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Abstract

To enhance Large Language Models’ (LLMs)
reliability, calibration is essential—the model’s
confidence scores should align with the likeli-
hood of its responses being correct. However,
traditional calibration methods typically rely
on a binary true/false assessment of response
correctness, unsuitable for long-form genera-
tions where an answer can be partially correct.
Addressing this gap, we introduce a unified
calibration framework, in which both the cor-
rectness of the LLMs’ responses and their as-
sociated confidence levels are treated as distri-
butions across a range of scores. We develop
three metrics for assessing LLM calibration and
propose confidence elicitation methods based
on self-consistency and self-evaluation. Our ex-
periments demonstrate that larger models don’t
necessarily guarantee better calibration, that
various calibration metrics complement each
other, and that self-consistency methods excel
in factoid datasets. We also find that calibration
can be enhanced through techniques such as
fine-tuning, scaling the temperature. Finally,
we illustrate one application of long-form cal-
ibration through selective answering in long-
form responses, optimizing correctness within
a constrained API budget.

1 Introduction

Confidence calibration in large language models
(LLMs) aims to align the model’s internal confi-
dence with a probabilistic perspective of its an-
swers’ correctness (i.e. quality), enhancing reliabil-
ity and interpretability for aiding human decision-
making (Kadavath et al., 2022). People intuitively
understand and utilize probabilities (Cosmides and
Tooby, 1996), making this approach crucial for
practical applications. Conventional calibration
(Guo et al., 2017) treats answer correctness as bi-
nary (true or false) and seeks to align the model’s
confidence with the likelihood of model’s answer

Figure 1: A comparison between short-form generation
and long-form generation. The correctness of the short-
form answer can either be true (1) or false (0), while the
correctness of the long-form answer is typically a score
between 0 and 1. Both of these scores may vary across
evaluators due to subjectivity, hence we conceptualize
them as a distribution over [0, 1].

being correct, typically stated as: “I am x% confi-
dent that this answer is completely correct.” How-
ever, the correctness of long-form generation is
not always either true or false but can be partially
correct (Figure 1).

Therefore, a single confidence score for long-
form outputs is ambiguous: it can either imply “I
am x% confident that the answer is 100% correct”
or “I am 100% confident that the answer is x% cor-
rect.” The former fails to capture the graded notion
of long-form answer correctness, while the latter
focuses on self-evaluation of correctness, rather
than calibration as it overlooks the confidence at
specific correctness levels.

Addressing this challenge, we propose to con-
ceptualize the model’s confidence as distribution
across scores between [0, 1] to capture the nuanced
understanding of the model of each correctness
level of the long-form answer, corresponding to the
statement “I am x% confident that this answer is
y% correct”. Moreover, we also view the correct-
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Figure 2: Overview of our calibration framework. We prompt an LLM to produce an answer to a specific question,
assess the answer’s correctness distribution using an evaluator (task-specific metric/GPT-4 metric/human metric),
and determine the model’s confidence distribution through self-evaluation or self-consistency approaches. Finally,
we calculate the calibration score by comparing the correctness and confidence distributions against our predefined
metrics.

ness of an LLM’s response as a distribution across
scores between [0, 1] to capture graded and subjec-
tive assessments of long-form generations quality.
This subjectivity arises from the multifaceted na-
ture of evaluating long-form outputs, where factors
like factuality, coherence, clarity, and comprehen-
siveness each play a role, potentially introducing
variability in judgment (Bakker et al., 2022). We
can then measure both the classical notion of cali-
bration error, averaged across different correctness
levels, as well as new notions of alignment be-
tween the correctness and confidence distributions
and their utility in selective prediction (§ 3.4). Fig-
ure 2 shows an overview of our framework, which
consists of three modular components: estimating
the target correctness distributions, eliciting con-
fidence distributions from LLMs, and measuring
calibration between these distributions.

Our unified framework offers three key advan-
tages. 1. Generalizability: Our framework applies
to both long-form and short-form generation tasks
by representing correctness and confidence as dis-
tributions, regardless of whether the correctness of
task is binary, continuous, subjective, or objective.
2. Flexibility: The framework is evaluation-metric
agnostic, allowing the integration of any metric
or confidence elicitation method, and can adapt
as evaluation methods evolve. 3. Interpretabil-
ity: It provides a nuanced view of uncertainty, en-
abling decision-makers to assess confidence across
multiple correctness levels, fostering greater trans-
parency and trust in the model’s outputs.

We leverage our framework to measure cali-
bration for several LLMs on multiple datasets
across three long-form QA—ASQA (Stelmakh

et al., 2022), ELI5 (Fan et al., 2019), QAMPARI
(Amouyal et al., 2022)—and one summarization
task, CNNDM (Nallapati et al., 2016). Our re-
sults show that our methods excel over baselines
by leveraging the model’s nuanced confidence dis-
tribution, stronger LLMs like GPT-3.5 don’t nec-
essarily guarantee better calibration, that various
calibration metrics complement each other, and
LLMs exhibit better calibration on factoid datasets
than more open-ended datasets. Furthermore, our
analysis highlights that fine-tuning and tempera-
ture scaling could enhance calibration. Finally, we
illustrate a practical application of long-form cal-
ibration: employing a cascading strategy (Chen
et al., 2023a) for selective answering to optimize
the cost-effectiveness of long-form text genera-
tion. In this approach, an open-source model ini-
tially handles queries and, based on its confidence
levels—assessed using our system—a more ad-
vanced API model is engaged as needed. This
method ensures cost efficiency while maintaining
high-performance levels.

In summary, our contributions are:

• A universal calibration framework for text gen-
eration tasks, enhancing LLM evaluation for
critical applications.

• Innovative methods for confidence elicitation
and calibration measurement, applied to a va-
riety of LLMs.

• Evidence that calibration can be improved by
model fine-tuning and temperature scaling.

• A cost-effective model usage strategy, illus-
trating the practicality of long-form calibra-
tion in optimizing LLM deployment.

13442



2 Related Work

Measuring Calibration Calibration (Guo et al.,
2017, Minderer et al., 2021)has been widely
studied in language models, whose probabilities
derived from logits are generally found to not be
calibrated (Jiang et al., 2020, Kadavath et al., 2022,
Chen et al., 2023d). Standard metrics to measure
the calibration include Expected Calibration
Error (ECE) for confidence-accuracy disparity
(Naeini et al., 2015), Brier Score for mean squared
prediction-outcome differences, and AUROC
for assessing confidence-based correct answer
identification (Boyd et al., 2013, Kuhn et al.,
2023). Selective Accuracy@Coverage measures
accuracy within the model’s most confident
predictions (Liang et al., 2023, Cole et al., 2023).
However, these metrics, rooted in a binary notion
of correctness, fall short for long-form tasks
where correctness spans a range, suggesting a
distribution-based approach is more apt.

Improving Calibration Traditional calibra-
tion methods focus on post-processing logits (Guo
et al., 2017), but with LLMs generating unbounded
text, logits could fall short. Thus, extracting better
confidence scores (i.e., confidence elicitation)
has become crucial for improving calibration.
These include: verbalization, which directly asks
the model to output its confidence (Lin et al.,
2022), consistency, which uses the uniformity of
multiple responses to gauge confidence (Kadavath
et al., 2022, Kuhn et al., 2023, Cole et al., 2023,
Chen et al., 2023c, Tian et al., 2023a, Lin et al.,
2023), and the hybrid of both (Xiong et al., 2023,
Tian et al., 2023b, Chen and Mueller, 2023).
However, these methods often presume binary
answer correctness, offering a singular confidence
score that fails to capture the nuanced correctness
required for long-form tasks. Recent work (Zhang
et al., 2024) on long-form generation addresses
continuous correctness scores but focuses on
aligning an uncertainty score with correctness,
rather than on improving calibration.

3 Long-form Generations Calibration

This section formalizes the long-form generation
calibration problem (§ 3.1), and introduces three
core components in our calibration framework (Fig-
ure 2): the correctness distributions of the answers
(§ 3.2), the confidence distributions of the LLM on
its answers (§ 3.3), and the calibration metrics to

measure how well these two align (§ 3.4).

