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Abstract

Despite recent advancements in language and
vision modeling, integrating rich multimodal
knowledge into recommender systems contin-
ues to pose significant challenges. This is pri-
marily due to the need for efficient recommen-
dation, which requires adaptive and interactive
responses. In this study, we focus on sequential
recommendation and introduce a lightweight
framework called full-scale Matryoshka repre-
sentation learning for multimodal recommen-
dation (fMRLRec). Our fMRLRec captures
item features at different granularities, learning
informative representations for efficient recom-
mendation across multiple dimensions. To in-
tegrate item features from diverse modalities,
fMRLRec employs a simple mapping to project
multimodal item features into an aligned fea-
ture space. Additionally, we design an efficient
linear transformation that embeds smaller fea-
tures into larger ones, substantially reducing
memory requirements for large-scale training
on recommendation data. Combined with im-
proved state space modeling techniques, fM-
RLRec scales to different dimensions and only
requires one-time training to produce multiple
models tailored to various granularities. We
demonstrate the effectiveness and efficiency
of fMRLRec on multiple benchmark datasets,
which consistently achieves superior perfor-
mance over state-of-the-art baseline methods.
We make our code and data publicly available
at https://github.com/yueqirex/fMRLRec.

1 Introduction

Recent advancements in language and multimodal
modeling demonstrates significant potential for
improving recommender systems (Touvron et al.,
2023; Liu et al., 2023; OpenAI, 2023; Reid et al.,
2024). Such progress can be largely attributed to:
(1) language / vision features can provide addi-
tional descriptive information for understanding

*Both authors contributed equally to this research.
†Corresponding Author

user preference and item characteristics (e.g. item
descriptions); and (2) generic language capabilities
acquired through language and vision pretraining
tasks could be transferred for use in recommenda-
tion systems. Consequently, language and multi-
modal representations provide a robust foundation
for enhancing the contextual relevance and accu-
racy of recommendations (Li et al., 2023a; Geng
et al., 2023; Yue et al., 2023; Wei et al., 2024b).

Despite performance improvements, different
recommendation scenarios (e.g., centralized or fed-
erated recommender systems) often require varying
granularities (i.e., model / dimension sizes) in item
representations to achieve the balance between per-
formance and efficiency (Han et al., 2021; Luo
et al., 2022; Xia et al., 2023; Zeng et al., 2024).
For instance, larger dimensions are typically re-
quired to encode language and vision features for
fine-grained understanding and generation tasks,
although marginally lower performance can of-
ten be achieved using considerably smaller fea-
ture sizes (Kusupati et al., 2022). To identify the
optimal granularity for specific use cases in rec-
ommendation systems, methods like grid search or
adaptive search heuristics are frequently utilized
in training (Wang et al., 2024). However, such
searches can lead to substantial training expenses or
fail to identify the optimal model, particularly when
given a large configuration space and constrained
computational resources. Therefore, a train-once
and deploy-anywhere solution is optimal for the
efficient training of recommender systems, which
should ideally meet the following criteria:

1. Training is only need once to yield multiple
models of different sizes corresponding to var-
ious performance and memory requirements;

2. Training and inference should demand no
more computational costs than training a sin-
gle large model, allowing deployment of vari-
ous model sizes at inference time.

13461



Inspired by Matryoshka Representation Learn-
ing (MRL) (Kusupati et al., 2022), we introduce
a lightweight multimodal recommendation frame-
work named full-scale Matryoshka Representation
Learning for Recommendation (fMRLRec). fMRL-
Rec embeds smaller vector/matrix representations
in larger ones like Matryoshka dolls and is only
trained once without additional computation costs.
Different from MRL that only embeds smaller final-
layer activations into larger ones during training,
fMRLRec pushes the efficiency of MRL training
by introducing an efficient linear transformation
that embeds both smaller weights and activations
into larger ones, thereby reducing memory costs
associated with both aspects. This approach is par-
ticularly effective for training recommender sys-
tems on large-scale data, offering a highly effi-
cient framework for multi-granularity model train-
ing. Combined with further improvements in state-
space modeling represented by (Yue et al., 2024;
Orvieto et al., 2023; Gu and Dao, 2023), the linear
recurrence architecture in fMRLRec delivers both
effectiveness and efficiency in recommendation per-
formance across various benchmark datasets. We
summarize our contributions below1:

1. We introduce a novel training framework for
multimodal sequential recommendation (fM-
RLRec), which provides an efficient paradigm
to learn models of varying granularities within
a single training session.

2. fMRLRec introduces an efficient linear trans-
formation that reduces memory costs by em-
bedding smaller features into larger ones.
Combined with improved state-space model-
ing, fMRLRec achieves both efficiency and
effectiveness in multimodal recommendation.

3. We show the effectiveness and efficiency of
our fMRLRec on benchmark datasets, where
the proposed fMRLRec consistently outper-
forms state-of-the-art baselines with consider-
able improvements in training efficiency and
recommendation performance.

