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Abstract
We propose a new method, instruction back-
and-forth translation, to construct high-quality
synthetic data grounded in world knowledge
for aligning large language models (LLMs).
Given documents from a web corpus, we gener-
ate and curate synthetic instructions using the
backtranslation approach proposed by Li et al.
(2023a), and rewrite the responses to improve
their quality further based on the initial doc-
uments. Fine-tuning with the resulting (back-
translated instruction, rewritten response) pairs
yields higher win rates on AlpacaEval than us-
ing other common instruction datasets such
as Humpback, ShareGPT, Evol-Instruct, Open
Orca, Alpaca-GPT4 and Self-instruct. We also
demonstrate that rewriting the responses with
an LLM outperforms direct distillation, and the
two generated text distributions exhibit signif-
icant distinction in embedding space. Further
analysis shows that our backtranslated instruc-
tions are of higher quality than other sources
of synthetic instructions, while our responses
are more diverse and complex than those ob-
tained from distillation. Overall we find that
instruction back-and-forth translation combines
the best of both worlds—making use of the in-
formation diversity and quantity found on the
web, while ensuring the quality of the responses
which is necessary for effective alignment.

1 Introduction
In recent years, it is increasingly common for large
language models (LLMs) to be deployed through
a chat interface to interact with users’ queries.
This capability is achieved by taking models that
have been pre-trained on massive amounts of web-
crawled text and fine-tuning them on a relatively
smaller set of instruction-response pairs or prefer-
ences (Ouyang et al., 2022). Popular instruction-
tuning corpora are often constructed by (i) human
annotation and curation (Köpf et al., 2024; Conover
et al., 2023; Zhou et al., 2024), (ii) converting ex-
isting texts, e.g. from other NLP tasks (Longpre

et al., 2023) or web crawls (Li et al., 2023a; Köksal
et al., 2023) to instruction-response pairs, and (iii)
distilling knowledge from a model (Chiang et al.,
2023; Mukherjee et al., 2023).

There are benefits and disadvantages to each of
these approaches. While (i) can offer strong base-
lines (Zhou et al., 2024; Köpf et al., 2024), the
reliance on human annotations makes scaling up
these datasets difficult. The success of (i) and (ii)
is also more dependent on having an effective filter-
ing mechanism to remove noisy data from humans
and the web. On the other hand, (iii) is more cost-
effective and scalable; many current state-of-the-art
instruction datasets employ distillation. However,
distillation alone has also been claimed to be a
“false promise”—Gudibande et al. (2023) shows
that specific capability improvements depend on
the coverage of the distilled data and that the per-
formance gains from distilling can plateau quickly.
These findings suggest that less noisy and more di-
verse data is crucial for instruction-tuning to close
the gap between open and closed LLMs.

Given the knowledge breadth that can be found
on the internet, generating instruction-response
data with backtranslation has been shown to be
a promising alternative to distillation (Li et al.,
2023a). In particular, the authors parse the
ClueWeb corpus (Overwijk et al., 2022) for self-
contained text segments, train a model specifically
for instruction generation on Open Assistant data
(Köpf et al., 2024), and generate instructions to go
with the text segments. However, this approach re-
lies on high-quality text data provided by ClueWeb,
a paid-access corpus containing only the most pop-
ular web pages from search results, as well as a list
of manually specified rules for parsing raw HTML
files into structured responses (which are then used
directly for fine-tuning).

In this work, we also adopt the instruction back-
translation technique but make it more accessible
and scalable. We make direct use of preprocessed
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Figure 1: Overview of our proposed pipeline: instruction back-and-forth translation. (1) We first fine-tune
a base model, e.g. Llama-2, on some seed examples from Open Assistant, for the task of instruction generation.
We then extract initial candidate responses from a web corpus, e.g. Dolma, and use the fine-tuned model to obtain
synthetic instructions that would go with the corresponding responses; (2) We separately obtain an instruction-
following model by fine-tuning the same base model on the seed examples, and use it to score the quality of the
(synthetic instruction, web-scraped response) pairs; (3) With the highest scoring pairs, we ask an existing aligned
model (e.g. Llama-2-chat) to improve the responses further, conditioned on the generated instructions and the initial
web texts. Steps (1) and (2) follow Li et al. (2023a) with some modifications (i.e. using preprocessed documents
from Dolma instead of parsing raw HTMLs from ClueWeb). We provide a specific data example in the bottom row.

documents from a large-scale open-source corpus
like Dolma (Soldaini et al., 2024) and generate in-
structions via backtranslation accordingly. We find
that the quality of our instructions are comparable
to those backtranslated from ClueWeb. To make up
for the lack of manually designed rules for struc-
turing the response, we experiment with using an
LLM to rewrite the response based on the gener-
ated instruction and the initial web text. This also
allows us to avoid directly distilling and overfit-
ting to an LLM’s knowledge. An overview of our
pipeline, which we call back-and-forth translation,
can be found in Figure 1.

Given the same data quantity, fine-tuning Llama-
2-70B on the instruction-response pairs from our
data generation pipeline improves the AlpacaEval
win rate by 3.6% compared to using the backtrans-
lation data from previous work (Li et al., 2023a),
and by at least 3.2% compared to using other ex-
isting distillation datasets such as OpenOrca (Lian
et al., 2023), ShareGPT (Chiang et al., 2023), Evol-
Instruct (Xu et al., 2023), Alpaca-GPT4 (Peng et al.,
2023) and Self-instruct (Wang et al., 2022a) (Sec-
tion 4). By asking a model to rewrite responses
based on initial texts extracted from Dolma, we ob-
tain a distribution of responses that interpolates be-
tween the original web text distribution and the dis-
tribution of outputs distilled from the same model.

Fine-tuning on the rewritten responses in turn out-
performs fine-tuning on the distilled responses cor-
responding to the same instructions (Section 5.1).
In addition, we offer some insights into how in-
struction backtranslation and response rewriting
affect the quality of instructions and responses
respectively, especially in comparison with exist-
ing data generation methods (Sections 5.2 and
5.3). Overall our results suggest that back-and-
forth translation offers an effective way to generate
instruction-tuning data enriched with diverse infor-
mation found on the web, while ensuring the qual-
ity of the response annotations by having aligned
LLMs in the loop.

2 Method

Figure 1 shows an overview of our pipeline. Here
we describe each step in more detail.

2.1 Background: instruction backtranslation

Our work is inspired by the backtranslation method
from Li et al. (2023a). In this previous work, the
authors fine-tune a base language model on some
seed instruction-response pairs (xs, ys) (e.g. from
Open Assistant (Köpf et al., 2024)) to obtain a
backward model Myx := p(x|y) that learns to gen-
erate instructions. The authors then extract can-
didate responses yi from .warc files of a web cor-
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pus, ClueWeb, using carefully constructed HTML-
parsing rules, and augment the responses with cor-
responding instructions output by the backward
model. This yields a set of candidate (x̂i, yi) pairs.

The authors also separately fine-tune the same
base language model on the same seed data (xs, ys)
to obtain a forward model Mxy := p(y|x) that can
follow instructions. This model is then prompted
to score candidate (x̂i, yi) pairs on a 5-point scale.
The final instruction-tuning dataset consists of only
score-5 examples. The paper provides ablations
to show that this curation step is critical to achiev-
ing performance gains, especially with increasing
instruction data quantity.

The two steps derived from Li et al. (2023a)
are denoted as (1) Backtranslation and (2)
Filtering in Figure 1.