3.1 Formulation

Given a dataset D, the model’s answer for each
question Qi in the dataset is answer Ai (where i in-
dexes the questions in the dataset). To measure how
calibrated the model is, we need three steps. First,
we apply an evaluator to get the target correctness
distribution PTi where Ti is the random variable
that denotes the correctness score in answer Ai.

PTi(x) = Pr(Ai is s correct) (1)

for s ∈ S, where S is the space of correctness
levels (e.g., normalized from ordinal scores rang-
ing from 0 to 5). It should be noted that s could
theoretically be a continuous value in the range
[0%, 100%]. However, since humans tend to make
more accurate judgments using discrete ratings due
to “rounding bias” (Honda et al., 2022), we approx-
imate continuous correctness with ordinal scores in
practice. Second, We use a confidence elicitation
method to derive the confidence distribution PCi

from LLM M, where Ci represents the model’s
confidence in its answer Ai. We ensure these con-
fidence scores are normalized to form a valid dis-
tribution, matching the domain of the correctness
distribution. For s ∈ S,

PCi(x) = M’s confidence that A is s correct (2)

Finally, we design metrics to measure the align-
ment between PCi and PTi across the dataset.

3.2 Correctness Distribution Estimation

To establish correctness distributions as alignment
targets, we need to adopt long-form evaluation met-
rics that integrate aspects such as relevance, co-
herence, factuality, and helpfulness. Traditional
metrics like BLEU and ROUGE fail to capture se-
mantic meaning (Liu et al., 2023a), while factuality-
based metrics like FactScore (Min et al., 2023)
may neglect question relevance. GPT-4 metrics
have gained popularity (Li et al., 2024) due to their
adaptability and comparative accuracy (Jain et al.,
2023, Liu et al., 2023a). These metrics allow for
the integration of various user-prioritized aspects
by adjusting evaluation rubrics, providing a bal-
anced approach to both referenced and divergent
answers. However, they also have limitations like
a bias toward longer outputs (Zheng et al., 2023).

Our framework is evaluator-agnostic, allowing
us to use any correctness distribution metric. To
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identify a practical and actionable metric that best
guides human decision-making, we conduct hu-
man evaluations to determine alignment with hu-
man judgment. According to the results in Ap-
pendix C, we determined that the GPT-4 metric,
with a higher correlation to human judgments com-
pared to the task-specific metric, is more effective
for three datasets (e.g., 76.2 v.s 47.8 in ASQA),
while the task-specific metric is preferred for an-
other dataset. Our framework’s modular design
allows replacements of evaluation metrics based on
user needs or new developments.

3.3 Confidence Distribution Elicitation
There are two common strategies to develop con-
fidence in model responses: explicitly asking the
model to verbalize its confidence or implicitly es-
timating it through self-consistency. However, the
single confidence score provided by prior studies
is ambiguous and non-interpretable in long-form
calibration. Therefore, we develop two methods
tailored for long-form calibration accordingly.
Continuous Self Evaluation (CSE) We prompt
the model to repeatedly perform self-evaluations,
where the resulting scores (typically ordinal scores
from 0 to 5) are normalized to a [0,1] range and
interpreted as a confidence distribution. The self-
evaluation template closely mirrors the template
for correctness evaluation but omits the reference
answer (see Appendix F.3 for details). Formally,
given an LLM M, N self-evaluations:

PCi(s) =
1

N

N∑

j=1

1(M(Ai)j = s) (3)

for score s ∈ S , where S is the space of correctness
levels. Such a sampling method provides a more
authentic reflection of the model’s internal distri-
bution than logits (Cole et al., 2023). By asking
the model to assess an answer multiple times, we
capture a range of scores that better represent the
model’s confidence, which enhances the reliability
of the confidence estimation.
Pairwise Self Consistency (PSC) Another key
indicator of model confidence is the consistency
among multiple responses a model provides for a
given question. Given a primary answer Ai, other
N answers A1

i ...A
N
i sampled from LLM M, a met-

ric for measuring the similarity between two an-
swers Sim(·, ·), and a score s ∈ S:

PCi(s) =
1

N

N∑

j=1

1(Sim(Ai, A
j
i ) = s) (4)

Assessing similarity in long-form answers is more
complex than with short responses (Kadavath et al.,
2022). To address this, we propose four methods
for evaluating similarity in long-form content: 1.
Naive, assessing overall response similarity with
an LLM; 2. Split, analyzing sentence-level sim-
ilarity; 3. Claim, evaluating claim matching; 4.
Named Entity Recognition (NER), focusing on
named entity overlap. These approaches range
from broad to detailed analysis, chosen based on
task requirements and the desired analysis depth.
See Appendix B for more details.

3.4 Calibration Metrics
We introduce three key metrics to assess model
calibration from various angles. Expected correct-
ness error with multi-class (ECE-M) measures the
alignment between the model’s stated confidence
in reaching a particular level of correctness and
the actual likelihood that the model performs at
that specified level, across the spectrum from 0 to
1. Correlation evaluates the alignment between
expected confidence and correctness across the
dataset, indicating the model’s proficiency in
ranking answers. Selective F1 measures the utility
of confidence scores in identifying the good
answers and abstaining from the rest.

ECE-M The classical notion of calibration
relies on an (answer-correctness) pair of random
variables (A, Y ) ∈ A × {0, 1}, where A is the
answer space. An LLM M with its confidence
elicitation method hM: A → [0, 1] is said to be
well-calibrated if Pr(Y = 1|hM(A) = q) = q
for q ∈ [0, 1]. To measure if this holds, tradi-
tional ECE(h) (Gupta and Ramdas, 2021) is:
EA [|Pr(Y = 1|hM(A))− hM(A)|]

In long-form calibration where the answer cor-
rectness is a continuum Y ∈ [0, 1], the probabilistic
confidence predictor hM should predict confidence
about each level of correctness and therefore de-
noted as hM: A × [0, 1] → [0, 1]. The notion of
long-form calibration is Pr(Y = s|hM(A, s) =
qs) = qs for every s ∈ [0, 1] and qs ∈ [0, 1] We
define ECE-M as the aggregation of ECE scores for
all correctness levels. In practice, we use discrete
levels s ∈ S (e.g., ratings from 0-5) for the cor-
rectness scores. Hence, we calculate an ECE(s, h)
conditioned on each s,

EX [|Pr(Y = s|hM(A, s))− hM(A, s)|] (5)

Then the final ECE-M score is weighted by the
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frequency of each class:

ECE-M(h) :=
∑

s∈S
Pr(Y = s)ECE(s, h) (6)

Correlation While ECE-M focuses on mea-
suring calibration at each correctness level
independently, it doesn’t account for the distance
between these levels. To address this, we also mea-
sure the correlation between the expected values
of the confidence and correctness distributions
for a more comprehensive assessment. For each
answer Ai within the dataset, we can calculate
the expected correctness score of the model
E|Ci| =

∑
s PCi(s)× s and the expected correct-

ness score of the target E|Ti| =
∑

s PTi(s) × s.
In the whole dataset, we can get a list of expected
correctness scores EC from model confidence
and a list of target expected correctness scores
ET. Then we can measure the correlation between
them.

ρ(D) = Corr(EC,ET) (7)

where Corr(·) represents the correlation function.
This correlation provides a clear indicator of how
well our model’s confidence aligns with its actual
correctness across the entire dataset.

Selective F1 In selective answering (e.g., Kamath
et al., 2020), models only respond when confident
about their accuracy to improve reliability. Tra-
ditional metrics for selective answering include
accuracy@coverage and coverage@accuracy (Tian
et al., 2023b), which measures a model’s precision
and recall in selecting completely correct answers.
Similarly, in long-form calibration, it is crucial to
assess the model’s selection of answers that are at
least "s% correct" using both precision and recall.