2 Related Works

2.1 Multimodal Recommendation
Language and multimodal models are applied as
recommender systems to understand user prefer-
ences and item properties (Hou et al., 2022; Li

1We adopt publicly available datasets in our experiments
and will release our implementation upon publication.

et al., 2023a; He and McAuley, 2016b; Wei et al.,
2023). Current language-based approaches lever-
age pretrained models to improve item represen-
tations or re-rank retrieved items (Chen, 2023; Li
et al., 2023b; Luo et al., 2023; Yue et al., 2023;
Xu et al., 2024). For example, VQ-Rec utilizes a
language encoder and vector quantization to im-
prove item features in cross-domain recommen-
dation (Hou et al., 2023). To further incorporate
visual data, existing methods focus on developing
strategies that extracts informative user / item repre-
sentations (Wei et al., 2019; Tao et al., 2020; Wang
et al., 2023; Wei et al., 2024a,b). For instance,
VIP5 leverages a pretrained transformer with addi-
tional vision encoder to learn user transition patters
and improve recommendation performance (Geng
et al., 2023). However, current models are not
tailored to accommodate flexible item attributes
or modalities, nor are they optimized for scalable
model sizes and efficient inference. Moreover, mul-
timodal approaches require substantial computa-
tional resources and separate training sessions for
each model, rendering them largely ineffective for
real-world applications. To address this, we intro-
duce a lightweight multimodal recommendation
framework in fMRLRec, offering multiple model
sizes within a single training session and efficient
inference capabilities across various scenarios.

2.2 Matryoshka Representation Learning

Matryoshka representation learning (MRL) con-
structs embeddings at different granularities us-
ing an identical model, thereby providing adapt-
ability to varying computational resources without
additional training (Kusupati et al., 2022). MRL
proposes nested optimization of vectors in mul-
tiple dimensions using shared model parameters,
demonstrating promising results on multiple down-
stream tasks and further applications (Cai et al.,
2024; Hu et al., 2024; Li et al., 2024). Nevertheless,
training MRL models demands additional memory
for activations in its nested optimization, posing
challenges for training recommender systems with
large batches on extensive data. Furthermore, MRL
remains unexplored for sequential modeling and ef-
ficient multimodal recommendation. As such, our
fMRLRec aims to provide an adaptive framework
for learning recommender systems using arbitrary
modalities, delivering both efficacy and efficiency
in multimodal sequential recommendation.
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Figure 1: fMRLRec-based weight design, white cells
indicate zeros and arrows show vector-matrix multipli-
cation. Input slice [0 : m] is only relevant to weight
matrix slice [0 : m, 0 : km] during training, convenient
for variously-sized model weights extraction during in-
ference time.

3 Methodologies

3.1 Problem Statement
We present fMRLRec with a research focus in
multimodal sequential recommendation. Formally,
given a user set U = {u1, u2, ..., u|U |} and an item
set V = {v1, v2, ..., v|V |}, user u’s interacted item
sequence in chronological order is denoted with
Su = [v

(u)
1 , v

(u)
2 , ..., v

(u)
n ], where n is the sequence

length. The sequential recommendation task is to
predict the next item v

(u)
n+1 that user u will interact

with. Mathematically, our objective can be formu-
lated as the maximization of the probability of the
next interacted item v

(u)
n+1 given Su:

p(v
(u)
n+1 = v|Su) (1)

3.2 Full-Scale Matryoshka Representation
Learning for Recommendation

In this section, we elaborate on how we design
the full-scale Matryoshka Representation Learning
for multimodal sequential recommendation (fM-
RLRec). The majority of model parameters in
neural networks can be represented with a set of
2-dimensional weights W = {W1,W2, . . . ,Wn}
where Wi ∈ Rd1×d2 , i ∈ {1, 2, . . . , n}, regardless
of specific model architecture. Intuitively, fMRL-
Rec aims to design the Wi ∈ W s.t. models of dif-
ferently sizes M = [2, 4, 8, 16, . . . , D] are trained
only once at the same cost of only training size-D
model. After training, any model sizes in M can be
extracted from the size-D model to form indepen-
dent small models for deployment. To achieve this
goal, fMRLRec allows small models to be embed-
ded in the largest model. Define sequential input as

Xi ∈ RB×L×D to be processed by W , where B is
batch size, L is item sequence length and D is the
embedding size, there are three cases for the shape
of Wi ∈ Rd1×d2 , denoted as D(Wi),

D(Wi) =





D× kD if d1 < d2

kD×D if d1 > d2

D×D if d1 = d2

(2)

Here, we assume k ∈ Z+/{1} to ease the deriva-
tion since Wi often indicates linear up/down scal-
ing by an integer k times (e.g., post-attention MLPs
in transformer).

