to handle the spe-
cific needs of each task. Auto-Evolve further in-

13243

mailto:pppatan[at]amazon[dot]com

Figure 1: Illustration of using Auto-Evolve workflow for problem-solving.

corporates an iterative refinement process allowing
models to refine their reasoning structures based on
the specific requirements of each task, significantly
boosting performance.

Auto-Evolve consists of three core components:

1) Reasoning Module Generator that dynami-
cally creates relevant modules for a given task.

2) Reasoning Structure Initializer that com-
poses an initial reasoning plan using the generated
modules.

3) Reasoning Structure Evolver that iteratively
refines and improves the plan over multiple pro-
cessing steps.

We evaluate Auto-Evolve’s performance on Big
Bench Hard (Suzgun et al., 2022), a widely used
benchmark with a subset of 23 hard tasks from
the BIG-Bench suite (Srivastava et al., 2022). On
average, across four models, Auto-Evolve demon-
strates a 12.8% performance improvement over
Direct Prompt (Claude 2.0: 11.7%, Claude 3 Son-
net: 3.0%, Mistral Large: 13.5%, GPT-4: 22.9%),
a 7% performance improvement over CoT (Claude
2.0: 10.4%, Claude 3 Sonnet: 3.3%, Mistral Large:
8.1%, GPT-4: 6.3%) and a 4% improvement over
Self-Discover 4% (Claude 2.0: 6.7%, Claude 3
Sonnet: 3.9%, Mistral Large: 2.7%, GPT-4: 2.6%).
By combining dynamic prompt generation and iter-
ative refinement, Auto-Evolve offers a more flex-
ible and adaptive approach to reasoning, pushing
the boundaries of LLMs performance on complex
tasks.

2 Related work

There are two key model optimization techniques,
Model Prompting and Model Fine-Tuning. Model
Prompting Methods enhance the reasoning capa-
bilities of LLMs by providing carefully designed
prompts that guide the model towards generating
the desired output, without modifying the underly-
ing model parameters. On the other hand, Model
Fine-Tuning Methods involve updating the model’s
parameters by training on a relevant dataset to spe-
cialize the model for a particular task or domain,
which can be computationally expensive. While
both methods have their advantages and disadvan-
tages, our framework Auto-Evolve, is closely re-
lated to Model Prompting Methods.

Model Prompting Methods such as CoT
prompting (Wei et al., 2022) encourages models
to generate intermediate reasoning steps that lead
to the final desired answer. CoT has been shown
to boost performance on arithmetic, commonsense,
and symbolic reasoning tasks. Subsequent work
has extended CoT by selectively sampling ratio-
nales (Kojima et al., 2022), improving rationale
consistency (Wang et al. (2022); Self-Consistency),
generating more structured reasoning paths (Fu
et al., 2023), and having models first plan the rea-
soning before solving the problem (Wang et al.
(2023); Plan-and-Solve). Self-Discover (Zhou
et al., 2024), introduces a three-stage process where
LLMs select relevant reasoning modules, adapt
them to the specific task, and implement them into
a coherent reasoning structure. Self-Discover out-
performs CoT (Wei et al., 2022), Self-Consistency

13244

(Wang et al., 2022) and Plan-and-Solve (Wang
et al., 2023) prompting on various benchmarks.

3 Auto-Evolve Framework

Auto-Evolve framework is inspired by two fun-
damental principles. (1) Higher interpretabil-
ity associated with JSON structure: LLM’s rea-
soning capabilities and performance are enhanced
by JSON structure’s higher interpretability (Zhou
et al., 2023; OpenAI, 2023b,a). (2) LLMs have
inbuilt diverse reasoning abilities: LLMs pos-
sess an inherent grasp of diverse thinking styles
and essential reasoning modules crucial for tack-
ling variety of tasks since they were trained on
enormous data, typically measured in petabytes.
SOTA Self-Discover adheres to the first principle,
but it overlooks the key aspect of the second princi-
ple. Instead of leverage knowledge hidden within
LLMs, Self-Discover supplies LLMs with a fixed
set of initial human-designed reasoning modules
such as “Use critical thinking” and “Let’s think
step by step”. On the flip side, Auto-Evolve advo-
cates for LLMs’ intrinsic ability to independently
discern and utilize relevant reasoning strategies for
different tasks.
Auto-Evolve comprises of two stages as illustrated
in Fig. 1. Stage 1 dynamically generates intrin-
sic task-related reasoning modules and structure
(JSON instructions) by leveraging task examples
and three meta-prompts, thereby guiding LLMs to
solve tasks without needing static human-designed
seed modules and further training. Stage 1 operates
at task-level, i.e., one run for each task category.
Stage 2 uses the finalized reasoning structure pro-
duced as an output of Stage 1 to solve individual
task instances by asking the model to follow the
instruction step by step. Given the straightforward
and uncomplicated nature of Stage 2, we focus rest
of this section on further elaborating the three com-
ponents of Stage 1 that are illustrated in Fig. 2. We
also present a graphical representation in Fig. 3
that’s accompanied by mathematical notations to
elucidate the procedure of Stage 1. Left half of this
figure showcases the GENERATE and IMPLE-
MENT components, while right half showcases
the REFINE components. The mathematical no-
tations are explained in the following subsections.
Prompts details are included in Appendix Fig. 7.