Therefore, we propose the selective F1 metric
(F1τs) to quantify the model’s aptitude in filter-
ing out answers that meet or exceed a predefined
correctness threshold τs. Our approach utilizes a
dual-threshold system, consisting of a confidence
threshold (τc) and the correctness threshold (τs),
allowing the model to answer questions only if
its confidence in the answer’s expected correct-
ness score exceeding τs surpasses τc. Formally,
let A = {A1, A2, ..., An} denote the total set of
model’s answers in the dataset and A∗ = {Ai ∈
A | ∑s≥τs

PCi(s) ≥ τc} denote the set of selected
answers. Let the indicator function Iτs(Ai) indi-
cate if the expected correctness score E[Ti] of Ai

exceeds τs:

Iτs(Ai) =

{
1 if E[Ti] ≥ τs

0 Otherwise
(8)

The selective precision Pτs on the dataset D is the
proportion of selected answers that surpass the cor-
rectness threshold τs relative to the total number of
selected answers:

Pτs(D) =

∑
Ai∈A∗ Iτs(Ai)

|A∗| (9)

The selective recall Rτs compares the number of
selected answers meeting this criterion against the
total number of correct answers in the dataset that
exceed the threshold τs:

Rτs(D) =

∑
Ai∈A∗ Iτs(Ai)∑
Ai∈A Iτs(Ai)

(10)

The selective F1 combines recall and precision:

F1τs(D) = 2
Pτs(D)Rτs(D)

Pτs(D) +Rτs(D)
(11)

In our experiments, we select τs as the nearest
correctness level greater than the best LM’s average
correctness score. For τc, we choose the value
that yields the highest selective F1 score on the
development split.

4 Experiments and Results

4.1 Setup
Models and Data We measure different sized
LLMs’ calibration, including Llama-2-13b-chat,
Llama-2-70b-chat (Touvron et al., 2023), Vicuna-
13b (Zheng et al., 2023), Llama-3-8b-Instruct, GPT-
3.5-turbo, across three long-form QA tasks: ASQA
(Stelmakh et al., 2022), ELI5 (Fan et al., 2019),
QAMPARI (Amouyal et al., 2022), and one sum-
marization task: CNNDM (Nallapati et al., 2016).
Details of datasets can be found in Appendix A.
Correctness Evaluation We apply GPT-4 to evalu-
ate target correctness distributions for ASQA, ELI5,
and CNNDM. In QAMPARI where the answer is
a list of entities, we evaluate using the F1-5 met-
ric, calculating the F1 score by the exact match
with the gold answer and defining 100% recall for
predictions with at least 5 correct answers.

4.2 Confidence Elicitation Methods
In addition to our methods CSE and PSC (see Ap-
pendix D.3 for similarity measurement choosing),
we established baselines for self-evaluation, self-
consistency, and logits-based approaches. This is

13445



ASQA QAMPARI ELI5 CNNDM
Method ECE-M Corr F10.8 ECE-M Corr F10.4 ECE-M Corr F10.8 ECE-M Corr F10.8

SL∗ 28.2↑ 0.7↑ 0.0 ↑ 27.4↑ 10.9↑ 8.0↑ 29.6↑ -11.9↑ 0.0↑ 77.2↑ -7.5↑ 0.0↑
BSE∗ 32.8↑ 14.2↑ 57.6 ↑ 25.2↑ 16.8↑ 33.2↑ 30.3↑ 11.7↑ 46.7↑ 78.5↑ 11.2↑ 90.6↑
CSE 29.0↓ 16.3↑ 58.5 ↑ 42.8↑ 21.9↑ 33.4↑ 31.2↑ 26.9↑ 48.2↑ 15.2↓ 19.2↑ 92.0↑
ASC∗ 35.9↑ 27.1↑ 5.2 ↑ 46.0↑ 38.6↑ 38.5↑ 38.4↑ 16.7↑ 7.9↑ 63.2↑ 8.8 ↑ 44.2↑
PSCF1 28.8↑ 27.1↑ 33.5 ↑ 38.4↑ 38.6↑ 42.7↑ 27.1↑ 16.7↑ 20.7↑ 57.1↑ 8.8↑ 79.5↑
PSC 18.3↓ 46.8↑ 61.6 ↑ 26.2↓ 39.1↑ 44.0↑ 24.9↓ 24.9↑ 46.2↑ 64.5↑ 15.5↑ 90.0↑

Table 1: Calibration Performance Comparison Among Different Confidence Elicitation Methods Across Four Tasks
(in %): “ECE-M” for expected correctness error with multi-class, “Corr” for Correlation, “F1τs” for Selective F1
Score at threshold τs. Results represent averages from five models. Methods with * served as baselines. For “Corr”,
“F1τs”, and “Score”, ↑ means better than corresponding baseline while ↓ is worse. For “ECE-M”, ↓ is better while
↑ is worse. The best score among all confidence elicitation methods is bolded. Key insights: 1) Self-Consistency
(PSC) outperforms Self-Evaluation on factoid datasets; 2) Our methods PSC and CSE surpass baselines; 3) Different
metrics offer complementary insights

because prior studies lack directly applicable base-
lines, primarily due to the non-interpretable nature
of single confidence scores.
Sentence Likelihood (SL): Based on prior stud-
ies using logits to gauge model confidence, we
adopt sentence likelihood as a baseline measure,
which typically results in a confidence distribution
focused at the lowest score in long-form answers.
Binary Self-Evaluation (BSE): following previous
work (Kadavath et al., 2022) that asks model to self-
evaluate if its answer is true several times, using
the frequency of true as model’s confidence score
towards the answer being true. Then we adapt such
a single score as a distribution focus solely on the
values 0 and 1.
Average Self-Consistency (ASC): Following prior
work (Xiong et al., 2023) using the average consis-
tency between these candidate responses and the
original answer then serves as a single measure
of confidence score, we adopt the simple f1-token
score to measure the consistency to adapt it to long-
form generations. Then we treat the single score as
a point mass distribution.
Pairwise Self-Consistency F1 (PSC-F1): Still us-
ing F1 to measure the consistency like ASC, but
we directly treat the pairwise consistency scores as
a distribution without aggregating, thereby keep-
ing model intrinsic understanding about different
correctness levels.

4.3 Main Results
In Table 1, we evaluate the calibration perfor-
mances of various confidence elicitation methods
by averaging the scores across all models. Table 1
shows that our methods, CSE and PSC, generally
outperform their respective baseline categories

and also surpass the logits-based method SL. Key
findings from the results include:

Self-Consistency Outperforms Self-Evaluation
on Factoid Datasets Self-consistency methods
typically outperform self-evaluation on factoid
datasets like ASQA and QAMPARI. However,
their effectiveness diminishes in more subjective
tasks such as ELI5 or CNNDM. We hypothesize
that this is because self-consistency is more
readily quantifiable in factoid datasets, where the
agreement between answers can be assessed based
on factual consistency, thus providing clearer
criteria. Conversely, in open-ended datasets, the
consistency between answers is more ambiguous,
making it more difficult to measure.

Nuanced Self-Evaluation Enhances Cali-
bration CSE generally outperforms BSE by
providing detailed confidence estimates at each cor-
rectness level. However, the overall improvement
remains constrained by the intrinsic limitations of
LMs in self-evaluating their correctness, which
sometimes hampers accurate estimations.