For case 1 where D(Wi) = D × kD and Xi ∈
RB×L×D, XiWi indicates an up scale. We define
the j’s slice of Xi as X(j)

i = Xi[0 : M[j]] and the
j’s slice of Wi as

W
(j)
i =





Wi[0 : M[0], 0 : kM[0]] if j = 0

Wi[0 : M[j],kM[j − 1] if j > 0

: kM[j]]

For case 2 where D(wi) = kD×D and the cor-
responding input Xi ∈ RB×L×kD, XiWi indicates
a down scale. We define the j’s slice of sequential
input Xi as X(j)

i = Xi[0 : 2M[j]] and the j’s slice
of Wi as

W
(j)
i =





Wi[0 : kM[0], 0 : M[0]] if j = 0

Wi[0 : kM[j],M[j − 1] if j > 0

: M[j]]

For case3 where D(wi) = D×D, assign k = 1

for any of above two cases yields W(j)
i .

Then, we perform matrix multiplication between
X

(j)
i and W

(j)
i followed by concatenation along

dimension j to form the output

Yi = [X
(0)
i W

(0)
i , . . . ,X

(z)
i W

(z)
i ] (3)

where z = log(D/2). Refer to figure 1 for case 1
of this process.

The fMRLRec Operator Instead of comput-
ing equation 3, we would like the chunk/slice-
wise multiplication of X

(j)
i W

(j)
i for all j =

1, 2, . . . , log(D/2) is computed by one forward
pass to derive output Yi. Specifically, we create
a padding mask Pi(M) of the same size as Wi that

Pi(M) = {prs = 0|wrs ∈ Wi, wrs /∈ W
(j)
i }

(4)

13463



T
e
x
t
 

E
n
c
o
d
e
r

I
m
a
g
e
 

E
n
c
o
d
e
r

P
r
o
j
e
c
t
i
o
n
 
L
a
y
e
r

e
1

e
2

h
1

B
B

h
2

e
3

e
4

B
B

𝛬
2

𝛬
𝛬

𝛬

L
i
n
e
a
r
 
R
e
c
u
r
r
e
n
c
e

P
r
e
d
i
c
t
i
o
n
 
L
a
y
e
r

⊕
MRL 
Loss

fMRL Masking

Figure 2: The overall architecture for fMRLRec.

Then we define the fMRLRec operator as:

fMRLRec(Wi,M) = Pi(M)⊙Wi (5)

Thus, Xi · fMRLRec(Wi, Pi(M)) is equivalent to
perform equation 3 but only with one time multi-
plication of Xi and masked Wi. See figure 1 for an
illustration of the fMRLRec operator.

In summary, given a neural network represented
by W = {W1,W2, . . .Wn} where Wi ∈ Rd1×d2

and a set of sizes M = {2, 4, 8, . . . , D}, we could
find an fMRLRec-slicing of W such that the first
M[j] elements of input Xi is only processed by
corresponding chunks in Wi. After the model is
trained, we take the first [0 : M[j], 0 : kM[j] or
[0 : kM[j], 0 : M[j]] (depending on the cases in
equation 2) slice for each Wi to form independent
small models called fMRLRec-series models for
inference. Also refer to the upper left of figure
1 for the slicing process. For Wi ∈ Rd, one can
leave it as is during training and naturally extract
[0 : M[j]] of it during inference.

3.3 Overall Framework
The overall framework of fMRLRec is illustrated in
fig. 2, including feature encodings, LRU-based rec-
ommendation module, fMRLRec weight masking,
etc.

3.3.1 Language and Image Encoding
We adopt textural item description as the language
input source and image as visual input. Given a
metadata dictionary M containing attributes for
each item i, we extract its attributes Title, Price,
Brand and Categories and perform concatenation
of attributes:

Texti = Titlei + Pricei + Brandi + Categoriesi

We then encode these text attributes and image
attributes using pretrained embedding models f .

For each item i:

Elang,i = flang(Texti), Eimg,i = fimg(Imgi) (6)

We combine text and image embedding through
concatenation followed by a simple yet effective
linear projection:

E = (Concat(Elang,Eimg))Wproj + bproj (7)

where Wproj and bproj are the projection weights
and Wproj ∈ R(Dlang+Dimg)×D and bproj ∈ RD.

3.3.2 Linear Recurrent Units
We adopt Linear Recurrent Units (LRU) for se-
quence processing for its (1) superior performance
and (2) both low training and inference cost com-
pared with RNN and Self-Attention-based mod-
els (Orvieto et al., 2023; Yue et al., 2024). Intu-
itively, LRU is capable of parallel training like Self-
Attention and inference like RNN, where inference
complexity can be performed incrementally.