2.2 The rewriting process
A major limitation of previous work (Li et al.,
2023a) is the limited availability of high-quality
candidate responses. The authors rely on Clueweb
(Overwijk et al., 2022) as the source for unlabelled
responses {yi}, using only highly linked websites
visited by a search engine (e.g. Wikipedia, popular
news sites) as this offers quality control over the ex-
tracted texts {yi}. However, (i) ClueWeb requires
paid access, (ii) the text segments were extracted
from raw HTML format, which requires specific
preprocessing and may still result in segments that
are sub-optimal as responses.

Our work removes the data access restrictions
and preprocessing steps by using cleaned docu-
ments from an open-source corpus, Dolma (Sol-
daini et al., 2024), for the initial web-scraped
responses. Since these documents come pre-
extracted (with all HTML structures removed) and
were written for various purposes, they may con-
tain redundant information and the content presen-
tation could also be improved (e.g. by being split
into paragraphs). Consequently, we use an LLM
to improve these documents to better resemble re-
sponses from AI Assistants; this step is denoted
as (3) Rewriting in Figure 1. Conditioned on
initial text yi from Dolma and the corresponding
backtranslated instruction x̂i, we prompt an aligned
LLM, Llama-2-70B-chat, to rewrite the response
to improve its quality (y′i). The full prompt can be
found in Appendix A.2.

By default, we apply rewriting to (x̂i, yi) pairs
that have passed the filtering stage. However, we
also experiment with skipping the filtering step, i.e.

rewrite responses for any pair even if the forward
model finds some web responses and correspond-
ing generated instructions not properly aligned.
Overall we find that step (3) Rewriting is more
effective compared to (2) Filtering, though us-
ing both offers complementary performance bene-
fits. We will elaborate on this in Section 4.

3 Experiment setup

3.1 Training details

Data. To source the initial web-crawled re-
sponses, we use the Common Crawl subset of
Dolma v1 (Soldaini et al., 2024). This subset has
been preprocessed with quality and content filters,
in addition to undergoing deduplication. We ad-
ditionally filter out documents whose lengths are
close to exceeding the context length of Llama-2;
this removes about 25% of the Common Crawl sub-
set. Besides, we only use data from the head split
(which consists of documents with the best perplex-
ity scores), as preliminary experiments show that
this split offers better candidate responses than the
middle split (see Table 5 in Appendix).

For the seed data used to train the forward and
backward models, we follow previous work (Li
et al., 2023a) and use 3200 examples from the Open
Assistant dataset (Köpf et al., 2024), chosen from
the first turn of each conversation tree. Note that
the seed data only consists of English language
responses that are considered high-quality, based
on their human annotated rank (rank 0).

Model. We fine-tune a Llama-2-70B base model
(Touvron et al., 2023) on the seed data to obtain
the forward and backward models used in steps (1)
and (2) of our pipeline. The rewriting step employs
Llama-2-70B-chat by default. We also experiment
with using a smaller model (Llama-2-7B-chat) as
well as the forward model from step (2) for rewrit-
ing, but we observe that the output quality is worse
(Appendix D). For performance evaluation, we fine-
tune both the 7B and 70B scales of the Llama-2
base model on the resulting instruction-response
pairs in a supervised manner. Specific hyperparam-
eters can be found in Appendix A.

Evaluation. Given a fine-tuned Llama-2 model,
we prompt it to respond to 805 questions from the
AlpacaEval benchmark (Li et al., 2023b) and report
the model’s win rate over text-davinci-003 as eval-
uated by GPT-4 model. We also adopt the length-
controlled win rate evaluation from AlpacaEval 2.0
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(Dubois et al., 2024), see Appendix E for more
details. Performance on other NLP tasks can be
found in Appendix F.

3.2 Baselines

The other fine-tuning data sources we compare to
include:

• Open Orca (Lian et al., 2023; Mukherjee et al.,
2023): contains GPT-4-distilled outputs to FLAN
tasks (Longpre et al., 2023), which are con-
verted from existing NLP datasets using man-
ually crafted templates. The tasks have been aug-
mented with prompting to elicit some form of
reasoning during distillation.

• ShareGPT (Chiang et al., 2023): the data comes
from ShareGPT.com, where users shared their
own conversation logs with ChatGPT. We only
take the first instruction and first response from
each conversation for fine-tuning.

• ClueWeb + filtering (Li et al., 2023a): responses
are parsed from HTML files in the ClueWeb cor-
pus (Overwijk et al., 2022) and do not undergo
rewriting. Instructions are generated with the
backtranslation approach. After preprocessing
and two rounds of curation, previous work pro-
duces 41.8K instruction-response pairs in total.

• Self-instruct (Wang et al., 2022a): the instruc-
tions, inputs and outputs are generated by GPT-3,
bootstrapped from a small set of seed tasks.

• Alpaca-GPT4 (Peng et al., 2023): contains GPT-
4-distilled responses to instructions from Alpaca
dataset (Taori et al., 2023). Alpaca’s instruction
generation seeks to improve over the Self-instruct
framework by using different prompts and a more
advanced model (text-davinci-003).

• Evol-Instruct (Xu et al., 2023): starting from
the Alpaca instruction set, this work uses a set of
evolution prompts to rewrite the instructions to
improve their complexity. This evolution process
is repeated multiple times, using an eliminator
in between to filter out the failed instructions.
Responses are then distilled from ChatGPT.

We note that except for the first two, the rest of the
baselines employ synthetic instructions. Besides,
the majority of these datasets (other than ClueWeb)
distill responses from different existing LLMs. We
use these GPT-distilled datasets for research-only,
non-commercial purposes (i.e. to serve as competi-
tive baselines to compare our method against).

4 Fine-tuning results

We validate the effectiveness of our data generation
method, by examining the AlpacaEval performance
of Llama-2 models fine-tuned on our data versus on
other datasets, given the same instruction quantity.

4.1 7B scale
We fix the number of samples to be 12.8K and com-
pare fine-tuning Llama-2-7B base model on our
backtranslation and rewritten data to fine-tuning on
other common baselines described in Section 3.2.
Results are shown in Table 1. Below we describe
our different data variations in more detail:
• Dolma + filtering: Data obtained from steps (1)

and (2) of our pipeline (Figure 1). We gather
initial responses from the Dolma corpus, generate
corresponding instructions with backtranslation,
and filter out instruction-response pairs that do
not get a score 5 from our forward model (i.e.
not well-aligned). Responses do not undergo
rewriting for this baseline.

• Dolma + rewriting: Data obtained from steps (1)
and (3) of our pipeline (Figure 1). We source
candidate responses from Dolma, generate in-
structions with backtranslation and rewrite the
responses with Llama-2-70B-chat. No intermedi-
ate filtering is done in this case.

• Dolma + filtering + rewriting: Data obtained
from going through all the steps of our pipeline
(Figure 1) as described in Section 2.

We find that at this scale, our filtered backtrans-
lation data (Dolma + filtering) outperforms simi-
larly constructed data from previous work (Li et al.,
2023a) (ClueWeb + filtering). Our best dataset that
undergoes both filtering and rewriting yields better
win rate than all other baselines. It is worth noting
that fine-tuning on rewritten responses from unfil-
tered instruction-response pairs (Dolma + rewrit-
ing) outperforms fine-tuning on initial web-scraped
responses that have passed the filtering stage but
have not been rewritten (Dolma + filtering). This
signals that the rewriting step is more effective than
filtering at improving the quality of instruction-
tuning data.