Pair-wise Similarities Distribution and
Task-tailored Similarity Measurement Help
Calibration Both ASC and PSC-F1 measure
similarity with token-level F1. However, PSC-F1
treats these scores as a distribution rather than
averaging them, leading to better ECE-M and
selective F1. PSC further enhances calibration by
adopting a task-specific, detailed measurement of
similarity, outperforming FSC in all four tasks.
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ASQA QAMPARI
Model ECE-M Corr F10.8 Score ECE-M Corr F10.4 Score

Llama2-13b 15.9 48.0 47.5 51.3 30.5 46.0 42.3 13.3
Llama2-70b 14.7 44.3 61.9 59.4 29.3 17.1 37.0 14.6
Vicuna-13b 20.1 58.2 56.8 50.8 14.4 49.5 42.6 11.4
Llama-3-8b 14.3 53.2 65.1 54.9 33.0 38.3 42.0 14.1
GPT-3.5-turbo 26.7 30.5 76.7 72.6 23.7 44.4 56.2 24.0

ELI5 CNNDM
Model ECE-M Corr F10.8 Score ECE-M Corr F10.8 Score

Llama2-13b 36.0 21.8 40.1 53.8 12.6 19.5 92.0 77.0
Llama2-70b 32.8 18.8 54.4 61.7 13.8 6.4 93.6 77.6
Vicuna-13b 19.4 31.3 34.9 53.0 32.7 3.9 64.2 78.2
Llama-3-8b 34.9 36.7 48.4 57.1 9.3 49.0 86.9 77.8
GPT-3.5-turbo 32.7 26.2 63.4 63.0 7.8 17.0 94.7 78.2

Table 2: Comparison of Calibration Performance Across Models for Four Tasks (in %): We identify the optimal
confidence elicitation method for each task and compare the performance of various models using this method.
“Score” means the model’s average correctness score on that task. A key observation is that more powerful LMs do
not necessarily exhibit better calibration, although they tend to perform better in selective answering.

Calibration metrics complement each other A
simplistic approach like SL, which allocates all
the probability mass to the point of score 0, can
misleadingly show decent ECE-M (28.2%) in
specific cases like ASQA. However, its negative
correlation (0.7%) and zero F10.8 underscore an
ineffective confidence distribution. Similarly, BSE
in CNNDM may achieve a high F10.8 (90.6%)
by overestimating answer correctness, but this
does not truly reflect response quality (correlation:
11.2%) or provide well-calibrated probabilities
across correctness levels, resulting in a bad ECE-M
(ECE-M: 78.5%). Hence, a comprehensive
evaluation using multiple metrics is essential for a
balanced assessment of model calibration.

Larger models are not necessarily better
calibrated. In Table 2, we focus on the calibration
performance of individual models when paired
with the best-performing confidence elicitation
method for each task. Table 2 shows that despite
poor performance on ASQA and QAMPARI,
Vicuna-13b has the highest correlation across
these datasets. It might be because reinforcement
learning for other models causes miscalibration
by encouraging overfitting to rewarded behaviors
(Kadavath et al., 2022). Scaling the temperature
could enhance the calibration of LLMs fine-tuned
using RL (see § 4.4). Additionally, Llama-2-13b
demonstrates a higher correlation than its larger

counterpart, Llama-2-70b. However, GPT-3.5-
turbo, the strongest model, consistently scores the
highest in selective F1 across all datasets. This
performance can be attributed to the model’s
ability to generate a larger volume of high-quality
answers, increasing the probability of selecting
superior responses even if it is not particularly
well-calibrated. Consequently, the Selective F1
metric blends performance and calibration, and
tends to favor more capable models due to their
higher output of quality answers.

4.4 Improving Calibration

We delve into different strategies to enhance
calibration: fine-tuning, scaling the temperature,
adding source documents (Appendix E.2), and
hybrid confidence elicitation (Appendix E.3).

Fine-tuning Our study explores three fine-
tuning strategies to improve model calibration
on the ASQA dataset: fine-tuning the model for
self-evaluation (using questions and model answers
to produce scores and explanations), fine-tuning
the model for generation (generating answers
from questions), and a hybrid of both. GPT-4
synthesizes self-evaluation data by assessing
different models’ answers to questions from the
ASQA training set, while the generation data
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originates from the ASQA training set itself.
We apply LoRA (Hu et al., 2021) fine-tuning to
the Llama2-13b model. See Appendix E.1 for
experiment details. As Table 3 reveals, solely
training on self-evaluation (‘Evaluation’) did
not yield consistent improvements in calibration,
possibly due to the complexity of this task and
the limitation of LORA. Nonetheless, fine-tuning
the model improves the self-consistency method,
especially when the generation data is included
during training (‘Eval + Gen’ and ‘Generation’).
The model becomes more confident in terms of
self-consistency after fine-tuning.

Data Corr ECE-M F10.8 Score

Self-Evaluation (CSE)
None 18.1 ↑ 30.3 ↑ 50.8 ↑ 51.3 ↑
Evaluation 13.6 ↓ 32.4 ↑ 52.3 ↑ 49.2 ↓
Generation 20.0 ↑ 26.2 ↓ 53.4 ↑ 52.1 ↑
Eval + Gen 23.9 ↑ 20.2 ↓ 46.6 ↓ 50.1 ↓

Self-Consistency (PSC)
None 48.0 ↑ 15.9 ↑ 47.5 ↑ 51.3 ↑
Evaluation 46.9 ↓ 13.6 ↓ 56.1 ↑ 49.2 ↓
Generation 58.9 ↑ 14.5 ↓ 59.5 ↑ 52.1 ↑
Eval + Gen 54.5 ↑ 12.2 ↓ 50.7 ↑ 50.1 ↓

Table 3: Comparison among raw and fine-tuned Llama-
2-13b on ASQA. “None” for the untrained model, “Eval-
uation” for the model fine-tuned with the self-evaluation
dataset, “Generation” for the model fine-tuned with the
ASQA generation data, and “Eval+Gen” for the model
fine-tuned with the hybrid dataset combined by self-
evaluation dataset and generation data.

Temperature We adjust the generation tempera-
ture for Llama2-13b from 0.2 to 1 to examine its
impact on calibration. The result in Figure 3 re-
veals consistent improvements in all calibration
metrics. Notably, the model’s performance initially
improves and then deteriorates. This observation
implies that modulating the generation temperature
can enhance the calibration of the model.

4.5 Application
We showcase an application of long-form calibra-
tion in Figure 4: a cost-effective cascading strategy
using language models of varying capabilities to
efficiently handle queries within an API budget
constraint. Initially, an open-source model (Llama-
2-13b in our experiment) address questions where
it believes the answer has a probability higher than
τc that the answer’s correctness score is above τs.
Complex queries, flagged by lower model confi-
dence, are escalated to a more advanced API LM
(GPT-4). Adjusting τc between 0 and 1 controls
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Figure 3: Calibration varies with temperature scaling.

how many queries reach GPT-4, balancing answer
quality with API budget constraints. We bench-
mark using the open-source LM for a zero API
budget and the commercial LM for full-budget sce-
narios. Our experiments utilize the ASQA and

Figure 4: The illustration of LLM Cascade.

QAMPARI datasets to evaluate four distinct confi-
dence elicitation strategies: PSC, ASC, CSE, and
BSE. Additionally, we incorporate a baseline strat-
egy where, under a constrained number of API re-
quests, a random selection of queries is processed
by Llama-2-13b, with the remaining handled by
GPT-4. For each API budget scenario, questions
are randomly assigned to Llama-2-13b using 10
different random seeds, and we calculate the mean
and standard deviation of the results. We focus on
the success rate, which we define as the percent-
age of answers that meet or exceed a user-specified
score threshold. This metric is reported both for the
overall dataset and for the subset of queries selected
and handled by Llama-2-13b, illustrating both the
general effectiveness of our cascading model and
the selective answering capabilities of the individ-
ual model. As shown in Figure 5, PSC generally
outperforms the other methods, with CSE and BSE
yielding comparable results that follow. ASC, in
contrast, performs the poorest, comparable to the
random selection strategy. These results highlight
the pivotal role of advanced calibration techniques,
confidence elicitation methods in our case, in boost-
ing the practical utility and cost-efficiency of LLMs
when API usage is limited.
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Figure 5: Variation in Success Rate by API Budget
Allocation on the ASQA and QAMPARI Datasets for
All Queries and Those Selected by Llama-2.

5 Conclusion

Our study presents a novel calibration system for
evaluating LLMs in long-form generation. Our re-
sults challenge the assumption that larger LLMs are
always calibrated better and show calibration vari-
ability across datasets. Additionally, we propose
methods to improve LLM calibration and show
an application that optimizes performance under
API budget constraints. The system we present is
crucial for further improving the liability of LLMs.