Given input xk ∈ RB×Hin at time step k, hid-
den state hk−1 ∈ RB×Hin , learnable matrices
A ∈ RH×Hin , B ∈ RH×Hin , C ∈ RHout×Hin and
D ∈ RHout×Hin :

hk = Ahk−1 +Bxk, yk = Chk +Dxk, (8)

The input and output dimensions are denoted with
Hin and Hout (i.e., embedding size), and the hid-
den dimension size with H . Different from RNN
models (i.e., hk = σ(Ahk−1 +Bxk)), we discard
the non-linearity σ to enable parallelization:

hk = Ahk−1 +Bxk

= A2hk−2 +ABxk−1 +Bxk = . . .

=

k∑

i=1

Ak−iBxi with h1 = Bx1.

(9)
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Therefore, LRU can be trained in parallel (via paral-
lel scan) as Self-Attention (equation 9) and enable
fast inference as RNN models (equation 8).

3.3.3 Overall LRU-Based Recommendation
Framework

We first pad for the combined embeddings Ei out-
put by equation 7 to maximum length of all se-
quences. Then, the padded embeddings Ei are
processed through N blocks. For each block
i ∈ {1, . . . , N}, we first perform layer normal-
ization to the input followed by a LRU layer:

LayerNorm(X) = α⊙ X− µ√
σ2 + ϵ

+ β (10)

LRUNorm(X) = LRU(LayerNorm(X)) (11)

Due to the lack of non-linearity for LRU, we
further process the output of LRU layer by a gated
non-linear feed-forward network (FFN) to improve
training dynamics and model performance. Specif-
ically, our FFN is defined as:

Gate = SiLU(XW(g) + b(g))

FFN = (Gate ⊙ (XW(1) + b(1)))W(2) + b(2)

As the network gets deeper, some signal of the in-
put from the earlier layers might be forgotten. Thus,
we add sub-layer connections in FFN by adding
pre-layer normalization and residual connection:

SubLayer(FFN,X) = FFN(LayerNorm(X))+X

3.3.4 fMRLRec Plugin to Overall Framework
Next, we apply fMRLRec-based weight design.
Given a set of sizes M = {2, 4, 8, . . . , D}, any
Wi ∈ Rd, we leave it as is. For Wi ∈ Rd1×d2 , we
apply the fMRLRec operator defined in section 3.2
to Wi as:

W′
i = fMRLRec(Wi,M) (12)

During inference time, independent models Q =
{W ′(1),W ′(2), . . . ,W ′(|M|)} could be extracted as
described in the last paragraph of section 3.2.

Prediction Layer After the final layer N , we
extract the activation at the last time step t of the
final layer as z

(N)
t ∈ RD, and use it to compute

the relevance ri,t ∈ R for all items in the pool vi ∈
V . Specifically, we perform dot product between
z
(N)
t with the input/shared embedding layer weight
EW ∈ R|V|×D:

ri,t =
(
z
(N)
t ET

w

)
i

(13)

The higher ri,t, the more likely a user is to con-
sider item vi for the next time step. This way we
could generate recommendations by ranking the
relevance score ri,t.

3.3.5 Network Training
As we derive the relevance score of item i as ri,t(θ)
where θ stands for all parameters used to compute
r, we treat the relevance score as logits to compute
Cross-Entropy (CE) loss for entire network opti-
mization. While LRURec can be trained with CE
loss, it is not enough to yield performant models
of sizes M = {2, 4, 8, . . . , D} as traditional CE
loss only explicitly optimizes the largest model of
size D. We solve this issue by introducing explicit
loss terms as introduced in (Kusupati et al., 2022)
to pair with our fMRLRec-style weight matrix for
best performance:

LfMRLRec = min
θ

1

|V|

|V|∑

i=1

∑

m∈M
L (ri(θ[: m]),yi)

(14)
where L is a multi-class softmax cross-entropy loss
function based on ranking scores and the label item.

4 fMRLRec Memory Efficiency

In this subsection, we analyze fMRLRec model-
series memory efficiency by driving the number of
parameters plus activations needed to train model
sizes of M = {2, 4, 8, . . . , D} or M = {2j |j =
1, 2, . . . , k} as (1) A train-once fMRLRec model-
series and (2) Independent models. Define W (j) =

{w(j)
1 , w

(j)
2 , ·, w(j)

n } as the layer weights of model
size j and Xi ∈ RB×L×D as sequential input data
for wi, where B is the batch size, L is the sequence
length and D = 2j is the model size. We assume
every weight has the same scaling factor γ to sim-
plify notations. Thus, γ ·(2j)2 and γ ·2j are number
of parameters for 2d and 1d weight. Here, we only
consider 2d weights saves the most parameters.

Case 1: For fMRLRec-based training, number
of parameters needed N(W ) =

∑n
i=1 γ(·(2k)2),

which is n · γ · 2(2k); The number of activation
generated N(A) =

∑n
i=1 γ ·B ·L ·D. Empirically,

B ∈ {32, 64, 128} and L = 50, thus B ·L = δ ·2k,
δ > 1. Then, we have N(A) = n · γ · δ · 2(2k).