4.2 70B scale
We also experiment with fine-tuning the Llama-2-
70B base model on different variants of the back-
translation data described in the previous section.
While the instruction-tuning data generated by pre-
vious work (Li et al., 2023a) is limited by the

13292



Data source Data size Win rate (%)
Dolma + filtering 12.8K 71.70
Dolma + rewriting 12.8K 73.44
Dolma + filtering + rewriting 12.8K 74.38
ClueWeb + filtering 12.8K 70.77
Open Orca 12.8K 74.20
ShareGPT 12.8K 72.69
Evol-Instruct 12.8K 72.32
Alpaca-GPT4 12.8K 71.17
Self-instruct 12.8K 65.11

Table 1: Performance of fine-tuning Llama-2-7B.
Given the same data quantity (12.8K), fine-tuning on
the instruction-response pairs obtained from instruction
back-and-forth translation outperforms fine-tuning on
the backtranslated ClueWeb data from previous work
(Li et al., 2023a), as well as other common instruction
datasets. We also find that the rewriting step is more
effective than the filtering step at improving the data
quality, and subsequently, the model win rate.

amount of high-quality text from the initial web cor-
pus (i.e. ClueWeb), our approach overcomes this
limitation with response rewriting. We generate
51.2K instruction-response pairs with our pipeline.
In Table 2, we find that by simply doing back-
translation on Dolma texts and filtering like previ-
ous work (Dolma + filtering), the resulting model
slightly lags behind the Humpback model from
(Li et al., 2023a) (ClueWeb + filtering) in terms
of win rate. However, after rewriting responses in
the filtered subset (Dolma + filtering + rewriting),
we manage to outperform previous work by 3.6%.
Similar to the 7B scale, we also observe at the
70B scale that fine-tuning on rewritten responses
from unfiltered instruction-response pairs (Dolma
+ rewriting) is more effective than fine-tuning on
web-scraped responses that have passed the filter
but have not been rewritten (Dolma + filtering).

5 Understanding rewritten data quality

Given the performance benefits of rewritten data,
we analyze how the outputs obtained from rewrit-
ing are different from those obtained from dis-
tillation. We also analyze the characteristics of
the instruction-response pairs resulting from our
pipeline compared to other existing datasets.

5.1 Rewriting versus Distilling
As rewriting involves asking Llama-2-70B-chat to
improve the response quality, conditioned on an
initial web-crawled response and a backtranslated
instruction, a fundamental question arises: does the
rewriting process leverage information in the raw
text or does it simply distill knowledge stored in
Llama-2-70B-chat?

Data source Data size Win rate (%)
Dolma + filtering 51.2K 87.42
Dolma + rewriting 51.2K 90.52
Dolma + filtering + rewriting 51.2K 91.74
ClueWeb + filtering 41.8K 88.18
Open Orca 51.2K 87.31
ShareGPT 51.2K 88.56
Evol-Instruct 51.2K 86.05
Alpaca-GPT4 51.2K 86.18
Self-instruct 51.2K 78.48
Dolma + filtering + rewriting 25.6K 90.22
Dolma + filtering + distilling 25.6K 87.58

Table 2: Performance of fine-tuning Llama-2-70B.
While backtranslation data from previous work (Li et al.,
2023a) is limited by the number of high-quality web
pages in Clueweb, our approach relies on Dolma texts
and thus has access to many more candidate responses.
Similar to the 7B scale results, (i) rewriting is more
effective at improving data quality than filtering, (ii)
filtering backtranslated instructions and then rewriting
the responses does the best and outperforms previous
work. We also observe that using an aligned LLM for
response rewriting yields better data, and subsequently,
win rate, than using the same model for distillation.

Given the same set of backtranslated instructions,
we use MAUVE score (Pillutla et al., 2021) to
quantify the distributional differences among three
sets of responses: initial web-scraped responses
(from Dolma), rewritten responses, and responses
distilled from Llama-2-70B-chat. MAUVE was
originally designed to measure the gap between
machine- and human-generated texts. This metric
computes the area under the curve of divergence
frontiers in a quantized space, after embedding
text samples with a language model (by default,
GPT-2). MAUVE score ranges between 0 and 1;
the higher it is, the more similar the text distribu-
tions are. In the first row of Table 3, we sample
two disjoint sets of 10K distilled responses and
find that they exhibit high MAUVE score (0.960)
as expected, since they are from the same distri-
bution. Comparing 10K initial responses sourced
from Dolma to 10K responses distilled from Llama-
2-70B-chat, we observe that these two sets of texts
differ significantly, even though they are suppos-
edly responses to the same (backtranslated) queries
(MAUVE score = 0.0338). Rewritten responses
exhibit some similarity with distilled outputs but
there still exists a significant gap between them
(MAUVE score = 0.340). This suggests that the
rewriting process is sufficiently distinct from dis-
tillation. We provide some examples of rewritten
and distilled responses in Appendix C. We also
compare empirical performance of fine-tuning on
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Text distributions MAUVE score
Distilled responses vs.
Distilled responses

0.960 ± 0.002

Distilled responses vs.
Rewritten responses

0.340 ± 0.009

Distilled responses vs.
Initial web responses

0.0338 ± 0.0007

Table 3: Rewritten responses interpolate between
the initial web-scraped responses and the distillation
outputs from the aligned LLM used for rewriting.
We use MAUVE score (Pillutla et al., 2021) to measure
the distances among the three text distributions: initial
responses sourced from Dolma, the rewritten responses
and the distilled outputs of Llama-2-70B-chat, all in
response to the same instruction set. We find that the
rewritten responses appear more similar to the distilled
outputs compared to the web texts, though there still ex-
ists a substantial gap between the first two distributions.

rewritten data versus distilled data. For the latter,
we feed 25.6K instructions randomly sampled from
our filtered backtranslated dataset to Llama-2-70B-
chat and let the model answer directly. For the
former, we use the same set of 25.6K instructions
and prompt Llama-2-70B-chat to rewrite the cor-
responding web-scraped responses. Fine-tuning
a Llama-2-70B model on the distilled responses
yields lower win rate compared to fine-tuning on
the rewritten texts (bottom two rows of Table 2).
This demonstrates that the rewriting process im-
proves the quality of response data in general, be-
yond just extracting what an LLM already knows,
possibly because rewriting incorporates the infor-
mation diversity found in web-scraped texts.

5.2 Instruction quality analysis

Measuring instruction quality empirically.
We attempt to isolate the quality of instructions
from different datasets by unifying the response
distribution to be outputs distilled from the same
model. More specifically, we randomly sample
12.8K instructions from our backtranslation data
(with and without filtering) as well as from each of
the baseline datasets described in Section 3.2. We
discard all existing answers, and feed each set of
12.8K queries to Llama-2-70B-chat to obtain dis-
tilled responses. We then fine-tune a Llama-2-7B
model on each set of (instruction, new response)
pairs and evaluate the AlpacaEval win rate of the
resulting model. In Figure 2, we find that (i) fil-
tered backtranslation instructions (i.e. from Dolma
or ClueWeb) outperform other synthetic instruction
generation methods (i.e. Alpaca (Taori et al., 2023)
and Self-instruct (Wang et al., 2022a)), (ii) how-

Figure 2: Quality of instruction prompts from vari-
ous datasets, measured by their ability to distill use-
ful information from a fixed model. We randomly
sample 12.8K instructions from each dataset in our ex-
periments and input them to Llama-2-70B-chat to distill
its knowledge. The quality of the instructions is then
measured by the performance of a model (Llama-2-7B)
fine-tuned on the (instruction, distilled response) pairs.
We find that backtranslated instructions surpass other
synthetic instruction generation methods (e.g. Alpaca),
while still underperforming human-written queries (e.g.
ShareGPT). This gap is partly, but not entirely, due to
ShareGPT having longer instructions.

ever, synthetic instructions still lag behind human-
written ones, obtained via user interactions with
a chat interface (ChatGPT), (iii) instructions con-
structed from transforming existing NLP datasets
(i.e. Open Orca (Lian et al., 2023; Mukherjee et al.,
2023)) do not yield high distillation performance,
possibly due to limited and repetitive task types.