3.1 Reasoning Module Generator
(GENERATE)

The primary function of the GENERATE com-
ponent is to dynamically create task-specific rea-
soning modules and descriptions. Unlike the Self-
Discover approach that relies on a predetermined
set of 39 static reasoning modules (Appendix
Fig. 9) for problem solving, GENERATE em-
braces adaptability and responsiveness by creating
modules dynamically. E.g., the reasoning mod-
ules in Appendix Fig. 10 for Boolean Expression
and Disambiguation QA tasks are generated us-
ing Auto-Evolve. For the tasks under the same
domain, given only a few task examples without la-
bels ti ∈ T , GENERATE first creates a set of task-
specific reasoning modules R by using a model M
and a meta-prompt PG:

R = M(PG||ti). (1)

By assessing the unique attributes and demands of
each task, GENERATE orchestrates the creation
of a task-specific set of reasoning modules, ensur-
ing a nuanced and tailored approach to problem-
solving. The dynamic generation process enables
our framework to continually evolve and adapt to
new challenges and task domains, facilitating more
effective and contextually relevant reasoning pro-
cesses.

3.2 Reasoning structure initializer
(IMPLEMENT)

IMPLEMENT serves as a starting point for gen-
erating task-specific reasoning structure. IMPLE-
MENT uses only the first reasoning module from
GENERATE for building the initial reasoning
structure. This lays the groundwork for subse-
quent refinement steps and ensures the initial rea-
soning structure aligns closely with the context of
the given task.

Given the same task examples without labels
ti ∈ T , Reasoning Structure Initializer implements
an initial key-value reasoning plan S by using the
first reasoning module R1 generated from previous
component, an action plan of another task E and a
meta-prompt PI :

S = M(PI ||ti||R1||E). (2)

3.3 Reasoning structure evolver (REFINE)
Finally, given the initial reasoning structure S , RE-
FINE component iteratively distills the initial rea-

13245

Figure 2: Overview of three components of Auto-Evolve Stage 1. Component Reasoning Module Generator
GENERATE a set of task-specific reasoning modules and component Reasoning Structure Initializer IMPLEMENT
a starting JSON reasoning structure. Over multiple runs of REFINE, component Reasoning Structure Evolver
subsequently refines the reasoning structure to a domain-adaptive actionable plan.For instance, when solving the
reasoning QA task, the initial reasoning structure from IMPLEMENT may lack depth in ’moral, intentional, or
counterfactual analysis’. The REFINE process addresses this gap by identifying and incorporating these additional
elements, thus improving the structure’s ability to solve the task.

soning structures by incorporating additional rea-
soning modules Ri generated by the Reasoning
Module Generator. This component also uses a
meta-prompt PE , an example-agnostic structured
prompt designed to capture the reasoning structure
of a specific category of tasks. During the itera-
tive refine process, the generated new reasoning
structure S ′ will replace the original S and be used
for the next iteration. By dynamically evolving the
reasoning structure in this manner, our approach
fosters a comprehensive and versatile framework
capable of addressing a wider range of cognitive
tasks. Through empirical evaluation, we demon-
strate the efficacy of our methodology in improving
reasoning performance and adaptability across var-
ious task domains, thereby contributing to enhanc-
ing the language models reasoning capabilities.

S ′ = M(PE ||Ri||S). (3)

4 Experiments

4.1 Datasets
We evaluate Auto-Evolve using a diverse and large-
scale reasoning benchmarking dataset: BIG Bench
Hard (BBH) (Suzgun et al., 2022). It is designed
to evaluate the performance and reasoning capa-
bilities of language models. It consists of 23 com-
plex reasoning tasks, totaling 5,511 task instances.

(Appendix Table 3) spanning across 4 domains:
(1) Algorithmic and Multi-Step Arithmetic Rea-
soning (11 tasks, e.g., Boolean Expressions Eval-
uation, Object Counting), (2) Natural Language
Understanding (7 tasks, e.g., Snarks, Disambigua-
tion QA), (3) Use of World Knowledge (5 tasks,
e.g., Movie Recommendation, Date Understand-
ing), and (4) Multilingual Knowledge and Rea-
soning (Salient Translation). We use accuracy as
the evaluation metric to measure the model perfor-
mance on BBH.