6 Limitation

Our study faces three primary limitations. First,
we rely on GPT-4 to estimate the target correctness
distribution. But as tasks become more subjective,
consensus on humans’ evaluations may decrease.
This wider target correctness distribution becomes
challenging for both GPT-4 and human annotators
to accurately capture. This limitation is inherent
to natural language generation (NLG) evaluation
and lies beyond the purview of our project. Our
framework operates under the premise that a target
correctness distribution exists and concentrates on
calibration which aligns the model’s confidence
with this assumed target. Second, our experiments
focus on long-form QA and do not extend to
specialized domains such as law, medicine, or
education, where the calibration of LLMs could

have significant real-world implications. Lastly,
our self-consistency method is computationally
intensive, posing a challenge for practical applica-
tions. There is a need for more efficient approaches
in real-world settings.

Replicability:
Codes: https://github.com/kkkevinkkkkk/
calibration
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A Dataset

ASQA (Answer Summaries for Questions which
are Ambiguous) (Stelmakh et al., 2022) is a
specialized long-form factoid dataset, designed
to address ambiguous factoid questions that
yield different correct answers based on their
interpretations. This dataset challenges models
to synthesize factual information from multiple
sources, creating coherent long-form summaries
that effectively resolve the inherent ambiguities in
these questions.

ELI5 (Fan et al., 2019) is a comprehensive
open-ended long-form dataset, encompassing over
270,000 threads from the Reddit forum “Explain
Like I’m Five.” This unique platform features
community-generated responses to a wide array of
questions, all tailored to be easily understandable
by a five-year-old audience. The majority of
queries in ELI5 are centered around ’how,’
’why,’ and ’what’ questions, which necessitate
comprehensive, detailed responses supported by
evidence from multiple passages.

QAMPARI (Amouyal et al., 2022) is a fac-
toid dataset where answers are presented as lists of
entities dispersed across multiple paragraphs. Its
construction involves an automated process that
utilizes Wikipedia knowledge graphs and tables.
Questions are manually paraphrased, and answers
are thoroughly verified for accuracy. Notably,
each question in QAMPARI is associated with an
average of 13 answers, demonstrating its breadth.

CNNDM (Nallapati et al., 2016) is a large-
scale news summarization dataset containing
news articles from CNN1 and DailyMail2. The
original CNNDM dataset consists of both source
news articles and reference summaries. How-
ever, recent work (Liu et al., 2023b; Zhang
et al., 2023) has found that the provided refer-
ence summaries are not of very good quality
and zero-shot LLMs summaries are preferred
by human annotators over the reference summaries.

In the ACLE (Automatic LLMs’ Citation
1https://www.cnn.com/
2https://www.dailymail.co.uk/

Evaluation) (Gao et al., 2023), a pioneering bench-
mark for assessing LLMs’ citation capabilities, a
subset of 1,000 examples is randomly selected
from the development sets of ASQA, ELI5, and
QAMPARI to form a test set for each task. For our
specific analysis, we choose to utilize the first 500
examples from each of these datasets in ACLE as
our test set, providing a focused and representative
sample for each task. For CNNDM, we utilize 100
examples as our test set.

B Self-consistency

We propose four different self-consistency based
methods tailored for long-form generation, each
with a different strategy to measure the similarity
between two long-form answer.

Naive The most basic approach utilizes an
additional LLM (GPT-3.5-turbo in our experi-
ments, which can be replaced by other models
trained for this task) to determine if two responses
are akin, assigning a corresponding similarity
score. This method diverges from the relevant
technique in contemporary research (Chen et al.,
2023b), which primarily focuses on identifying
the most consistent answer. Instead, our approach
aims to secure specific consistency ratings that
reflect the model’s assurance in its primary answer,
offering a general overview of the answers’
similarity. The template for similarity measuring
can be found in Appendix F.4.

Sentence Split For a more detailed similar-
ity analysis between the two answers, we split the
first answer into individual sentences. Another
LLM (GPT-3.5-turbo or a similar NLI model) is
then used to evaluate whether similar statements
are present in the second answer. This method’s
limitation is that not all sentences carry equal
informational weight. Some may be filler or less
informative, potentially skewing the similarity
assessment. The template can be found in
Appendix F.4.

Claim To further refine the approach, we
focus on sentences that make factual claims. This
involves two steps: first, using a claim detector
to identify factual claims within a sentence and
then using an NLI model to determine if similar
factual claims exist in the second answer. This
method operates under the assumption that factual
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claims are the most critical components of an
answer, representing its core information. We
leverage a DeBERTa-V2 (He et al., 2020) trained
by ClaimBuster as our fact detector and GPT-3.5
as the NLI models.

Named Entity Recognition Advancing the
granularity further, we compare named entities
between two responses. We identify and compare
entities present in both answers by utilizing a
named entity recognition model. The degree of
overlap in these entities serves as an indicator of
answer similarity. This approach focuses more on
concrete, identifiable elements within the answers.
We use a Roberta-large (Liu et al., 2019) trained
with SpanMarker framework 3, which can be
replaced by other NER models.

C Evaluation Metric

C.1 GPT-4 metric

We ask GPT-4 to range an answer from 0 (worst)
to 5 (best), which is then normalized to [0, 1]. See
Appendix F.1 for details of the template. To miti-
gate scoring variability from criteria ambiguity and
LLM uncertainty, we have evaluators repeatedly
score each answer, forming a score distribution that
better reflects its correctness. Specifically, given
an LLM evaluator E , N evaluations from it, and a
score x ∈ [0, 1], the correctness distribution is:

PTi(x) =
1

N

N∑

j=1

1(E(Ai)j = x) (12)

C.2 Human Evaluation

We utilize GPT-4 to assess answers across differ-
ent tasks, including ASQA, ELI5, and CNNDM,
using GPT-4 scores as a proxy for the target dis-
tribution. To demonstrate the better alignment of
GPT-4 scores with human preferences over task-
specific metrics, we focus our human evaluation
efforts on the long-form tasks of ASQA and ELI5.
This approach is supported by prior research in-
dicating GPT-4’s congruence with human judg-
ments on summarization tasks (Liu et al., 2023a),
thereby obviating the need for manual evaluation of
CNNDM. Following Gao et al. (2023), in ASQA,
we adopt the EM-recall automatic metric, which
gauges the recall of correct short answers by ver-
ifying if the dataset’s provided short answers are

3https://github.com/tomaarsen/SpanMarkerNER

exact substrings of the generated content, following
established methodologies. For ELI5, we utilize
the most precise automatic metric to date, claim re-
call, employing the TRUE (Honovich et al., 2022)
natural language inference model to ascertain if the
generated output encompasses the sub-claims of
the reference answer.

We present the task criteria to humans and ask
them to provide a score for each answer based
on the criteria. Participants are provided with a
reference answer—not as an exclusive ground truth
but as a guide—and are permitted to use search
engines for additional context. We enlisted three
annotators to evaluate 75 samples each for ASQA
and ELI5, and calculate the average of them as a
human score. Our analysis compares these human
scores with those generated by task-specific metrics
and GPT-4. The results, as detailed in our Table 4,
underscore GPT-4’s closer alignment with human
judgments in both ASQA and ELI5. As shown in
Figure 12, as the task becomes more open-ended
like Eli5, the human agreements become lower than
the factoid dataset ASQA. This further evidence
the assumption that the correctness of a long-form
answer should be a distribution.

ASQA ELI5
Metric EM GPT-4 Claim GPT-4

Corr ↑ 47.8 76.2 42.9 71.5
MAE ↓ 43.0 12.9 52.0 9.1

Table 4: Comparison of Human, Task-Specific metric,
and GPT-4 Correctness Distributions in ASQA and ELI5
Tasks. Results are with %. ‘Corr’ denotes Pearson
correlation (the higher the better), ‘MAE’ denotes mean
absolute error (the lower the better). ‘EM’ denotes EM-
recall, and ‘Claim’ denotes Claim-recall.