Diversity. As a proxy for diversity, we mea-
sure the number of unique trigrams across dif-
ferent instruction sets, given the same data quan-
tity. In Figure 3 (left), we observe that while
our instruction set (backtranslated from Dolma) is
more diverse than other synthetic instruction sets—
including ClueWeb, Alpaca and Self-instruct, there
is still a significant gap in diversity between model-
generated instructions and manually-crafted ones
(e.g., Open Orca and ShareGPT).

It is worth noting that the human-written instruc-
tions (e.g. during their interactions with ChatGPT)
tend to be substantially longer than synthetic ones,
see Table 6 in the appendix. We thus conduct an
ablation study to study how much the length fac-
tor contributes to the quality of instructions. We
filter out instructions in ShareGPT that exceed the
maximum length of our backtranslated instructions
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Figure 3: Diversity of instructions and responses from our backtranslation data and other common instruction
datasets, as measured by the number of unique trigrams. We find that (i) while instructions generated in this
work are more diverse than synthetic instructions from existing baselines including ClueWeb and Alpaca-GPT4, our
instruction diversity still lags behind that of manually-crafted prompts, (ii) in terms of responses, using web-crawled
texts sourced from Dolma yields the most diverse responses; rewriting reduces the response diversity slightly, but
still offers much more text diversity than distillation.

(i.e. 514 tokens) and among the remaining dat-
apoints, randomly sample 12.8K instructions to
repeat the distillation experiment described ear-
lier (Figure 2). This yields a shorter version of
ShareGPT ("ShareGPT (short)") in which the in-
structions have about the same average length as
our backtranslated instructions (i.e. 69 tokens). We
observe that when fixing the output distribution
to be distilled responses from Llama-2-70B-chat,
fine-tuning on "ShareGPT (short)" is less effective
than using the original ShareGPT instructions, but
still outperforms backtranslated instructions (Fig-
ure 2). This suggests that independent of length,
human-written instructions are still of higher qual-
ity overall compared to synthetic instructions.

Complexity. Following the InsTag Complexity
metric employed by Liu et al. (2023), we use
the InsTag public tagger (Lu et al., 2023), which
is a Llama-2-7B model fine-tuned on ChatGPT-
generated tags, to automatically tag our text data
with all detectable semantics and intentions. We
use the average number of unique tags uncovered in
instructions, and separately, responses, from each
dataset as a proxy for complexity. In Table 4, we
observe that our Dolma-backtranslated instructions
offers higher InsTag complexity than most instruc-
tion sets from previous work, including ClueWeb-
backtranslated data (Li et al., 2023a) and Open
Orca (Lian et al., 2023). Human-written instruc-

Data source Instruction Response
Dolma + filtering 5.6 8.3
Dolma + rewriting 4.8 6.8
Dolma + filtering + rewriting 5.1 6.6
ClueWeb 3.7 6.6
Open Orca 3.5 4.9
Alpaca-GPT4 3.6 4.4
Self-instruct 3.1 5.1
ShareGPT 6.2 5.2

Table 4: Average number of semantic and inten-
tion tags uncovered in different instruction-tuning
datasets by the InsTag model (Lu et al., 2023). While
our backtranslated instructions yield fewer tags than
human-written ones (i.e. ShareGPT), they exhibit
higher complexity than synthetic instructions from other
datasets. Besides, we find that responses sourced from
or are based on web texts generally have higher InsTag
complexity than those obtained via distillation.

tions, i.e. from user interactions with ChatGPT,
still yield the highest number of tags on average.

5.3 Response quality analysis

Diversity. We apply the same diversity analysis
as in Section 5.2 to response data. In Figure 3
(right), we observe that the initial web responses
sourced from Dolma are substantially more di-
verse than outputs distilled from existing models
(e.g. ChatGPT, GPT-4, GPT-3), as well as web
texts from ClueWeb. The rewriting process re-
duces information diversity of these web-scraped
responses slightly, but still leads to much more
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diverse responses than distillation. Overall this
analysis demonstrates the importance of including
web sources in the data construction process, in
order to encourage more diverse instructions and
responses, compared to just distilling knowledge
from existing LLMs.

Complexity. Applying the same analysis as in
Section 5.2, using the average number of semantic
and intention tags uncovered by InsTag tagger (Lu
et al., 2023) as a proxy for complexity, we compare
the responses from our pipeline (with and without
rewriting) to responses from other baseline datasets.
In Table 4, we find that the initial web-scraped re-
sponses from Dolma yield the highest complexity.
Rewriting generally reduces the InsTag complexity
of the response. However, our rewritten responses
are still substantially more complex than most ex-
isting response data, which is commonly distilled
from high-performing LLMs.

We also provide an analysis of instruction and
response lengths as another quality metric. Refer
to Appendix B for more details.

6 Related Work

We discuss related papers that construct new
instruction-tuning datasets or propose methods to
improve existing ones. More in-depth review can
be found in Zhang et al. (2023).

Human-crafted data. Open Assistant (Köpf
et al., 2024), Dolly (Conover et al., 2023) and
Super-NI (Wang et al., 2022b) are some examples
of datasets that contain solely human-generated and
human-annotated conversations, covering a range
of topics and NLP tasks. These datasets tend to be
relatively small in scale due to the expensive costs
of manual annotation and verification.

Other papers do not explicitly ask humans to
create questions and answer them, but instead re-
purpose existing datasets. For example, FLAN
(Longpre et al., 2023) and Natural instructions
(Mishra et al., 2021) transform inputs and outputs
of more than 60 NLP tasks into instruction-tuning
data. This suffers from the same scalability issue
as human-annotated datasets.

Synthetic instruction generation. In contrast to
sourcing manually written instructions, which may
be expensive to scale, some papers propose ways to
automatically generate large quantities of instruc-
tions (Wang et al., 2022a; Taori et al., 2023). In

particular, our work is inspired by the backtransla-
tion technique proposed in Li et al. (2023a), which
fine-tunes an LLM specifically for the task of in-
struction generation, and then applies the model to
augment text segments extracted from the web with
corresponding instructions. The paper suggests
that this approach allows the resulting instruction-
tuning data to be more diverse especially in the
long tail. Another prior work, LongForm (Kök-
sal et al., 2023), introduces a similar approach for
generating instructions.

Most related to our approach is the work by Chen
et al. (2023b), who train an LLM to generate both
instructions and responses from web-scraped docu-
ments. In contrast to their method, we (i) generate
instructions separately with backtranslation and
then ask an LLM to improve the existing responses,
(ii) obtain better performance with much fewer data
(Table 5) (iii) generate more data (51.2K compared
to 12.4K), (iv) offer more insights into the quality
of our instructions and responses in comparison
to other existing datasets. In addition, concurrent
work by Zheng et al. (2024) also proposes more de-
tailed scoring and refinement prompts to improve
the instruction curation and response formatting of
the backtranslation pipeline from Li et al. (2023a),
applying it to Chinese text data.

Distillation. Perhaps the most common approach
in instruction-tuning data generation, distillation
seeks to mimic the capabilities of powerful LLMs
(e.g. GPT-4) by feeding queries to these models and
using the outputs to fine-tune subsequent LLMs.
Datasets that are built this way include ShareGPT
(Chiang et al., 2023), OpenInstruct (Wang et al.,
2023), Alpaca-GPT4 (Peng et al., 2023) and Ultra-
Feedback (Tunstall et al., 2023).