4.2 Models

We use four LLMs to showcase the generalizability
of Auto-Evolve framework: Claude 2.0 (Anthropic,
2023), Claude 3 Sonnet (Anthropic, 2024), Mistral
Large (AI, 2024) and GPT-4 (gpt-4-turbo-preview)
(OpenAI, 2023b). In our experiments, LLMs ex-
hibited non-determinism even with temperature set
to 0*. To ensure robustness in our evaluations, we
run all experiments three times and average the
results. Table 1, Table 2, Fig. 4 and Fig. 5 in the
next section show the performance of Auto-Evolve
compared to other prompt strategies.

*The Non-Determinism of OpenAI and Anthropic Models
- https://standardscaler.com/2024/03/06/the-non-determinism-
of-openai-and-anthropic-models/

13246

Figure 3: Overview of Auto-Evolve workflow in mathematical notation

4.3 Baselines
We compare Auto-Evolve with Direct, CoT and
Self-Discover frameworks for evaluating LLM rea-
soning capabilities:
Direct Prompting, where language models pro-
duce the answer without the need for intermediate
reasoning stages.
CoT (Wei et al., 2023; Kojima et al., 2022), where
language models are prompted to produce a logical
sequence of steps resulting in the final solution.
Self-Discover (Zhou et al., 2024), where a set of
thinking styles are provided to guide LLMs to pro-
duce a logical path for solving problems, much like
the approach a human expert might take.

4.4 Experiments setup and evaluation
LLM Inputs: For Direct Prompting, we only pro-
vide task instance as the prompt, while for CoT,
we add an additional sentence "Thinking step-by-
step" to the prompt fed into the LLMs. For Self-
Discover, the prompt includes a set of 39 thinking
styles for LLMs to select and adapt to the tasks. For
Auto-Evolve, however, we purely rely on LLMs
to dynamically generate the task-specific reason-
ing modules and structures. During the steps for
generating the task-specific reasoning modules and
reasoning structures, we randomly select two task
instances without the target labels from the task set
as the examples fed to LLMs. For the step-by-step
plan example which is applied in Reasoning Struc-
ture Initializer component of Stage 1, we use the
model-discovered JSON structure generated from
another task.

LLM Response Evaluation: We meticulously
examine the results obtained from the LLMs with
automatic and manual evaluation procedures. Since
LLMs do not always produce consistent format of
outputs when they follow the reasoning instruc-
tions, we programmatically extract answers/labels
by examining the model responses. For the outputs
that can not be programmatically extracted, we em-

ploy annotators to manually evaluate the model re-
sponses. Non-determinism in LLMs output means
that slight variations in reasoning modules for both
Self-Discover and Auto-Evolve lead to significant
disparities in the downstream output of reasoning
structures generation. Consequently, we experi-
ment on all four LLMs for three times across all
tasks, and calculate the average accuracy, ensur-
ing robustness and fairness in our findings. This
approach not only enhances the credibility of our
results but also ensures consistency and validity in
our experimental methodology.

5 Results and Discussion

5.1 Performance

Auto-Evolve demonstrates significant performance
improvement across the 23 diverse tasks in the
BBH dataset (Suzgun et al., 2022). As shown in
Table 1, Auto-Evolve achieves an average abso-
lute 8.1% and 2.7% improvement across 23 di-

Table 1: Comparing absolute performances of Auto-
Evolve against CoT & Self-Discover prompting tech-
niques.

Method BBH

Claude 2.0 Direct 53.7%
Claude 2.0 + CoT 55.0%
Claude 2.0 + Self-Discover 58.7%
Claude 2.0 + Auto-Evolve 65.4%

Claude 3 Sonnet Direct 68.6%
Claude 3 Sonnet + CoT 68.3%
Claude 3 Sonnet + Self-Discover 67.7%
Claude 3 Sonnet + Auto-Evolve 71.6%

Mistral-Large Direct 61.9%
Mistral-Large + CoT 67.3%
Mistral-Large + Self-Discover 72.7%
Mistral-Large + Auto-Evolve 75.4%

13247

verse tasks over CoT and Self-Discover respec-
tively when using Mistral Large. With Claude 2.0,
the improvement is even more substantial, with
10.4% and 6.7% gains over CoT and Self-Discover.
We observe the same trends for GPT-4 in Table 2,
where Auto-Evolve improves GPT-4’s performance
over CoT and Self-Discoverwith absolute gains of
6.3% and 2.6%. The performance improvements
on Claude 3 Sonnet are less significant, achiev-
ing an average absolute 2.5% and 3.1% improve-
ment over CoT and Self-Discover respectively. It is
likely due to Claude 3 Sonnet’s already advanced
reasoning capabilities, which enable the model to
perform exceptionally well even with a direct ap-
proach, without the aid of prompting techniques.
This leaves less room for enhancement through
external reasoning frameworks like Auto-Evolve.
These results highlight the effectiveness of Auto-
Evolve’s dynamic and adaptive reasoning approach
compared to frameworks that rely on static seed
modules.