D Main Experiment

We assess the calibration of variously sized models
(Llama-2-13b, Llama-2-70b, Vicuna-13b, GPT-3.5-
turbo) across three long-form QA datasets (ASQA,
ELI5, QAMPARI) and one summarization dataset
(CNNDM). The process involves several steps: 1.
Generation: Asking the model to generate answers
for questions in the dataset 2. Correctness As-
sessment: We utilize GPT-4 to evaluate the cor-
rectness of the models’ answers, except for QAM-
PARI, where we directly apply the F1-5 metric. 3.
Confidence Distribution Derivation: After gener-
ating answers, models employ self-evaluation or
self-consistency methods to derive their confidence
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Figure 12: Pairwise annotator agreements for ASQA and ELI5 respectively

distribution. 4. Calibration Measurement: .

D.1 Generation

In the answer generation phase, we employ a 3-shot
in-context learning approach for each long-form
QA dataset, providing three exemplars to guide
the models. For the CNNDM dataset, we adopt a
0-shot strategy, aligning with prior studies (Goyal
et al., 2022). The generation of answers utilizes
a top-K sampling method, setting the generation
temperature for all models at 0.6 and the top-K
parameter at 10.

D.2 Correctness Evaluation

For ASQA, ELI5, CNNDM, we ask the GPT-4 to
evaluate the correctness of examples. For ASQA
and ELI5, We ask GPT-4 to evaluate the answer
three times, producing a distribution capturing cri-
teria ambiguity and model’s inherent subjectivity.
However, for CNNDM, we only ask GPT-4 to eval-
uate once to save computation given that most
answers correctness concentrates around 0.8 with
small variance. The GPT-4 evaluation template can
be found in Appendix F.1 and criteria for different
tasks can be found in Appendix F.2. For QAM-
PARI, which involves generating a list of entities

as answers, we determine that F1 scores provide a
more suitable measure of correctness than GPT-4
evaluations. To this end, we adopt the F1-5 metric
(Gao et al., 2023), computing the F1 score based
on direct matches with the correct answer list and
assigning a recall of 100% for responses containing
at least five accurate answers (recall-5).

D.3 Confidence Elicitation

After getting the answer from the model, we
leverage the self-evaluation or self-consistency
method to derive confidence distribution from the
model.

Self-Evaluation We prompt the model to
self-evaluate an answer 10 times, creating a
confidence distribution based on its self-evaluation
scores. Each self-evaluation includes task instruc-
tions, grading criteria, and evaluation examples
(three for all long-form QA datasets and one for
CNNDM due to length constraints). Additionally,
it contains specific instructions for self-evaluation,
incorporating both the question and the answer
under evaluation. The detailed self-evaluation
template and criteria are available in Appendix F.3
and Appendix F.2 respectively.
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Self-consistency In the self-consistency ap-
proach, we generate an answer to the same
question 10 times, designating the first response as
the primary answer. We then calculate similarity
scores between the primary answer and the
remaining responses. These scores collectively
create the model’s confidence distribution for the
primary answer. For various datasets, tailored
strategies are employed to compare similarities
between two answers.

For ASQA, we employ a self-consistency-claim
approach. To assess the similarity between the two
answers, we first identify factual claims in the first
answer using a ClaimBuster-trained DeBERTa V2
(He et al., 2020) claim detector. We then verify
the presence of these claims in the second answer
through NLI. The similarity score is the average
presence of factual claims across answers.

In QAMPARI, self-consistency-NER is used to
determine confidence distribution. As the answers
are entity lists, we extract entities by separating
commas. The similarity score is calculated based
on the proportion of overlapping entities between
two answers, relative to the total entities in the first
answer.

For ELI5, where answers provide easily under-
standable explanations, we focus on the overall
content. Here, we apply a self-consistency-naive
method, assign a similarity score to each answer
pair with simple prompting.

In CNNDM, where answers are summaries high-
lighting key points of an article, we gauge the simi-
larity between two answers by evaluating the over-
lap of key points. To achieve this, we implement
the self-consistency-split method. We dissect the
first answer into individual sentences and then use
NLI to determine if each sentence is present in
the second answer. The similarity score is derived
by averaging the presence of these segmented sen-
tences in the comparative answer.

E Improving Calibration

E.1 Fine-tuning

In our study, we focus on improving model
calibration on the ASQA dataset. We explore
three different strategies: fine-tune the model to
do self-evaluation (Input: question and model’s
answer; Output: answer’s score and explanation),
fine-tune the model to do generation (Input:
question; Output: answer), and a hybrid of both.

Data We generate a self-evaluation training
dataset with GPT-4, which evaluates different
models responses to questions drawn from ASQA
training set. This dataset comprises inputs of
questions and corresponding model answers, with
outputs including a score and an explanation
for each answer. We create the self-evaluation
data in two steps. The initial phase involves the
creation of a diverse answer pool. This is achieved
by employing a suite of models with varying
computational capacities, including Llama-2-7b,
Llama-2-13b, Llama2-70b, Vicuna-13b, and
ChatGPT. Each model generates responses to a
spectrum of questions drawn from the training
set of ASQA task, ensuring the resultant answer
pool encompasses a broad quality spectrum, from
low to high. Subsequently, we employ GPT-4
to critically assess these answers, assigning a
score and providing a corresponding explanation
for its evaluation. This process yields a rich
dataset, each instance of which encompasses a
question, a model-generated answer, an evaluative
score, and a justification for that scoring. This
approach results in a comprehensive dataset
with 2,000 self-evaluation examples (1,800 for
training and 200 for validation), each including
a question, model-generated answer, score, and
justification. For generation data, we use 80%
of training ASQA’s dataset (4,353 examples) for
training and the remaining 20% for validation. The
hybrid dataset combines the self-evaluation and
generation training sets, using the self-evaluation
validation set for assessment.

Training and Results Regarding training,
we fine-tune Llama2-13b-chat model using LORA
on this dataset. We maintain consistent parameters
across all scenarios: a learning rate of 5e-6, five
epochs, 100 warm-up steps, and a total batch size
of 4 (achieved through 4 gradient accumulation
steps across four GPUs, with a batch size of 1 per
device). As Table 3 reveals, solely training on self-
evaluation (‘Evaluation’) did not yield consistent
improvements in calibration, possibly due to the
complexity of this task, as well as the limitation
of LORA fine-tuning. Nonetheless, fine-tuning
the model improves the self-consistency method,
especially when the generation data is included
during training (‘Eval + Gen’ and ‘Generation’).
The model becomes more confident in terms of
self-consistency after fine-tuning.
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E.2 Source Documents
We investigate the effect of additional context on
LLM calibration, focusing on self-consistency con-
fidence with Llama-2-13b-chat and GPT-3.5-turbo
models on the ASQA dataset. We test the model’s
performance when supplemented with two differ-
ent types of source documents: random documents
related to the question and ‘oracle’ documents di-
rectly relevant to the answers, as included in the
dataset release (Stelmakh et al., 2022). Findings in
Table 5 reveal that Oracle documents can enhance
model performance and calibration across two out
of three metrics for both models, while random doc-
uments are less effective. These results underscore
the importance of relevant contextual information
in model calibration.

Model Doc Corr ECE-M F10.8 Score

Llama213b

N 48.0− 15.9↑ 3.6− 51.3−
R 39.0 ↓ 14.8↓ 30.6 ↑ 59.6 ↑
O 49.5 ↑ 17.5↑ 20.1 ↑ 65.8 ↑

GPT-3.5turbo

N 30.5− 26.7↑ 58.4− 72.6↓
R 36.6 ↑ 26.4↓ 68.2 ↑ 64.8 ↓
O 27.0 ↓ 24.9↓ 72.8 ↑ 75.8 ↑

Table 5: How source documents affect the calibration
score. In the document column, “N” means no docu-
ments in the input prompt, “R” means randomly selected
documents relevant to the topic, and “O” means the or-
acle documents relevant to the answer. ↑ denotes that
the calibration score goes up when adding documents,
while ↓ means going down. For ECE-M it’s opposite.