Improving instruction-tuning data quality.
Some prior work studies characteristics of high-
quality instruction-tuning data (Liu et al., 2023) and
proposes curation techniques accordingly. LIMA
(Zhou et al., 2024) carefully collects 1K fine-tuning
samples via both internet sourcing and human an-
notation, and shows that strong performance can
be achieved despite the small data quantity. Sim-
ilarly, Chen et al. (2023a) demonstrates that per-
formance gain is possible by fine-tuning on only
a small subset of the original dataset (Alpaca), us-
ing ChatGPT as the quality evaluator. Zhao et al.
(2024) finds that selecting only the 1K longest re-
sponses from existing datasets offers a very strong
baseline, independent of GPT-4’s preference for
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longer texts. Evol-Instruct (Xu et al., 2023) and
Orca (Mukherjee et al., 2023) manually prompt
models to enhance the complexity of instructions,
and subsequently, data generation (e.g. by asking
for justification). Fan et al. (2024) reformats the
responses of existing instruction data to augment
them with relevant information and align them with
pre-determined criteria set by humans.

7 Discussion

We propose instruction back-and-forth translation:
combining instruction backtranslation method from
Li et al. (2023a) with response rewriting, in order to
benefit from both the information diversity found
on the internet and the quality of model annotations,
while enabling scalability owing to the size of the
web corpus where we source initial responses from.

Future work. Our findings motivate a number
of interesting future directions. One concrete ques-
tion is whether applying other existing curation
techniques—e.g. quality filters proposed by Liu
et al. (2023)—to our pool of (synthetic instructions,
rewritten response) pairs would lead to further per-
formance gains. In addition, we also look forward
to scaling up our data generation pipeline and study-
ing the implication of the rewritten data on the
pre-training process, given concurrent work (Maini
et al., 2024) that explores paraphrasing pre-training
data into the question-answering format.

Limitations. Although we try to control for con-
founding factors (e.g. data quantity), our findings
are only obtained from using one model family,
i.e. Llama-2 (Touvron et al., 2023). Besides, our
pipeline revolves around general-purpose English
instructions, with limited coding or science-related
tasks. Nevertheless, it is possible to extend our
method to more domain-specific data, e.g. by
crawling texts from StackOverflow, generating in-
structions and rewriting the responses with Code
Llama (Roziere et al., 2023).

Ethical considerations & Potential risks. It is
possible that sourcing response data from the web
could affect the factuality of the fine-tuned model
and/ or make it more prone to hallucination. The
same risks apply to the response rewriting process.
Future work could include additional steps to verify
the quality of the information in the responses, and
check whether it overlaps with what the model al-
ready knows, before using the data for fine-tuning.
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A More training details

A.1 Web corpus ablation
We randomly sample text segments from differ-
ent Common-Crawl-derived corpora, generate the
corresponding instructions with backtranslation,
and filter the candidate pairs to obtain 3200 high-
quality samples for fine-tuning Llama-2-7B. In Ta-
ble 5, even though Dolma head split still slightly
lags behind ClueWeb when it comes to producing
high-quality responses for fine-tuning, it still out-
performs other web data sources such as C4 and
Dolma middle split.

Data source Data size Win rate (%)
C4 3.2K 66.83
Dolma (head) 3.2K 67.92
Dolma (middle) 3.2K 67.21
ClueWeb 3.2K 68.04

Table 5: Comparison of text quality from various
web-crawled data sources, when used as initial re-
sponses in our pipeline.

A.2 Data generation hyperparameters
By default, we use nucleus sampling (Holtzman
et al., 2019) for our data generation.

(1) Backtranslation We prompt the fine-tuned
backward model to generate instruction that
can go with a given web text response, with
T = 1.0, p = 0.9. The prompt follows from
previous work (Li et al., 2023a):

[INST] Below is a candidate answer
to a question or instruction from an
user. Write the most likely question to
which the text below would be a great
answer.

<response>

Answer in the style of an AI Assistant.
[/INST]

(2) Filtering We prompt the fine-tuned forward
model to score instruction-response pairs with
T = 1.0, p = 0.9. The prompt for scoring could
be found in Table 19 of previous work (Li et al.,
2023a).

(3) Rewriting Given <response>, which is
a cleaned text document from Dolma, and the
corresponding <instruction> generated by our

backward model, we ask Llama-2-70B-chat to
improve the response with T = 1.0, p = 0.9 and
the following prompt:

[INST] Given the draft response to
the provided question below, rewrite the
draft to improve it, so it is a high
quality response to the given question.

Draft Response: <response>

Question: <instruction>

Given the above question, rewrite
the draft response to be an improvement
over the draft response. It should be as
similar as possible, copying text where
possible, while making the flow more
clear, useful, relevant and providing
a direct answer to the question. It
should be written to be impeccably
tailored to the user’s question as if
written by an AI Assistant, without
extraneous information, reflecting
expert knowledge, and demonstrating a
high-quality, engaging, and insightful
answer. Try not to add new facts that
are not already in the draft response.
Return the rewritten response between
[RES] and [/RES]. [/INST]

A.3 Training hyperparameters
We fine-tune Llama-2 model (Touvron et al., 2023)
with 7B and 70B parameters. By default, we use
a cosine learning rate schedule with batch size 32,
weight decay 0.1 and dropout 0.1. For the 7B scale,
we use learning rate 1e-5. With any dataset size
smaller than or equal to 25.6K, we fine-tune for
{600, 900, 1200} steps and report the highest win
rate. For the 70B scale, we use learning rate 5.5e-6
and fine-tune on all 51.2K-size datasets for 1600
steps, and all 25.6K-size datasets for 1200 steps.

Following previous work (Li et al., 2023a), in
each of our fine-tuning experiments, we combine
both seed data (3.2K samples from Open Assis-
tant) and the dataset of interest, tagging the former
distribution with "Answer in the style of an
AI Assistant." and the latter one with "Answer
with knowledge from web search." to distin-
guish the two data sources.

Each 7B-scale fine-tuning run takes 4 hours with
8 A100 GPUs and 12.8K examples, while each
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70B-scale run takes 16 hours with 64 A100 GPUs
and 51.2K examples.

A.4 Evaluation hyperparameters

Similar to Li et al. (2023a), we use nucleus sam-
pling (Holtzman et al., 2019) with temperature
T = 0.7, p = 0.9 for generation. When evalu-
ating on the AlpacaEval set (Li et al., 2023b), we
append the questions with the prompt "Answer in
the style of an AI Assistant." or "Answer
in the style of an AI Assistant, with
knowledge from web search if needed.", in
accordance with the tags used during training, and
pick whichever prompt that leads to higher win rate
on average.

B Data statistics

Average length In Table 6, we report the average
length, measured in number of tokens, for instruc-
tions and responses from our datasets and other
baselines described in Section 3.2.

Data source Instruction
length

Response
length

Dolma + filtering 69 499
Dolma + rewriting 58 449
Dolma + filtering + rewriting 69 468
Dolma + filtering + distilling 69 567
ClueWeb 31 442
Open Orca 248 181
ShareGPT 264 318
Alpaca-GPT4 25 163
Self-instruct 38 37
Open Assistant 40 273

Table 6: Average token length of instructions and
responses from different instruction-tuning datasets.

When it comes to instructions, we find that those
generated by backtranslation tend to be longer
than those obtained from other synthetic instruc-
tion generation methods (i.e. Alpaca (Taori et al.,
2023) or Self-instruct (Wang et al., 2022a)). How-
ever, our backtranslation instructions are substan-
tially shorter than manually crafted instructions
(i.e. Open Orca (Mukherjee et al., 2023; Lian et al.,
2023) or ShareGPT (Chiang et al., 2023)). We hy-
pothesize that this property of our generated instruc-
tions is influenced by the length of instructions in
the seed dataset (i.e. Open Assistant) used to train
the backward model. Future work could explore
using datasets with longer instructions for training
the backward model, or enhance the complexity
of synthetic instructions further with specifically

crafted prompts, such as via the method proposed
in Evol-Instruct (Xu et al., 2023).