Table 2: Comparing delta performances across all tasks
with Auto-Evolve against CoT & Self-Discover for GPT-
4. In table, it shows the absolute percentage improve-
ment over baseline.

Method BBH

GPT-4 Direct (Baseline) *
GPT-4 + CoT +16.6%
GPT-4 + Self-Discover +20.3%
GPT-4 + Auto-Evolve +22.9%

In Fig. 4 we highlight results from Mistral with
other models results being available in Appendix
G. It provides a detailed breakdown of perfor-
mance improvements across individual tasks. Auto-
Evolve improves Mistral Large’s performance over
Self-Discover on 18/23 tasks and surpasses CoT
on 17/23 tasks. We demonstrate that Auto-Evolve
excels at tasks that require tracking complex prob-
lems such as Geometric Shapes, Web of Lies. The
reasoning structures generated by Auto-Evolve as-
sist LLMs in managing and solving these evolving
problems. The dynamic generation of task-specific
reasoning modules allows Auto-Evolve to effec-
tively adapt to each unique challenge posed by in-
dividual tasks. Further task-level comparisons with
other frameworks are available in the Table 3.

5.2 Efficiency

Auto-Evolve Framework is designed with effi-
ciency and inference call costs in mind. For each
task, the framework requires 1 call for GENER-
ATE, 1 call for IMPLEMENTand on average 4-5
calls for REFINE. These one-time calls enable ef-
ficient processing of large datasets, with only 1 call
per data point required once the reasoning struc-
ture is defined. Appendix Fig. 14 compares the
efficiency of Auto-Evolve with other prompting
framework (data from (Zhou et al., 2024)), demon-
strating that it achieves similar or better perfor-
mance than Self-Consistency and Majority Voting
while requiring 10-40 times fewer inference calls.

5.3 Themes: Improvement across categories

Auto-Evolve demonstrates performance improve-
ments across all four categories of the BBH dataset
(Suzgun et al., 2022) as shown in Fig. 5. The most
notable improvements are observed in the Algo-
rithm category, where the complex reasoning struc-
tures generated by the Auto-Evolve prove partic-
ularly effective. We believe these types of tasks
require much more complex reasoning structures
because of which our framework outperformed
Self-Discover.

5.4 Ablation

The ablation study in Fig. 6 highlights the indi-
vidual contributions of the GENERATE + IM-
PLEMENT and REFINE components in the Auto-
Evolve framework. These results are compared to
the CoT and Self-Discover across fours tasks with
Claude 2.0. We chose to conduct ablation study
using Claude 2.0 as it had the most pronounced dif-
ference between results for Self-Discover and Auto-
Evolve across the evaluated tasks (6.7%), allowing
us to clearly highlight the individual impacts of
Auto-Evolve’s components.

GENERATE + IMPLEMENT components
alone for all the BBH tasks achieve 62.6% per-
formance. While with the refine step included
it achieves 65.4% performance, giving a perfor-
mance boost of 2.8%. It outperforms CoT and Self-
Discover on all four tasks with avg. improvement
of 7.25% for CoT and 4.75% for Self-Discover.
With GENERATE + IMPLEMENT we see the
most improvement in arithmetic task, 17% on
CoT, 13% on Self-Discover. REFINE gives an
avg. boost of 15% for CoT and 12.75% for Self-
Discover.

13248

Figure 4: Task level BBH performance on Mistral Large for Auto-Evolve over Direct Prompt, CoT and Self-Discover.
Claude models and GPT-4 results are in Appendix Fig. 12 and Fig. 13

Figure 5: Performance of Auto-Evolve on Claude 2.0 in
four task categories

In our experience, Auto-Evolve reasoning struc-
tures tend to increase in complexity in REFINE
due to the cyclic incorporation of insights from
multiple reasoning modules. While this complexity
elevates performance in tasks demanding elabo-
rate reasoning—such as Navigate, Arithmetic, and
Date Understanding, it’s not universally necessary.
For the majority of tasks, GENERATE + IMPLE-
MENT contribute significantly to performance en-
hancements, achieving simpler yet efficient rea-
soning structures. REFINE should be selectively
applied to complex tasks that demand deeper and
more intricate reasoning capabilities.