Case 2: For Independent training, the number of
parameters needed N(W ) =

∑k
j=1

∑n
i=1 γ ·(2j)2,

by summation of the geometric series, N(W ) =

n · γ · 4k+1−4
3 , the number of activation generated

N(A) =
∑k

j=1

∑n
i=1 γ · B · L · D. Empirically,
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Table 1: Statistics of the datasets.

Name #User #Item #Image #Inter. Density

Beauty 22,363 12,101 12,023 198k 0.073
Clothing 39,387 23,033 22,299 278k 0.031
Sports 35,598 18,357 17,943 296k 0.045
Toys 19,412 11,924 11,895 167k 0.072

B ∈ {32, 64, 128} and L = 50, thus B ·L = δ ·2j ,
δ > 1. Then, we have N(A) =

∑k
j=1 n·γ ·δ ·2(2j),

which is equivalent to N(A) = n · γ · δ · 4k+1−4
3 .

In summary, the ratio of parameters and activa-
tions between fMRLRec-based training and Inde-
pendent training is R = (n·γ · 4k+1−4

3 )/(n·γ ·2(2k))
or (n ·γ · δ · 4k+1−4

3 )/(n ·γ · δ ·2(2k)) ≈ 1.33. This
indicates a parameter saving rate Rs of ≈ 0.33
against the fMRLRec model. Empirically, for a
common setting n = 4 linear layers with scaling
factor γ = 2 and D = 512, the weights saved
are approximately 4(n) × 0.33(R) × 512(D) ×
1024(2D) ≈ 700K, the number of activation
saved for four layer is approximately 4(n) ×
0.33(R) × 32(B) × 50(L) × 1024(2D) ≈ 2M .
This is to a great extent saving memory usage if in-
dependent training is executed in parallel or saving
training time if executed sequentially.

5 Experimental Setup

5.1 Datasets
For evaluating our models, we select four com-
monly used benchmarks from Amazon.com known
for real-word sparsity, namely Beauty, Clothing,
Shoes & Jewelry (Clothing), Sports & Outdoors
(Sports) and Toys & Games (Toys) (McAuley et al.,
2015; He and McAuley, 2016a). For preprocessing,
we follow (Yue et al., 2022; Chen, 2023; Geng et al.,
2023) to construct the input sequence in chrono-
logical order and apply 5-core filtering to exclude
users and items with less than five-time appear-
ances. For textural feature selection, we choose
title, price, brand and categories; For visual fea-
tures, we use photos of the items. We also filter out
items without above metadata. Detailed statistics of
the datasets are reported in table 1 including users
(#User), items (#Item), images (#Image), interac-
tions (#Inter.) and dataset density in percentages.

5.2 Baseline Methods
For baseline models, we select a series of state-
of-the-art recommendation models grouped as ID-
based, Text-based and Multimodal. ID-based mod-

els include SASRec, BERT4Rec, FMLP-Rec and
LRURec (Kang and McAuley, 2018; Sun et al.,
2019; Zhou et al., 2022; Yue et al., 2024). Text-
based methods include UniSRec, VQRec and Rec-
Former (Hou et al., 2022, 2023; Li et al., 2023a).
We also include multimodal baselines MMSSL,
VIP5 (Wei et al., 2023; Geng et al., 2023), More de-
tails about baselines is discussed in Appendix A.1.

5.3 Implementations

For training fMRLRec and all baseline models, we
utilize AdamW optimizer with learning rate of 1e-
3/1e-4 with maximum epochs of 500. Validation
is performed per epoch and the training is stopped
once validation performance does not improve for
10 epochs. The model with best validation perfor-
mance is saved for testing and metrics report. For
hyperparameters, we find (1) embedding/model
size, the number of fMRLRec-LRU layers, dropout
rate and weight decay be the most sensitive ones for
model performance. Specifically, we grid-search
the embedding/model size in [64, 128, 256, 512,
1024, 2048], the number of fMRLRec-LRU lay-
ers in [1,2,4,8], dropout rate from [0.1,...,0.8] on
a 0.1-stride and weight decay from [1e-6, 1e-4,
1e-2]. For ring-initialization of LRU layers, we
grid-search the minimum radius in [0.0,...,0.5] on
a 0.1-stride. The max radius is set to the mini-
mum radius plus 0.1. The best hyper-parameters
for each datasets are reported in Appendix A.2; We
follow (Geng et al., 2023) and set maximum length
of input sequence as 50. For validation and test,
we adopt two metrics NDCG@k and Recall@k,
k ∈ {5, 10} typical for recommendation algorithm
evaluation.