In terms of responses, those obtained from in-
struction back-and-forth translation are overall
longer than those found in other existing datasets.
We observe that rewriting reduces the response
length, possibly due to the removal of irrelevant
information in the initial web-crawled responses
(468 tokens versus 499 tokens on average). On the
other hand, given the same backtranslated instruc-
tions, distilling from an existing model yields sig-
nificantly longer responses than the initial Dolma
texts (567 tokens versus 468 tokens on average).

Score distribution In step (2) Filtering of
our pipeline, we ask the fine-tuned forward model
to score (backtranslated instruction, web response
from Dolma) pairs. We use a set of regex expres-
sions to extract the scores from the model’s re-
sponses. We find that the score is valid (i.e. being
in the range of 1 to 5) 88% of the time, with 5-score
examples making up 13.6% of the data pool.

C Examples of our instruction-tuning
data

Refer to Tables 7, 8 and 9.
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Backtranslated instruction write a press release for apple announcing the acquisition of shazam
Response (from Dolma) Cupertino, California — Apple today announced it has completed its acquisition of

Shazam, one of the world’s most popular and highly-rated music apps, used by hundreds
of millions of people worldwide.

Rewritten response Apple Acquires Shazam: A New Chapter in Music Recognition Technology

Cupertino, California — Apple is thrilled to announce the completion of its ac-
quisition of Shazam, the world-renowned music app used by hundreds of millions of
people globally. This strategic move marks a significant milestone in Appleś mission to
revolutionize the way people discover, enjoy, and interact with music.

With Shazam, users can effortlessly identify songs, artists, and albums in a mat-
ter of seconds, making it an indispensable tool for music lovers everywhere. By
integrating Shazamś innovative technology into our ecosystem, we can further enhance
the music experience for our customers, providing them with seamless access to the songs
and artists they love.

"We are delighted to welcome Shazam to the Apple family," said Tim Cook,
CEO of Apple. "This acquisition is a testament to our commitment to delivering the best
possible music experiences to our customers. We look forward to exploring the exciting
possibilities that this partnership presents, and we are eager to see where this new chapter
will take us."

Shazam has been a game-changer in the music industry since its inception, using
audio fingerprinting technology to quickly and accurately recognize songs. This
cutting-edge tech has made it possible for users to identify music playing in the
background, whether in a store, on the radio, or even in a movie. Shazam has also
expanded its offerings to include features like lyrics, recommendations, and playlists,
cementing its place as a leader in the music recognition space.

The union between Apple and Shazam is a natural one. Both companies share a
passion for delivering exceptional user experiences, and we are confident that this
collaboration will bring even more joy and convenience to music fans everywhere.

"We are incredibly excited to join forces with Apple, a company that shares our
dedication to delivering the best possible user experience," said Rich Riley, CEO of
Shazam. "We look forward to working together to create new and innovative ways for
people to enjoy and engage with music."

Apple and Shazam share a rich history, dating back to the early days of the App
Store. Shazam was one of the first apps to be featured on the App Store, and it quickly
became a fan favorite. Today, this partnership represents the next step in that journey, as
we continue to push the boundaries of what is possible with music recognition technology.

At Apple, we believe that music has the power to bring people together and en-
rich their lives. With the addition of Shazam to our family, we are one step closer to
making that vision a reality. So, let the music play, and let’s see where this journey takes
us next.
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Distilled response Sure! Here’s a possible press release for Apple announcing the acquisition of Shazam:

—

Apple Acquires Shazam, Bringing Music Recognition Technology In-House

Cupertino, California — December 17, 2022 — Apple today announced that it
has acquired Shazam, a leading music recognition platform that has been a popular
choice for music fans around the world. The acquisition brings Shazam’s innovative
audio fingerprinting technology and extensive music database into the Apple fold, further
enhancing the companyś capabilities in the music and audio space.

"Weŕe thrilled to welcome Shazam to the Apple family," said Tim Cook, CEO of
Apple. "Shazam’s technology and talented team will play a key role in our efforts to
continue delivering the best music experiences to our customers. We’re looking forward
to exploring the many ways that Shazam’s audio fingerprinting tech can be integrated
into our products and services, and we’re excited to see what the future holds for this
partnership."

Shazam’s proprietary audio fingerprinting technology allows users to identify
songs and artists playing around them simply by holding their device near the source
of the sound. The platform has become a go-to destination for music discovery and
identification, with over 1 billion downloads worldwide and counting.

"Weŕe proud of the Shazam team for building such a powerful and beloved plat-
form," said Oliver Schusser, Vice President of Apple Music. "We’re excited to integrate
Shazam’s technology into our own products and services, and we’re looking forward
to working with the Shazam team to take music recognition and discovery to the next level."

The acquisition follows Apple’s purchase of Beats Electronics in 2014, which
brought the popular Beats headphones and streaming service into the Apple family. Like
that deal, the Shazam acquisition underscores Apple’s commitment to delivering the best
possible music experiences to its customers.

Terms of the deal were not disclosed. Shazam will continue operating indepen-
dently, with the same leadership and team that have driven its success to date.

About Apple

Apple revolutionized personal technology with the introduction of the Macintosh
computer in 1984. Today, Apple leads the world in innovation with iPhone, iPad, Mac,
Apple Watch, and Apple TV. Apple’s four software platforms—iOS, macOS, watchOS,
and tvOS—provide seamless experiences across all Apple devices and empower people
with breakthrough services including the App Store, Apple Music, Apple Pay, and iCloud.
Apple’s 100,000 employees are dedicated to making the best products on earth, and to
leaving the world better than they found it.

About Shazam

Shazam is a popular music recognition platform that has been a go-to destination
for music fans around the world. With over 1 billion downloads worldwide, Shazam lets
users identify songs and artists playing around them simply by holding their device near
the source of the sound. Shazam’s proprietary audio fingerprinting technology has made it
a leader in music recognition and discovery, and its extensive music database has made it
a valuable resource for music fans everywhere.

Contacts:

Apple Media Relations: [media.relations@apple.com](mailto:media.relations@apple.com)
Shazam Press Office: [press@shazam.com](mailto:press@shazam.com)

—

Of course, this is just one possible version of a press release announcing Apple’s
acquisition of Shazam. The actual press release could be different, depending on the
specifics of the deal and the messaging that Apple and Shazam want to convey.