5.5 Deep Dive Analysis

5.5.1 Deep Diving into Auto-Evolve Reasoning
Modules

Fig. 10 in Appendix showcases reasoning modules
generated by Claude 2.0 using the Self-Discover
and Auto-Evolve frameworks for two distinct tasks:
Boolean and Disambiguation QA. In the case of the
Boolean Expressions task, Auto-Evolve generates a

Figure 6: Auto-Evolve with and without REFINE on 4
diverse tasks on Claude 2.0

highly pertinent module: "Identify and understand
logical operators (not, and, or, etc.)", which di-
rectly addresses the core aspects of the task. On the
other hand, Self-Discover uses more generic mod-
ules such as "Critical Thinking" and "Let’s think
step by step", which lack the task-specific focus
needed for optimal performance. Similarly, for the
Disambiguation QA task, Auto-Evolve generates a
module that captures the essence of the task: "Mem-
ory Module: Maintain awareness of noun phrases
mentioned earlier in the passage or conversation
to determine if the pronoun refers back to one of
those". This module encapsulates the key aspects
of pronoun resolution and antecedent identification,
which are crucial for disambiguating references
in the given context. In contrast, Self-Discover’s
modules remain more general, even after the adapt
stage, where they are refined to "Identify the pro-
noun. Find all possible antecedents based on noun
phrases". While this refinement improves the rele-
vance of the modules, they still lack the complexity
and specificity offered by Auto-Evolve. The en-

13249

hanced relevance and specificity of Auto-Evolve’s
reasoning modules can be attributed to its ability to
dynamically generate task-specific modules with-
out relying on a fixed set of predefined seed mod-
ules.

5.5.2 Deep Diving into Auto-Evolve Reasoning
Structures

In Appendix Fig. 11, we showcase Auto-Evolve
generated reasoning structures for Hyperbaton rea-
soning task using GPT-4. Auto-Evolve reason-
ing structure is tailored to its task, incorporating
task-specific reasoning modules such as "Linguis-
tic Analysis", "Adjective Order Rules", "Recall
rules and examples" and etc. Through Linguistic
Analysis reasoning module, Auto-Evolve is able
to recognizes the standard English conventional or-
der of adjectives, and derives the correct answer.
Additionally, Appendix Fig. 11 contrasts reason-
ing processes from Self-Discover. Self-Discover’s
reasoning modules emphasize simplification and
decomposition of problems into manageable parts,
as well as consideration of human behavior nu-
ances. Correspondingly, the generated reasoning
structure breaks down sentences into constituent
adjectives and simplifies grammatical rules to fa-
cilitate understanding. While Self-Discover also
presents an action plan, it fails to recognize the
task requirement of adjective ordering and yield
incorrect answer.

5.6 Transferability and Generalizability to
OpenSource Models

One of the main challenges in using open-source
models is achieving the same reasoning ability
and accuracy as larger proprietary models. In
our experiments on the disambiguation question-
answering task from the BBH dataset, Llama 3.1
70B achieved only 22.4% accuracy with direct
prompting. However, with Auto-Evolve, which dy-
namically generates reasoning structures, the accu-
racy surged to 72.0%, outperforming Self-Discover
(56.8%) and CoT (60.4%) as well. We observed
similar improvements on the causal judgement
task, where Auto-Evolve (65.3%) outperformed
direct prompting (27.3%), CoT (62.6%), and Self-
Discover (64.7%).

Smaller models like Llama 3.1 8B typically
struggle to generate complex reasoning plan au-
tonomously. This limitation can be addressed by
using larger models to create these reasoning struc-
tures. When we applied reasoning structures gen-

erated by Llama 3.1 70B to Llama 3.1 8B, the
model’s accuracy improved significantly. With
Auto-Evolve, Llama 3.1 8B achieved 62.4% accu-
racy compared to 45.2% with direct prompting and
54.4% with CoT. For the causal judgement task,
Auto-Evolve (58.3%) again outperformed direct
prompting (49.7%) and CoT (56.1%).

These results highlight that while smaller models
struggle to generate complex reasoning structures
independently, they can perform well when guided
by reasoning structures from larger models, demon-
strating the transferability of reasoning strategies
across model architectures. This approach provides
an efficient solution for resource-constrained en-
vironments while still benefiting from advanced
reasoning capabilities. It also opens opportunities
for further research on optimizing transferability
and balancing performance and efficiency across
models of different sizes.

6 Conclusion and Future Work

Auto-Evolve introduces a novel framework that dy-
namically generates task-specific reasoning struc-
tures, eliminating the need for static seed modules
and enabling more effective reasoning across di-
verse problem domains. By seamlessly integrating
dynamic prompt generation and iterative refine-
ment, Auto-Evolve surpasses state-of-the-art meth-
ods like CoT prompting, achieving performance
improvements up to 10.4% and an average gain
of 6.8% when evaluated with GPT-4, Claude 2.0,
Claude 3 Sonnet and Mistral Large models. The
framework’s ability to transfer reasoning structures
from larger models to smaller ones, as demon-
strated with models like Llama 3.1 8B, highlights
its broader utility and adaptability across architec-
tures.