E.3 Hybrid Confidence Elicitation
We explore whether combining self-evaluation and
self-consistency can yield a more accurate confi-
dence distribution on ASQA dataset. By blend-
ing confidence distributions from self-evaluation
(Ceval

i ) and self-consistency (Cconsist
i ) into a hy-

brid distribution Chybrid
i = αCeval

i + (1 −
α)Cconsist

i , we adjust their relative contributions
using α. As shown in Figure 13, we observe that
the correlation between confidence and correctness
initially increases but then declines as α varies from
0 to 1. However, this trend doesn’t extend to other
metrics like F1, indicating that while hybrid cali-
bration elicitation may enhance calibration in terms
of correlation, it may not have the same impact on
other dimensions.
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Figure 13: Hybrid confidence elicitation

F Prompts

This section introduces the prompts used for our
experiments.

F.1 Correctness Evaluation Template

Similar to contemporary work (Kim et al., 2023),
our evaluation template for GPT-4 evaluation to
get the target correctness distribution of an answer
includes four components: a clear task description,
expertly crafted evaluation criteria for objectivity,
demonstrations with a variety of answer qualities
(best, worst, intermediate) each with a score and
rationale, and specific evaluation instructions for
the LLM, encompassing the question-answer pair
to be evaluated and a reference answer.
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Evaluation Template

{task instruction}

You will be given a question, a reference an-
swer, and a student’s answer. Please evaluate the
student’s answer based on both your knowledge and
the reference answer, and provide a score from 0-5 to
the student’s answer. Keep in mind that the reference
answer is not the sole correct response. Assess for
both factual accuracy and relevance to the question.
The following are the scoring criterion:

{criterion}

Here are some examples.

{examples}

Now it’s your turn.

Question: {question}

Reference answer: {reference answer}

Student’s answer: {answer}

Now please provide your score about this an-
swer in the format of “Score: <Your score>/5” and
give your explanation.

F.2 Criteria

Below are the criteria for various tasks, with a
special note that the CNNDM summarization task
utilizes a distinct evaluation template.

ASQA Criterion

ASQA Criterion

5 - Completely Correct and Highly Relevant: The
answer fully addresses the question, resolves the am-
biguity, and provides a well-rounded resolution. All
facts presented in the answer are accurate and rele-
vant.
4 - Mostly Correct and Relevant: The answer is very
relevant and addresses the ambiguity well, but might
have a minor oversight or inaccuracy. All the facts
presented are accurate and relevant, or with only mi-
nor errors.
3 - Partially Correct and Relevant: The answer is gen-
erally on topic and attempts to address the ambiguity,
but there might be inaccuracies or omissions. The
majority of the facts are correct, with a few errors.
2 - Flawed but Somewhat Relevant: The answer
somewhat addresses the topic but does not fully ex-
plore the question’s ambiguity or does not provide a
complete resolution. The facts presented are a mix
of correct and incorrect information, with about half
being accurate.
1 - Mostly Incorrect or Mostly Irrelevant: The answer
slightly touches upon the topic but misses the main
point. The majority of the facts presented are incor-
rect, with only a small portion being accurate.
0 - Completely Incorrect or Completely Irrelevant:
The student’s answer is completely off-topic, not re-
lated to the question at all, or contains only incorrect
information.

ELI5 Criterion

ELI5 Criterion

5 - Perfectly Addressed, Accurate and Clarity: The
answer flawlessly addresses the question with excep-
tional accuracy and clarity. It simplifies complex
concepts effectively and does so in a way that is cap-
tivating and memorable.
4 - Accurate and clear: The answer is accurate, rel-
evant to the question, and presented in a way that is
engaging and understandable. It simplifies complex
concepts effectively but may miss a small opportunity
for further clarification or engagement.
3 - Moderately Accurate and Understandable: The
answer is mostly accurate and somewhat understand-
able. It addresses the question reasonably well but
may lack detail or contain some inaccuracies. It may
use complex terms or concepts that are not broken
down into simpler ideas.
2 - Relevant but Lacks Clarity or Accuracy: The an-
swer is related to the question but lacks clarity or
contains partial inaccuracies. It attempts to simplify
the idea but does not do so effectively, leaving room
for confusion or misunderstanding.
1 - Significantly Flawed: The answer addresses the
question to a minimal extent but contains significant
inaccuracies or misleading information. It might
show a basic attempt to simplify the concept but fail
in accuracy or relevance.
0 - Completely Inaccurate or Irrelevant: The answer
is entirely off-topic, irrelevant, or factually incorrect.
It fails to address the question and does not simplify
complex ideas.
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QAMPARI Criterion

* Estimated Accuracy Assessment (0-3 Points)
* 3 Points: All answers provided seem correct based
on available knowledge.
* 2 Points: Majority of the answers seem correct.
* 1 Point: Some answers are correct, but there are
notable inaccuracies.
* 0 Points: No answers seem correct or very high
degree of inaccuracy.

* Estimated Completeness Assessment (0-2
Points)
* 2 Points: The response seems comprehensive,
covering a broad range of known or expected correct
answers.
* 1 Point: The response covers some correct answers
but misses significant known or expected answers.
* 0 Points: The response is highly incomplete,
missing most of the known or expected correct
answers.

* Total Score (0-5 Scale)
* Add the points from Estimated Accuracy and
Estimated Completeness.

Summarization Evaluation Template

You will be given one summary written for a news
article.

Your task is to rate the overall quality of the
summary with a score from 0 to 5, where 0 is the
lowest and 5 is the highest.

Please make sure you read and understand
these instructions carefully. Please keep this doc-
ument open while reviewing, and refer to it as needed.

Evaluation Steps:
1. Read the news article carefully and identify the
main topic and key points.
2. Read the summary and compare it to the news
article. Check if the summary covers the main topic
and key points of the news article, and if it presents
them in a clear and logical order.
3. Assign a score for the summary quality on a scale
of 0 to 5, where 0 is the lowest and 5 is the highest.

Task Input:

Article: {article}

Summary: {summary}

Now please provide your score of the sum-
mary in the format of “Score: <Your score>/5” and
give your explanation.

F.3 Self-Evaluation Template
Self Evaluation Template

{task instruction}

You will be given a question and a student’s
answer. Please evaluate the student’s answer, and
provide a score from 0-5 to the student’s answer
based on the following scoring criterion:

{criterion}

Here are some examples.

{examples}

Now it’s your turn.

Question: {question}

Answer: {answer}

Now please provide your score about this an-
swer in the format of “Score: <Your score>/5” and
give your explanation. Assess for both factual
accuracy and relevance to the question.

F.4 Self-Consistency Template
In self-consistency approaches, assessing the similarity be-
tween two answers requires the use of an additional LLM
in naive and split/claim methods. For the self-consistency-
naive method, this involves an LLM directly providing sim-
ilarity scores for the pair of answers. Meanwhile, for the
self-consistency-split/claim method, another LLM is tasked
with detecting the presence of sentences from answer 1 in
answer 2. The templates for both the naive method and the
split/claim method are outlined below.

Similarity Comparison Naive Template

You will be presented with a question followed by
two answers. Evaluate how similar these answers are,
considering their amount of information provided,
factual content, effectiveness in addressing the ques-
tion, format and organization. Conclude by providing
an integer similarity score between 0 and 5.
Question: {question}
Answer 1: {answer1}
Answer 2: {answer2}
Now please give your similarity score in the format
of “Similarity score: <Your score>/5” and give your
explanation. Make your answer short and concise.

Similarity Comparison Split Template

You will receive a sentence and a response; please
ascertain if a similar statement is present in the re-
sponse.
Sentence: {sentence}
Response: {response}
Verify if the response contains a statement resembling
the target sentence. Answer yes or no.

G Qualitative Analysis
We showcase successful and failed calibration examples on
Qampari and ASQA with self-consistency method.
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type content

QAMPARI Successful Example 1

Question Who directed a film that had P. Balachandran as a screenwriter?
Answer Kamal, P. Balachandran, T. K. Rajeev Kumar, V. K. Prakash, Rajeev Ravi.

Model Answer Adu, Ammayum Muyalum, Bhoothakkannadi, Chattambi, Kakkakku Pinnaka...