6 Experimental Results

6.1 Main Performance Analysis

Here, we compare the performance of fMRLRec
with state-of-the-art baseline models in table 2. We
use SAS, BERT, FMLP, LRU, UniS., RecF., fM-
RLRec to abbreviate SASRec BERT4Rec, FMLP-
Rec LRURec, UniSRec, RecFormer and fMRLRec.
The best metrics are marked in bold and the second
best metrics are underlined. Overall, fMRLRec
outperforms all baseline models in almost all cases
with exceptions of Recall@10 for Sports. Specif-
ically, We observe that: (1) fMRLRec on aver-
age outperforms the second-best model by 17.98%
across all datasets and metrics (2) fMRLRec shows
superior ranking performance by having a more
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Table 2: Main performance results of fMRLRec and baselines.

Dataset Metric ID-Based Text-Based Multimodal

SAS BERT FMLP LRU UniS. VQRec RecF. MMSSL VIP5 fMRLRec

Beauty N@5 0.0274 0.0275 0.0318 0.0339 0.0274 0.0303 0.0258 0.0189 0.0339 0.0415
R@5 0.0456 0.0420 0.0539 0.0565 0.0484 0.0514 0.0428 0.0308 0.0417 0.0613
N@10 0.0364 0.0350 0.0416 0.0438 0.0375 0.0411 0.0341 0.0252 0.0367 0.0520
R@10 0.0734 0.0653 0.0846 0.0871 0.0799 0.0849 0.0686 0.0506 0.0603 0.0939

Cloth. N@5 0.0075 0.0062 0.0091 0.0104 0.0127 0.0104 0.0137 0.0089 0.0122 0.0193
R@5 0.0134 0.0100 0.0167 0.0192 0.0221 0.0197 0.0234 0.0146 0.0152 0.0333
N@10 0.0104 0.0084 0.0123 0.0140 0.0175 0.0149 0.0192 0.0122 0.0183 0.0259
R@10 0.0227 0.0169 0.0266 0.0304 0.0372 0.0336 0.0405 0.0249 0.0298 0.0541

Sports N@5 0.0143 0.0137 0.0194 0.0204 0.0141 0.0173 0.0127 0.0123 0.0136 0.0230
R@5 0.0267 0.0215 0.0329 0.0344 0.0237 0.0304 0.0211 0.0198 0.0264 0.0349
N@10 0.0210 0.0181 0.0252 0.0266 0.0195 0.0235 0.0173 0.0163 0.0213 0.0284
R@10 0.0474 0.0355 0.0508 0.0536 0.0408 0.0497 0.0350 0.0321 0.0315 0.0516

Toys N@5 0.0291 0.0241 0.0308 0.0366 0.0254 0.0314 0.0292 0.0173 0.0334 0.0461
R@5 0.0534 0.0355 0.0534 0.0601 0.0477 0.0577 0.0501 0.0286 0.0474 0.0672
N@10 0.0380 0.0299 0.0408 0.0463 0.0362 0.0423 0.0398 0.0224 0.0374 0.0552
R@10 0.0807 0.0535 0.0845 0.0901 0.0811 0.0915 0.0832 0.0445 0.0642 0.0956

Avg. N@5 0.0196 0.0179 0.0228 0.0253 0.0199 0.0224 0.0204 0.0144 0.0233 0.0325
R@5 0.0348 0.0273 0.0392 0.0426 0.0355 0.0398 0.0344 0.0235 0.0327 0.0492
N@10 0.0265 0.0229 0.0300 0.0327 0.0277 0.0305 0.0276 0.0191 0.0284 0.0404
R@10 0.0561 0.0428 0.0616 0.0653 0.0598 0.0649 0.0568 0.0381 0.0465 0.0738

significant gain of NDCG which is ranking sensi-
tive than Recall. For example, fMRLRec achieves
NDCG@5 improvement of 25.42% over the sec-
ond best model, which is greater than the Recall@5
gains of 16.01%. This is also true for NDCG@10
gains of 19.97% compared with recall gains of
10.51%. (3) fMRLRec demonstrates significant
benefits for sparse datasets, Clothing and Sports,
by averaging 21.11% improvements. In contrast,
the average gains is lower as 14.84% for relatively
denser datasets as Beauty and Toys. In summary,
our results suggest fMRLRec can effectively lever-
age multimodal item representation to rank items
of user preference and improve recommendation
performance.

6.2 fMRLRec Model-Series Performance

In this subsection, we analyze the performance of
our full scale Matryoshka Representation Learn-
ing (fMRLRec) by extracting from trained mod-
els the differently-sized sub-models of M =
{8, 16, 32, . . . , D}, where D = 1024 here for best
performance. Specific sub-model performance is
shown in figure 3. Using Recall for Clothing as an
example, we observe that: (1) The Recall decrease
rate for Clothing ranges from 6.14% to 37.69%
which is significantly lower than the exponential

model compressed by a rate of 50%. This is con-
sistent with the Scaling Law (Kaplan et al., 2020)
that doubling the model size usually does not mean
doubling performance. Despite statement of the
Scaling Law, the specific performance retained
varies for datasets/tasks and are expensive to tune.
Tackling this pain point, fMRLRec curve in figure
3 provides flexible options of how much metric
score to retain for developers with limited compu-
tational resources. And obtaining fMRLRec such
patterns only requires a one-time training of the
largest model as introduced in section 3.2.