The broader implications of Auto-Evolve ex-
tend beyond the performance enhancement, as the
framework has the potential to advance the devel-
opment of more interpretable and transparent AI
systems by generating dynamic problem specific
reasoning modules and explicit reasoning struc-
tures. Our experimentation has highlighted the
pivotal role played by JSON reasoning structures
in solving tasks effectively. In future iterations,
we aim to explore the potential of incorporating
feedback mechanisms to iteratively improve these
reasoning structures, further refining and enhanc-
ing the framework’s capabilities.

13250

Limitations

While the proposed Auto-Evolve framework
demonstrates promising results in enhancing large
language models’ reasoning capabilities, we ac-
knowledge the following limitations:

Applicability to Smaller Models: Our experi-
ments demonstrate that large models like Llama
3.1 70B can directly benefit from Auto-Evolve, in-
dependently generating and utilizing sophisticated
reasoning structures. However, smaller models
such as Llama 3.1 8B struggle to create these struc-
tures autonomously. We found that applying rea-
soning structures generated by larger models (e.g.,
Llama 3.1 70B) to guide smaller models signif-
icantly enhances their performance. This com-
bined approach enables resource-efficient models
to leverage advanced reasoning capabilities. Future
research will focus on optimizing this transfer pro-
cess, exploring methods to effectively scale reason-
ing capabilities across models of varying sizes and
architectures, with particular emphasis on enhanc-
ing smaller, more efficient models using insights
from their larger counterparts.

Increased Complexity in Reasoning Structures:
Auto-Evolve’s reasoning structures can become
overly complex due to the cyclic incorporation of
insights from multiple reasoning modules. This
complexity, while beneficial for certain tasks de-
manding elaborate reasoning, is not universally nec-
essary and can be an overhead for simpler tasks.
Based on our experience we suggest readers to in-
corporate all reasoning modules in a single step
as a starting point and then use iterative part of
the framework as a optional step for problems that
can’t be solved with single step.

Model Determinism: During our experiments,
we observed non-deterministic behavior even when
the temperature was set to be 0. Slight variations in
the generated reasoning modules led to significant
disparities in the downstream reasoning structures
and outputs. To address this, we ran multiple trials
and reported average performance, which added
computational overhead.

Ethics Statement

Bias Propagation and Amplification: While Auto-
Evolve is designed to enhance the reasoning abili-
ties of large language models (LLMs), we acknowl-
edge the potential for the generated reasoning mod-
ules to propagate or even amplify biases present in
the underlying model’s training data. If the train-

ing data contains cultural, societal, or linguistic
biases, these biases may manifest in the reasoning
modules and structures produced by Auto-Evolve.
To mitigate this risk, it is crucial to incorporate
human-in-the-loop feedback mechanisms or other
guardrails to ensure that the final outputs align with
user values and ethical considerations.

Acknowledgements

We would like to thank Callin Switzer, Jane Barker
and Kai Wei for their thorough review of this paper
and feedback. We also appreciate Greg Sansoni
and Stephanie Kim for their support.

References
Mistral AI. 2024. Mistral large overview.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Anthropic. 2023. Claude overview.

Anthropic. 2024. Claude overview.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning.

13251

https://mistral.ai/news/mistral-large/
https://docs.anthropic.com/claude/docs/intro-to-claude
https://docs.anthropic.com/claude/docs/intro-to-claude
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

OpenAI. 2023a. Json generation mode.

R OpenAI. 2023b. Gpt-4 technical report. arXiv, pages
2303–08774.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, H. Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Antonia
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Sid-
dhant M. Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris
Jones, James Bradbury, Matthew J. Johnson, Blake A.
Hechtman, Laura Weidinger, Iason Gabriel, William
Isaac, Edward Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2021. Scaling
language models: Methods, analysis & insights from
training gopher. CoRR, abs/2112.11446.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In

The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2022.
Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju,
Aditya Gupta, Kevin R McKee, Ari Holtzman, Jay
Pujara, Xiang Ren, Swaroop Mishra, Aida Ne-
matzadeh, et al. 2023. How far are large language
models from agents with theory-of-mind? arXiv
preprint arXiv:2310.03051.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-
Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. 2024.
Self-discover: Large language models self-compose
reasoning structures.

13252

https://platform.openai.com/docs/guides/text-generation/json-mode
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2402.03620
http://arxiv.org/abs/2402.03620

Appendix

A Auto-Evolve Prompt details

The meta-prompt templates for the GENERATE, IMPLEMENT and REFINE components in the first
stage of Auto-Evolve are shown in Fig. 7.

Figure 7: Meta-Prompts for the three components of Auto-Evolve.