Table 7: Example of a score-5 (backtranslated instruction, web-scraped response) pair
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Backtranslated instruction Why doesn’t anybody ride the train in San Jose?
Response (from Dolma) Less than 1 percent of Santa Clara County residents ride VTA light rail, and taxpayers

subsidize 85 percent of the operating costs.
Light rail recently celebrated its 25th anniversary in Silicon Valley, but most people in the
area were probably too busy driving to celebrate. Mike Rosenberg of the Mercury News
reports that the system, run by the Valley Transportation Authority, is among the country’s
worst by just about every common metric of success.
To wit: Less than 1 percent of Santa Clara County residents ride VTA light rail; the
per-passenger round-trip operating cost is $11.74 and taxpayers subsidize 85 percent of
costs — third and second worst in the country, respectively. There are problems with
measuring costs per passenger mile on light rail, but ouch.
Light-rail agencies in Minneapolis, Houston, Newark, N.J., and Phoenix each run less
service than VTA yet carry more passengers than the South Bay’s network. Several cities
that are much smaller than San Jose — from St. Louis to Salt Lake City to Portland, Ore.
— also feature light-rail systems with more riders than VTA.
Sacramento — which also opened its light-rail network in 1987, operates with approx-
imately the same level of service and runs through a similarly sprawled-out region —
carries nearly 40 percent more passengers per day than VTA.
When I first encountered VTA light rail in San Jose (briefly) in 1990. I noted how slowly it
moved thru the downtown area, intermingling amongst pedestrian traffic. I thought it then
to be weird at best for a city to run light rail on a sidewalk where pedestrians normally are.
Fast forward to today (after returning to New Jersey then moving back to California), even
with system-wide expansion to Mountain View, South San Jose and East San Jose, and its
still the same, sad slowness I remember.
Silicon Valley must be getting used to bad transit news at this point. In November, Rosen-
berg reported that a VTA plan to extend a light rail line 1.6 miles to Los Gatos, home of
Netflix, will cost $175 million while drawing only about 200 new riders. Back in May, a
local news station found a culture of fare evasion on VTA that gives the system a rate of
7.2 percent — highest in the region.
In April, construction began on an extension of BART from the Bay Area to Santa Clara,
ending at the Berryessa station, where it will meet the VTA light rail system. Among that
project’s shortcomings are the fact that the stop falls short of downtown San Jose, and
that Berryessa seems poorly suited to transit-oriented development. An extension to San
Jose is still in the plans, though BART service to the city would duplicate the Caltrain
commuter rail that already goes there.
Not that anyone in Silicon Valley uses Caltrain anyway. In October, Stamen Designs
released a map of private bus lines that serve the campuses of Google, Apple, Facebook,
and the like for employees living in downtown San Francisco. These buses are seen as a
better option than Caltrain, which runs infrequently and requires a number of transfers
from the city to reach Silicon Valley...

Rewritten response San Jose’s VTA light rail system has struggled with low ridership, high costs, and poor
performance, raising the question of why nobody rides the train in San Jose. According to
Mike Rosenberg of the Mercury News, the system has some of the worst metrics in the
country, with fewer than 1% of Santa Clara County residents using the train and taxpayers
subsidizing 85% of the operating costs.

One reason for the low ridership may be the limited coverage area, as the system
primarily serves the downtown area and nearby neighborhoods. Additionally, the trains
move slowly through the downtown area, which may not appeal to commuters looking for
a quick and efficient ride.

Moreover, Silicon Valley’s tech industry leaders seem to prioritize corporate campuses
over accessible public transportation. Private bus lines for employees living in downtown
San Francisco are viewed as a better alternative to Caltrain, which runs infrequently and
requires multiple transfers to reach Silicon Valley.

Despite efforts to expand the VTA light rail system, including a planned extension to Los
Gatos that will cost $175 million and draw only 200 new riders, the system still falls short
of meeting the region’s transportation needs. The Berryessa station, where the VTA light
rail system will meet the BART, is not located in downtown San Jose, and the extension to
San Jose is still in the plans but will duplicate the Caltrain commuter rail that already exists.

In conclusion, the low ridership of the VTA light rail system in San Jose can be
attributed to a combination of factors, including limited coverage, slow travel times, and a
lack of investment in accessible public transportation by the tech industry. Addressing
these issues could potentially improve the system’s performance and encourage more
people to use the train.
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Distilled response There could be several reasons why people may not ride the train in San Jose, California.
Here are a few possible reasons:

1. Limited public transportation options: San Jose is a sprawling city with a car-
centric culture, and public transportation options may be limited, especially outside of
downtown areas. This can make it difficult for people to access the train or other forms of
public transportation, especially if they live in suburban or rural areas.
2. Lack of convenient routes: The train routes in San Jose may not be convenient for many
residents, especially if they live in areas that are not serviced by the train. This can make
it difficult for people to use the train for their daily commutes or other trips.
3. Limited frequency of service: The frequency of train service in San Jose may be
limited, with few trains running during off-peak hours or on weekends. This can make it
difficult for people to use the train for spontaneous trips or for traveling outside of peak
commute times.
4. Competition from other modes of transportation: San Jose is located in the heart of
Silicon Valley, and many people may prefer to use their own cars or ride-hailing services
like Uber or Lyft to get around. This can make it difficult for the train to compete for
passengers, especially in areas with heavy traffic or limited public transportation options.
5. Lack of awareness or promotion: The train service in San Jose may not be
well-promoted or well-known, especially among visitors or new residents. This can make
it difficult for people to learn about the train and its routes, schedules, and fares.
6. Affordability: The cost of taking the train in San Jose may be prohibitively expensive
for some people, especially for those who are used to cheaper transportation options like
driving or ride-hailing services. This can make it difficult for the train to attract a diverse
range of passengers.
7. Safety concerns: Some people may be hesitant to ride the train in San Jose due to safety
concerns, such as concerns about crime or safety on the trains or in the surrounding areas.
8. Lack of amenities: The train service in San Jose may not offer the same level of
amenities as other modes of transportation, such as comfortable seating, Wi-Fi, or food
and beverage options.

Table 8: Example of a score-3 (backtranslated instruction, web-scraped response) pair
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Backtranslated instruction When was the Chicago Symphony Orchestra’s first tour of Russia and Eastern Europe,
and were any recordings made during that tour?

Response (from Dolma) You are currently browsing the tag archive for the ’András Schiff’ tag.
Congratulations to Bernard Haitink—the Chicago Symphony Orchestra’s principal con-
ductor from 2006 until 2010 and a frequent guest conductor—the recipient of this year’s
Gramophone magazine award for lifetime achievement!
Congratulations, Maestro Haitink!
Haitink returns to Chicago in April 2016, leading the Orchestra in Mozart’s Piano Concerto
no. 22 with Till Fellner and Strauss’s An Alpine Symphony.
Sir Georg Solti led the Chicago Symphony Orchestra’s first trip to the Soviet Union and
Hungary in November 1990, also including a single stop in Vienna.
Two recordings were made during the tour, both for London Records. The performance of
Bruckner’s Eighth Symphony was recorded live in Leningrad on November 22 (London’s
first recording venture in the Soviet Union); Michael Haas was the producer, James Lock
and Colin Moorfoot were the engineers, and Sally Drew was the tape editor. Mahler’s
Fifth Symphony was recorded live in Vienna on November 30, Michael Haas was the
producer, Stan Goodall was the engineer, and Matthew Hutchinson was the tape editor.

Rewritten response The Chicago Symphony Orchestra’s first tour of Russia and Eastern Europe took place
in November 1990, led by Sir Georg Solti. During this tour, the orchestra made two
recordings for London Records. The first recording was of Bruckner’s Eighth Symphony,
which was recorded live in Leningrad on November 22, with Michael Haas as producer,
James Lock and Colin Moorfoot as engineers, and Sally Drew as tape editor. The second
recording was of Mahler’s Fifth Symphony, recorded live in Vienna on November 30,
with Michael Haas as producer, Stan Goodall as engineer, and Matthew Hutchinson as
tape editor.

Congratulations are in order for Bernard Haitink, who will be returning to Chicago in
April 2016 to lead the orchestra in Mozart’s Piano Concerto No. 22 with Till Fellner and
Strauss’s An Alpine Symphony. Haitink, who served as the principal conductor of the
Chicago Symphony Orchestra from 2006 to 2010, is this year’s recipient of Gramophone
magazine’s lifetime achievement award.

Distilled response The Chicago Symphony Orchestra’s first tour of Russia and Eastern Europe took place
in 1971. The orchestra, led by music director Georg Solti, performed in several cities,
including Moscow, Leningrad (now St. Petersburg), Warsaw, and Prague.