6.3 Parameter Saving of fMRLRec

Discussed in Section 4, the model parameter
saving rate Rs between fMRLRec-model series
and independently trained models is theoretically
around 1/3 of the former. We demonstrate
in figure 4 this behavior given model sizes of
M = {27, 28, . . . , 211}. The green, blue and
orange bar represents the number of parameters
of fMRLRec-series, independently trained mod-
els and ones saved, respectively. Empirically,
Rs = [0, 25.16%, 31.39%, 32.90%, 33.25%] for
M[j] ∈ M, which converges to ≈ 0.33 as j gets
larger and is consistent with our theoretical analysis
in Section 4.
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Table 3: Ablation performance for fMRLRec by removing either of language (lang.) or visual features or both.

Variants / Dataset Beauty Clothing Sports Toys

Metric NDCG Recall NDCG Recall NDCG Recall NDCG Recall

fMRLRec @5 0.0415 0.0613 0.0193 0.0333 0.0230 0.0349 0.0461 0.0672
@10 0.0520 0.0939 0.0259 0.0541 0.0284 0.0516 0.0552 0.0956

fMRLRec w/ Lang. only @5 0.0353 0.0561 0.0167 0.0279 0.0205 0.0313 0.0403 0.0618
@10 0.0449 0.0859 0.0225 0.0461 0.0261 0.0487 0.0503 0.0927

fMRLRec w/ Image only @5 0.0370 0.0540 0.0162 0.0279 0.0194 0.0291 0.0416 0.0613
@10 0.0464 0.0833 0.0222 0.0467 0.0238 0.0430 0.0516 0.0920

fMRLRec w/o Lang. & Image @5 0.0257 0.0335 0.0035 0.0046 0.0113 0.0153 0.0287 0.0350
@10 0.0288 0.0431 0.0040 0.0062 0.0127 0.0197 0.0309 0.0418

(a) Recall for Clothing (b) Recall for Beauty

(c) NDCG for Clothing (d) NDCG for Beauty

Figure 3: fMRLRec-model series performance curve
against model size. fMRLRec features a significantly
slower performance drop for example with drop rates
from 6.14% to 37.69% (Recall@10 for Clothing) com-
pared to the model compression rate of 50%.

6.4 Ablation Study

In this section, we further evaluate the designs of
features and modules of fMRLRec by a series of
ablation studies in table 3. Specifically, we con-
struct different variants of fMRLRec as: (1) fM-
RLRec w/ Language only: the fMRLRec model
with only the text-based attributes of items such as
Title, brand, etc. and their corresponding embed-
dings. (2) fMRLRec w/ Image only: the fMRL-
Rec model only with the image processor and em-
beddings. (3) fMRLRec w/o Language & Image:
fMRLRec removing all the language and image
related feature processing and embeddings. A ran-
domly initialized embedding table is used as item
representations. We monitor the change of NDCG

Figure 4: fMRL features a one-time training of model
sizes M = {2, 4, . . . , 2n} that saves ≈ 33% parameters
compared to training every size independently.

and Recall of above variants. In particular, (1) Lan-
guage features show a predominant contribution
for the overall performance as removing language
features (fMRLRec w/ Image only) induces the
largest performance drop of 12.45%. (2) Image
feature also constitute a vital but relatively lighter
contribution compared with language features with
a performance drop of 10.67% when removed (fM-
RLRec w/ Lang. only); (3) Losing both image and
language features induces the largest performance
drop of 58.35% which justifies contributions of
both modalities; In summary, our ablation results
show that both language and image feature process-
ing and fusion are effective towards improving the
recommendation performance of fMRLRec.

7 Conclusions

In this work, we introduce a lightweight frame-
work fMRLRec for efficient multimodal recom-
mendation across multiple granularities. In particu-
lar, we adopt Matryoshka representation learning
and design an efficient linear transformation to em-
beds smaller features into larger ones. Moreover,
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we incorporate cross-modal features and further
improves the state-space modeling for sequential
recommendation. Consequently, fMRLRec can
yield multiple model sizes with competitive perfor-
mance within a single training session. To validate
the effectiveness and efficiency of fMRLRec, we
conducted extensive experiments, where fMRLRec
consistently demonstrate the superior performance
over state-of-the-art baseline models.