Other Answer 1 Agraharathile Kazhuthai, Kaliyugam, Kodungallur, Kodiyettam ...
Other Answer 2 Kodiyettam, Kuttyedam, Oru CBI Diary Kurippu...
Other Answer 3 Aravindan, K.G. George, John Abraham, Shyam Benegal ...

... ...
Self-consistency scores [0, 0, 0, ...] (%)

Correctness Score: 0% Distribution: {0 : 1.0}
Confidence score Score: 0% Distribution: {0 : 1.0}

QAMPARI Successful Example 2

Question Which cities or municipalities are located in the province of Basilan?
Answer Akbar, Al-Barka, Hadji Muhtamad, Isabela City, Lamitan, Lantawan, Maluso, Sumisip, Tabuan-

Lasa, Tipo-Tipo, Tuburan, Ungkaya Pukan.
Model Answer Al-Barka, Basilan, Isabela, Lamitan, Tipo-Tipo, Maluso, Sumisip.

Other Answer 1 Basilan, Isabela, Lamitan, Lantawan, Tipo-Tipo, Sumisip.
Other Answer 2 Basilan, Tipo-Tipo, Isabela City, Maluso, Sumisip, Tuburan.
Other Answer 3 Basilan, Isabela, Tipo-Tipo, Lamitan, Sumisip, Al-Barka, Maluso, Tuburan.

... ...
Self-consistency scores [71.4, 57.1, 85.7, ...](%)

Correctness Score: 83.3% Distribution: {0.8 : 1.0}
Confidence Score: 76.2% Distribution: {0.6 : 0.11, 0.8 : 0.78, 1.0 : 0.11}

QAMPARI Failed Example 1 (Under Confident)

Question What city or municipality located in the Philipines are in the Tarlac province?
Answer Anao, Bamban, Camiling, Capas, Concepcion, Gerona, La Paz, Mayantoc, Moncada, Paniqui,

Pura, Ramos, San Clemente, San Jose, San Manuel, Santa Ignacia, Tarlac City, Victoria.
Model Answer Capas, Concepcion, Gerona, La Paz, Mayantoc, Paniqui, San Jose, Santa Ignacia, Tarlac City,

Victoria.

Other Answer 1 Capas, Concepcion, Camiling, Tarlac City, Paniqui, San Jose, Santa Lucia, Victoria.
Other Answer 2 Capas, Tarlac, Concepcion, Tarlac, Gerona, Tarlac, La Paz, Tarlac, Paniqui, Tarlac, San Jose,

Tarlac, Tarlac City.
Other Answer 3 Capas, Concepcion, Camiling, Tarlac City, San Jose.

... ...
Self-consistency scores [60, 60, 30, ...](%)

Correctness Score: 100% Distribution: {1 : 1.0}
Confidence Score: 51.1% Distribution: {0.4 : 0.56, 0.6 : 0.33, 0.8 : 0.11}

QAMPARI Failed Example 1 (Over Confident)

Question What are some notables mailing list softwares ?
Answer Dada Mail, Discourse, GNU Mailman, GroupServer, LISTSERV, Majordomo, Organic Groups

Mailing List, Sympa.
Model Answer Mailchimp, Constant Contact, Campaign Monitor, AWeber, GetResponse, MailPoet, Sendinblue,

MailerLite, Klaviyo, ConvertKit.

Other Answer 1 Mailchimp, AWeber, GetResponse, Campaign Monitor, Constant Contact, Klaviyo, ConvertKit,
MailPoet, Mailster, Sendinblue, MailerLite.

Other Answer 2 Mailchimp, Constant Contact, AWeber, Campaign Monitor, GetResponse, Klaviyo, MailPoet,
Mailster, Sendinblue, MailerLite, ConvertKit, ActiveCampaign, and Constant Contact.

Other Answer 3 Mailchimp, AWeber, GetResponse, Campaign Monitor, MailerLite, Constant Contact, Klaviyo,
ConvertKit, Sendinblue, and Emma.

... ...
Self-consistency scores [100, 100, 90, ...](%)

Correctness Score: 0% Distribution: {0 : 1.0}
Confidence score Score: 97.8% Distribution: {0.8 : 0.22, 1.0 : 0.78}

Table 6: Examples for QAMPARI
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type content

ASQA Successful Example 1

Question What are the three types of enzymes in digestion?
Answer Digestive enzymes are a group of enzymes that break down polymeric... Lipases split fatty

acids... Proteases and peptidases split proteins ... Amylases split carbohydrates ... Nucleases
split nucleic acids into nucleotides...

Model Answer There are three main types of enzymes involved in digestion: proteases, which break down
proteins; amylases, which break down carbohydrates; and lipases, which break down fats.
Proteases are produced by the stomach and pancreas, while amylases are ... These enzymes work
in concert ...

Other Answer 1 Digestive enzymes are proteins that help ... There are three main types of digestive enzymes:
proteases, which break down proteins into amino acids; amylases, which break down carbohy-
drates into simple sugars; and lipases, which break down fats into glycerol and fatty acids. These
enzymes are produced by different organs and ...

Other Answer 2 There are three main types of enzymes involved in digestion: proteases, which break down
proteins; amylases, which break down carbohydrates; and lipases, which break down fats. These
enzymes are produced by the salivary glands, stomach, and pancreas, and work in various parts
of the digestive system...

... ...
Self-consistency scores [100, 100, 0, ...] (%)

Correctness Score: 100% Distribution: {1.0 : 1.0}
Confidence score Score: 95.6% Distribution: {0.8 : 0.22, 1.0 : 0.78}

ASQA Successful Example 2

Question When did ben rectors new album come out?
Answer Benjamin Evans Rector is an American singer... He has released seven studio albums, including

Magic on June 22, 2018, which peaked at No. 1 .. Brand New which released on August 28,
2015... Older albums such as Something Like This, released on September 13, 2011 and The
Walking in Between, came out August 20, 2013.

Model Answer Ben Rector’s new album, "Magic", was released on March 25, 2022.

Other Answer 1 Ben Rector’s new album, "Brand New", was released on March 10th, 2022.
Other Answer 2 Ben Rector, an American singer-songwriter, released his new album "Magic" on October 20...

... ...
Self-consistency scores [0, 0, ...](%)

Correctness Score: 0% Distribution: {0 : 1.0}
Confidence Score: 0% Distribution: {0 : 1.0}

ASQA Failed Example 1 (Under Confident)

Question Who plays charlie on it’s always sunny?
Answer Charlie Day plays the fictional character Charlie Kelly... Day is an American actor, screenwriter...

Model Answer Charlie Day plays Charlie on It’s Always Sunny in Philadelphia. He is also known for his role as
Dale Arbus ... Day is a member of the improvisational comedy ...

Other Answer 1 Dennis is played by Glenn Howerton.
Other Answer 2 Charlie on It’s Always Sunny in Philadelphia is played by Charlie Day.

... ...
Self-consistency scores [0, 33.3, ...](%)

Correctness Score: 80% Distribution: {0.8 : 1.0}
Confidence Score: 31.1% Distribution: {0 : 0.22, 0.4 : 0.78}

ASQA Failed Example 2 (Over Confident)

Question Who sings wake me up when it’s all over?
Answer “Wake Me Up” is a song by Swedish DJ and record producer Avicii. Aloe Blacc, which is the

stage name for Egbert Nathaniel Dawkins III provides vocals for the song while Mike Einziger
provides acoustic guitar. “Wake Me When It’s Over” is a song written and recorded by Willie...

Model Answer “Wake Me Up When September Ends” is a song written by Billy

Other Answer 1 “Wake Me Up When September Ends” is a song by American rock band Green Day, written by
lead vocalist Billie Joe Armstrong...

Other Answer 2 “Wake Me Up When September Ends” is a song by Green Day, written by the band’s lead
vocalist and guitarist Billie Joe Armstrong...

... ...
Self-consistency scores [100, 100, ...](%)

Correctness Score: 0% Distribution: {0 : 1.0}
Confidence score Score: 77.8% Distribution: {0 : 0.22, 1.0 : 0.78}

Table 7: Examples for ASQA13460