During the tour, the orchestra made several recordings, including a live record-
ing of Tchaikovsky’s Symphony No. 6, which was recorded at the Great Hall of the
Moscow Conservatory. This recording was later released on the RCA Red Seal label and
won a Grammy Award for Best Classical Performance - Orchestra.

Additionally, the orchestra recorded a live performance of Shostakovich’s Sym-
phony No. 5 in Leningrad, which was also released on RCA Red Seal.

These recordings were significant not only for their artistic quality but also for
their historical significance, as they represented one of the first times a Western orchestra
had toured the Soviet Union and Eastern Europe since the end of World War II. The tour
and recordings helped to establish the Chicago Symphony Orchestra as one of the leading
ensembles in the world and paved the way for future cultural exchanges between the
United States and Eastern Europe.

Table 9: Example of a score-1 (backtranslated instruction, web-scraped response) pair
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D Rewriting ablations

Besides Llama-2-70B-chat, we also experiment
with rewriting web-crawled responses with: (i) a
smaller scale model, Llama-2-7B-chat, (ii) a less
aligned model, Llama-2 base fine-tuned on Open
Assistant seed data (i.e. the forward model used in
our filtering step). Ablation results are shown in
Figure 4.

In our small-scale experiments fine-tuning a
Llama-2-7B model with 3.2K and 6.4K (instruc-
tion, rewritten response) pairs, we find that the Al-
pacaEval win rate is lower when using data rewrit-
ten by Llama-2-7B-chat and OA-finetuned Llama-
2. This suggests that effectively structuring and
enriching the initial raw text response may require
a sufficiently aligned model that also contains sig-
nificant knowledge itself.

Figure 4: Performance of fine-tuning on responses
rewritten by different models. We find that using a
smaller model (i.e. Llama-2-chat-7B) or a less aligned
model (i.e. Llama-2 fine-tuned on Open Assistant) for
rewriting yields lower response quality, as reflected in
the win rate of a Llama-2-7B model fine-tuned on the
resulting response data.

E AlpacaEval 2.0 results

AlpacaEval 2.0 (Dubois et al., 2024) upgrades the
baseline model from text-davinci-003 to GPT-4
Turbo, and uses GPT-4 Turbo as the evaluator by
default. The evaluation also debiases the raw win
rate via a fitted logistic regression model, in order
to control for the length of the outputs.

As noted by the Alpaca team, length-controlled
(LC) win rates alleviate length biases of GPT-4,
but may favor models fine-tuned on its outputs.
Our baselines of choice (described in Section 3.2)
mostly distill outputs from GPT4 (in the case of
Alpaca-GPT4 and Open Orca) and GPT-related

models (ChatGPT for ShareGPT and Evol-Instruct,
GPT-3 for Self-instruct).

We do not emphasize AlpacaEval 2.0 results
in the main text, given that the win rates against
GPT-4 Turbo obtained from our baselines are close
together within a limited range, leading to their
performance gaps being not sufficiently significant.

With the current results in Table 10, we find that
similar to the observations in Table 2: (i) rewriting
is more effective at improving data quality than
filtering (looking at the first two rows), and (ii) us-
ing an aligned LLM for response rewriting yields
better win rate than using the same model for dis-
tillation (looking at the bottom two rows). How-
ever, with this evaluation, rewriting all candidate
instruction-response pairs without filtering (Dolma
+ rewriting) yields the best performance, when all
baselines are fine-tuned with same data quantity
(51.2K).

F Other NLP evaluations

We also evaluate the models described in Section 4
on some common NLP benchmarks:
• HellaSwag (Zellers et al., 2019): consists of

70K multiple-choice questions designed to test
grounded commonsense inference. Each ques-
tion comes from either activitynet or wikihow,
along with four answer choices about what might
happen next in the scene. The correct answer
is the actual sentence for the next event, while
the other three are adversarially generated and
human verified.

• ARC (Clark et al., 2018): aims to test advanced
question-answering capabilities with 7787 grade-
school level, multiple-choice science questions.
The dataset consists of Challenge and Easy Sets,
with the former containing only questions an-
swered incorrectly by both a retrieval-based algo-
rithm and a word co-occurrence algorithm.

• PIQA (Bisk et al., 2020): another multiple-choice
dataset, created to test an NLP model’s under-
standing of the physics model of the world. Ques-
tions are inspired by how-to instructions and the
model is supposed to pick the correct answer out
of two choices.

• MMLU (Hendrycks et al., 2020): covers 57 sub-
jects across STEM, the humanities, the social
sciences, etc. The question difficulty ranges from
an elementary level to an advanced professional
level, testing for both world knowledge and prob-
lem solving ability. Questions are presented in a
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Data source Data size GPT-4-Turbo
Win rate - LC (%)

GPT-4-Turbo
Win rate (%)

Claude-3-Opus
Win rate - LC (%)

Claude-3-Opus
Win rate (%)

Dolma + filtering 51.2K 16.71 11.90 17.66 9.63
Dolma + rewriting 51.2K 17.44 12.66 21.54 15.34
Dolma + filtering + rewriting 51.2K 16.68 12.07 19.09 12.86
ClueWeb + filtering 41.8K 15.93 11.89 18.39 10.26
Open Orca 51.2K 16.96 11.82 16.35 9.63
ShareGPT 51.2K 18.42 11.62 19.14 9.81
Evol-Instruct 51.2K 15.65 9.51 17.89 8.94
Alpaca-GPT4 51.2K 17.19 11.48 17.04 8.63
Self-instruct 51.2K 12.20 7.09 13.24 6.58
Dolma + filtering + rewriting 25.6K 17.90 13.05 17.55 11.86
Dolma + filtering + distilling 25.6K 17.80 11.95 17.50 10.50

Table 10: Win rates against GPT-4-Turbo of Llama-2-70B models fine-tuned on different instruction datasets,
as evaluated with AlpacaEval 2.0 framework using GPT-4 Turbo and Claude-3 Opus as evaluators.

Data source Data size HellaSwag ARC PIQA MMLU
7B scale

Dolma + filtering 12.8K 60.6 59.1 76.1 35.6
Dolma + rewriting 12.8K 56.4 56.8 74.6 33.8
Dolma + filtering + rewriting 12.8K 56.8 56.7 74.5 36.6
ClueWeb + filtering 12.8K 60.3 57.5 75.7 35.1
Open Orca 12.8K 57.3 59.1 76.0 45.7
ShareGPT 12.8K 56.3 59.2 75.1 40.4
Evol-Instruct 12.8K 54.2 56.1 75.3 35.9
Alpaca-GPT4 12.8K 57.3 57.7 74.7 35.0
Self-instruct 12.8K 56.7 55.7 74.9 35.2

70B scale
Dolma + filtering 51.2K 68.1 69.4 81.8 62.8
Dolma + rewriting 51.2K 66.4 69.3 81.2 61.9
Dolma + filtering + rewriting 51.2K 66.8 69.1 81.4 61.4
ClueWeb + filtering 41.8K 68.8 68.4 81.6 63.3
Open Orca 51.2K 65.8 66.6 78.6 61.8
ShareGPT 51.2K 65.7 68.4 79.7 60.0
Evol-Instruct 51.2K 66.8 68.5 80.4 60.9
Dolma + filtering + rewriting 25.6K 66.8 69.7 82.2 62.7
Dolma + filtering + distilling 25.6K 65.7 70.9 82.0 60.8

Table 11: Performance of our fine-tuned models on different NLP tasks.

multiple-choice format.
We report the results on these tasks in Table 1.
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