B Performance on BBH dataset

Table 3 contains BBH per-task performance of Claude 2.0, Claude 3 Sonnet and Mistral Large over 4
prompt strategies comparing to human performance. Compared to human average performance, Mistral
Large with Auto-Evolve framework outperforms on 19 out of 23 tasks, Claude 2.0 with Auto-Evolve
outperforms on 11 out of 23 tasks, and Claude 3 Sonnet with Auto-Framework outperforms on 11 out of
23 tasks.

Table 3: Big Bench-Hard (Suzgun et al., 2022) per-task performance of Claude 2.0, Claude 3 Sonnet and Mistral
Large with Auto-Evolve, the highest accuracy for each task has been highlighted in bold.

Big Bench-Hard Task Human
(Avg.)

Human
(Max)

Mistral-L
Direct

Mistral-L
+ CoT

Mistral-L
+ Self-Discover

Mistral-L
+ Auto-Evolve

Claude 2.0
Direct

Claude 2.0
+ CoT

Claude 2.0
+ Self-Discover

Claude 2.0
+ Auto-Evolve

Claude 3 Sonnet
Direct

Claude 3 Sonnet
+ CoT

Claude 3 Sonnet
+ Self-Discover

Claude 3 Sonnet
+ Auto-Evolve

boolean_expressions 79 100 75 79 92 93 79 79 78 86 94 98 93 90
causal_judgement 70 100 67 72 72 72 61 61 65 67 69 68 58 67
date_understanding 77 100 67 69 79 80 53 56 72 70 66 66 65 74
disambiguation_qa 67 93 67 65 76 77 58 60 70 68 54 52 68 70
dyck_languages 48 100 20 23 10 14 14 14 13 10 11 8 16 19
formal_fallacies 91 100 53 53 53 53 53 53 53 53 53 53 58 59
geometric_shapes 54 100 28 31 38 67 38 39 37 49 47 44 51 66
hyperbaton 75 100 82 81 88 89 62 64 64 76 72 73 81 70
logical_deduction_seven_objects 40 89 57 60 65 62 52 52 49 55 56 56 62 56
movie_recommendation 61 90 75 74 74 80 68 69 76 78 75 75 84 83
multistep_arithmetic_two 10 25 20 60 55 57 3 4 8 26 73 71 56 60
navigate 82 100 73 73 85 88 48 68 69 94 62 74 88 86
object_counting 86 100 58 65 80 74 52 53 54 60 74 79 76 76
penguins_in_a_table 78 100 61 68 83 86 57 60 69 78 75 80 82 74
reasoning_about_colored_objects 75 100 79 82 83 84 59 61 68 76 79 76 79 82
ruin_names 78 100 78 79 81 83 61 60 54 71 71 70 72 76
salient_translation_error_detection 37 80 58 59 60 69 58 58 61 61 65 65 64 68
snarks 77 100 75 77 77 87 69 67 66 71 70 72 70 70
sports_understanding 71 100 79 80 81 85 71 73 74 79 76 78 70 85
temporal_sequences 91 100 93 94 98 99 62 60 65 73 92 84 95 90
tracking_shuffled_objects_seven_objects 65 100 22 66 72 49 18 16 43 51 90 72 37 64
web_of_lies 81 100 50 51 83 93 49 48 52 62 77 74 49 67
word_sorting 63 100 88 87 89 92 91 90 90 90 77 81 82 94

C Analyzing Reasoning Processes

The comparison between reasoning modules generated using Self-Discover and Auto-Evolve reveals
distinct approaches to problem-solving. Self-Discover’s generated reasoning modules emphasize simplifi-
cation and decomposition of problems into manageable parts, as well as consideration of human behavior

13253

nuances. Correspondingly, the generated reasoning structure breaks down sentences into constituent
adjectives and simplifies grammatical rules to facilitate understanding. In contrast, Auto-Evolve’s task-
specific reasoning modules prioritize linguistic and critical analysis for evaluating sentence structures. The
resulting reasoning structure involves pattern and comparative analyses to identify adherence to standard
adjective order rules. Ultimately, Auto-Evolve’s approach yields the correct answer by systematically ana-
lyzing sentence structures and identifying deviations from conventional rules, showcasing its effectiveness
in task-specific problem-solving.

Figure 8: Comparison between Auto-Evolve and Self-Discover reasoning modules and reasoning structure process
generated from GPT-4 on a Hyperbaton task.

D Reasoning Module Analysis

Frequency plot Fig. 9 showcases that Self-Discover only uses a few reasoning seed modules in solving the
BBH tasks (out of 39). The inherent gravitation of LLMs towards utilizing only a subset of the provided

Figure 9: Analysis of Self-Discover seed modules and how these were selected by Claude2.0 for BBH dataset.