8 Limitations

We have discussed the the ability of fMRLRec
to perform one-time training and yield models
in multiples sizes ready for deployment. How-
ever, we have not experimented on other rec-
ommendation tasks such as click rate prediction
and multi-basket recommendation, etc. Even
though we adopted LRU, a state-of-the-art recom-
mendation module for fMRLRec, other types of
sequential/non-sequential models needs to be tested
for a more compete performance pattern. More
broadly, The idea of full-Scale Matryoshka Repre-
sentation Learning (fMRL) can be applied to other
ML domains that utilize neural network weights;
We have yet to explore behaviors of fMRL in those
fields where the scale of models and data varies
significantly. We plan to conduct more theoreti-
cal analysis and experiments for above mentioned
aspects in future works.
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A Appendix

A.1 Baselines
We select multiple state-of-the-art baselines to
compare with fMRLRec. In particular, we adopt
ID-based SASRec, BERT4Rec, FMLP-Rec and
LRURec (Kang and McAuley, 2018; Sun et al.,
2019; Zhou et al., 2022; Yue et al., 2024), text-
based UniSRec, VQRec and RecFormer (Hou et al.,
2022, 2023; Li et al., 2023a), and multimodal base-
lines MMSSL, VIP5 (Wei et al., 2023; Geng et al.,
2023). We report the details of baseline methods:

• Self-Attentive Sequential Recommendation (SAS-
Rec) is the first transformer-based sequential rec-
ommender. SASRec uses unidirectional self-
attention to capture transition patterns (Kang and
McAuley, 2018).

• Bidirectional Encoder Representations from
Transformers for Sequential Recommendation
(BERT4Rec) is similar to SASRec but utilizes
bidirectional self-attention. BERT4Rec learns
via masked training (Sun et al., 2019).

• Filter-enhanced MLP for Recommendation
(FMLP-Rec) also adopts an all-MLP architec-
ture with filter-enhanced layers. FMLP-Rec also
applies Fast Fourier Transform (FFT) to improve
representation learning (Zhou et al., 2022).

• Linear Recurrence Units for Sequential Recom-
mendation (LRURec) is based on linear recur-
rence and is optimized for parallelized training.
LRURec thus provides both efficient training and
inference speed (Yue et al., 2024).

• Universal Sequence Representation for Recom-
mender Systems (UniSRec) is a text-based rec-
ommender system. UniSRec leverage pretrained
language models to generate item features for
next-item prediction (Hou et al., 2022).

• Vector-Quantized Item Representation for Se-
quential Recommenders (VQRec) is also text-
based sequential recommender. VQRec quan-
tizes language model-based item features to im-
prove performance (Hou et al., 2023).

• Language Representations for Sequential Rec-
ommendation (RecFormer) is language model-
based architecture for recommendation. Rec-
Former adopts contrastive learning to improve
item representation (Li et al., 2023a).

• Multi-Modal Self-Supervised Learning for Rec-
ommendation (MMSSL) is a multimodal recom-
mender using graphs and multimodal item fea-
tures for recommendation. MMSSL is trained in
a self-supervised fashion (Wei et al., 2023).

• Multimodal Foundation Models for Recommen-
dation (VIP5) is a multimodal recommender us-
ing item IDs and multimodal attributes for multi-
taks recommendation. VIP5 is trained via condi-
tional generation (Geng et al., 2023).

All models are trained according to the method-
ologies described in the original works, with un-
specified hyperparameters used as recommended.
All baseline methods and fMRLRec are evaluated
under identical conditions.

A.2 Implementations

We discuss further implementation details other
than data processing, evaluation metrics, early stop-
ping, etc., as already reported in section 5. We
adopt pretrained BAAI/bge-large-en-v1.5 (Xiao
et al., 2024) and SigLip (Zhai et al., 2023) for
language and image encoding; The tuning phase
basically lasts for 5-6 hours on a single NVIDIA-
A100 (40GB) GPU. For hyperparameters, we find
the most sensitive ones towards performance as fol-
lows and report the best hyper-parameters found:
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• Embedding/model size: We grid-search Em-
bedding/model size among [64, 128, 256, 512,
1024, 2048], the best performing values is
1024 for all datasets, namely Beauty, Cloth-
ing, Sport and Toys. This shows that our fM-
RLRec scales well to large dimensions of pre-
trained vision/language models with effective
modality alignment.

• The number of fMRLRec-based LRU layers:
We grid-search the number of layers among
[1,2,4,8]. The best performing value is 2 for
all datasets.

• Dropout rate: We grid-search the dropout rate
among [0.1,0,2, ..., 0.8] on a 0.1-stride. We
find dropout rates, 0.5 or 0.6, is typically opti-
mal for all datasets.

• Weight decay: We grid-search the weight de-
cay among [1e-6, 1e-4, 1e-2] and finds 1e-2
to be the best performing value.

• Radius of ring-initialization: For ring initial-
ization of LRU layers, We grid-search the min-
imum radius of the ring in [0.0,...,0.5] on a
0.1-stride and set the maximum radius to the
minimum radius plus 0.1. The best minimum
radius is 0.0, 0.1, 0.1, 0.0 for Beauty, Clothing,
Sports, Toys, respectively.
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