13254

seed reasoning modules can stem from a variety of factors. This tendency may arise due to inherent
biases within the models, leading them to preferentially select familiar patterns or reasoning strategies.
Alternatively, the lack of diversity within the seed module set itself, with many modules representing
relatively similar reasoning approaches, could compel the model to gravitate towards a distinct few. We
believe that using a fixed set of human-defined seed modules introduces inductive biases that constrain the
model’s reasoning flexibility across diverse tasks, compared to Auto-Evolve’s approach of dynamically
generating tailored reasoning modules for each task type.

E Auto-Evolve Reasoning Module Comparison

Fig. 10 shows deep analysis on reasoning module generation comparisons across two different prompt
strategies (Self-Discover and Auto-Evolve). For both Boolean and Disambiguation tasks, Auto-Evolve
represents a significant advancement over Self-Discover by implementing more detailed, task-specific
reasoning modules. This approach allows for greater flexibility and adaptability, enhancing the model’s
performance in complex reasoning tasks. The specific focus on logical operations, detailed syntax and
grammar analysis, and memory retention provides a more comprehensive framework for improving LLM
reasoning capabilities.

Figure 10: Deep Dive Analysis of Self-Discover vs Auto-Evolve Reasoning Module

F Auto-Evolve Reasoning Structure Comparison

In Fig. 11 example, it showcases the LLMs follow the reasoning structures using Auto-Evolve and
Self-Discover framework on a Hyperbaton task. LLMs are able to follow the Auto-Evolve’s guidance
integrated with task-specific instructions (keys and sub-keys) and derive the final answer correctly. In
this specific Hyperbaton task, while Self-Discover relies on a broad and generic analysis, Auto-Evolve
employs a detailed and structured approach that includes linguistic analysis, pattern recognition, and
comparative evaluation. This comprehensive method allows Auto-Evolve to accurately apply grammatical
rules and critically assess sentence structures, leading to more reliable and correct outcomes. The
Auto-Evolve framework’s ability to dynamically adapt its reasoning structures based on the specific task
at hand demonstrates a significant improvement in handling this complex linguistic challenges.

13255

Figure 11: Deep Dive Analysis of Self-Discover vs Auto-Evolve Reasoning Structure

G Auto-Evolve Performance Comparison

In the Fig. 12, it displays the accuracy differences of Auto-Evolve over Direct Prompt, CoT and Self-
Discover on GPT-4 for BBH 23 tasks. The green bars show the absolute percentage improvement, and
yellow bars show the absolute percentage decrease. Auto-Evolve outperforms 22/23 tasks over Direct
Prompt, and outperforms 17/23 tasks over CoT and Self-Discover on GPT-4. By using GPT-4 with our
proposed framework Auto-Evolve, it improves most on complex tasks such as Web of Lies, Multistep
Arithmetic, Shuffled Object and etc.

Figure 12: Performance comparison between Auto-Evolve and Direct Prompt, CoT and Self-Discover on GPT-4.

In the Fig. 13, it displays the accuracy differences of Auto-Evolve over Direct Prompt, CoT and
Self-Discover on Claude 2.0 for 23 tasks. Auto-Evolve outperforms 20/23 tasks over Direct Prompt and
CoT, and outperforms 17/23 tasks over Self-Discover. By using Claude 2.0 with our proposed framework
Auto-Evolve, it improves most on complex tasks such as Navigate, Multistep Arithmetic, Shuffled Object
and etc.

H Efficiency Comparison

In Fig. 14, it displays the number of inference calls per task instance. Below, we give an example of total
number of calls by task level (aggregate level). Example: For one task which includes 250 questions,
below are the number of inference calls to the LLMs for different prompting strategies compared to
Auto-Evolve. Direct Prompting: 250 calls / per task.

Chain-of-Thought: 250 calls / per task.

13256

Figure 13: Task level BBH performance on Claude 2.0 for Auto-Evolve over Direct Prompt, CoT and Self-Discover.

Figure 14: Number of inference calls vs average accuracy comparison on GPT-4 per task instance on Movie
Recommendation task and Geometric Shapes task. We obtain the other data (Plan-and-Solve, etc) from (Zhou et al.,
2024). Auto-Evolve framework requires lowest number of inference calls per instance while maintain the highest or
on-par performances on accuracy for Movie Recommendation and Geometric Shapes tasks

Self-Discover: 3 calls (First Part meta prompt) + 1*250 instances = 253 calls / per task.
Cot+Self-Consistency: Sample 10 times, 10*250 instances = 2500 calls / per task.
majority voting of each Reward Model: Require golden labels, 40*250 instances = 10K calls / per

task.
Auto-Evolve: 6∼7 calls (Include iterative Refinement) + 1*250 instances ≈ 256 calls / per task.

13257

