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Abstract
The goal of topic modeling is to find meaning-
ful topics that capture the information present
in a collection of documents. The main chal-
lenges of topic modeling are finding the opti-
mal number of topics, labeling the topics, seg-
menting documents by topic, and evaluating
topic model performance. Current neural ap-
proaches have tackled some of these problems
but none have been able to solve all of them.
We introduce a novel topic modeling approach,
Contextual-Top2Vec, which uses document
contextual token embeddings, it creates hier-
archical topics, finds topic spans within docu-
ments and labels topics with phrases rather than
just words. We propose the use of BERTScore
to evaluate topic coherence and to evaluate how
informative topics are of the underlying doc-
uments. Our model outperforms the current
state-of-the-art models on a comprehensive set
of topic model evaluation metrics.

1 Introduction

The most widely used topic modeling approach is
Latent Dirichlet Allocation (LDA) (Jelodar et al.,
2019), which is a probabilistic generative model
that models documents as a mixture of topics and
each topic as a mixture of words. Selecting the op-
timal number of topics is one of the primary chal-
lenges with LDA and many other topic modeling
approaches. Additionally, LDA uses bag-of-words
(BOW) representations of documents that ignore
word semantics and syntax. LDA models the under-
lying word distribution of documents, which neces-
sarily makes uninformative words the most proba-
ble in topics, leading to poor topic interpretability.
The authors of the LDA paper make it clear: "We
refer to the latent multinomial variables in the LDA
model as topics, so as to exploit text-oriented in-
tuitions, but we make no epistemological claims
regarding these latent variables beyond their utility
in representing probability distributions on sets of
words." (Jelodar et al., 2019).

Neural topic models use deep learning tech-
niques to capture the syntax and semantics of text
by leveraging word and document embeddings in-
stead of relying on statistical inference on BOW
representations.

The Embedded Topic Model (ETM) (Dieng
et al., 2020) combined the power of LDA with
word embeddings. This approach overcomes the
limitations of BOW representation of documents
and allows for richer semantic representation of
words in a document. However, ETM still ignores
the syntax of words and requires the number of
topics to be determined.

The Top2Vec model (Angelov, 2020) introduced
a novel method that leverages joint document and
word embeddings to find topic vectors. It auto-
matically finds the number of topics, it does not
require stop-word removal and it also produces hi-
erarchical topics. This approach has been shown to
produce more informative and interpretable topics
(Karas et al., 2022), (Egger and Yu, 2022), (AK-
BAY, 2022). Top2Vec captures word syntax with
document embeddings and word semantics with
word embeddings. Its main limitation is that each
document is assigned only one topic.

The BERTopic model (Grootendorst, 2022) uses
BERT (Devlin et al., 2019) document embeddings
to find clusters of documents that are labeled with
class-based TF-IDF. The main limitations of this
model are that it uses BOW representation of doc-
ument clusters which ignore word semantics, it
does not assign topics to all documents, and it only
assigns one topic per document.

Contextual Embedding Models (CTM) (Bianchi
et al., 2021a), (Bianchi et al., 2021b) extend Neural
Product-of-Experts LDA (ProdLDA) (Srivastava
and Sutton, 2017) by adding contextualized docu-
ment embeddings. This model uses vector repre-
sentation of words and documents so it therefore
captures word semantics and syntax. Its main limi-
tation is that it requires the number of topics to be
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determined.
The main advantage common to all the mod-

els discussed is that they improve topic coherence
compared to LDA. The main disadvantage is that
they do not segment topics within a document; in-
stead, they only give distributions of topics present
in a document, with the exception of Top2Vec and
BERTopic which only assign one topic per doc-
ument. Another common disadvantage is that a
topic distribution does not give information about
the relevance of documents to a topic, it only gives
the proportion of the document that is relevant.

Most topic evaluation metrics measure topic co-
herence, but little attention is given to how well the
topics represent the underlying documents, which
can lead to misleading results (Bhatia et al., 2017).
Accessing how well a topic represents the under-
lying documents is essential to evaluate the per-
formance of a topic model (Doogan and Buntine,
2021). Lastly, coherence measures designed for
older models may not accurately represent the per-
formance of novel neural methods (Doogan and
Buntine, 2021), (Hoyle et al., 2021).

For additional information on related work see
appendix A.

Contributions We propose a new topic mod-
eling approach, Contextual-Top2Vec (C-Top2Vec),
which automatically finds the number of topics in
the embedding space of document contextual token
embeddings and shows the locations of the topics in
the document. Our approach supports hierarchical
topic reduction which aids in exploring the optimal
topic granularity for downstream use-cases.

Previous methods do not specify where a topic
occurs in a document or how relevant a document
section is to the topic, they only provide the pro-
portion of a document that belongs to a topic. Our
approach segments each document into topic spans
allowing for much more granular topic discovery.
It also produces a per-topic relevance score for
each topic span within a document which allows
for ranking the relevance of document segments
for a topic.

Previous models use ranked lists of words to
label topics which can be difficult to interpret. We
label our topics with phrases that lead to improved
interpretability and topic coherence.

Most previous evaluations focus on topic coher-
ence without evaluating how well topics represent
the documents specifically assigned to a topic, leav-
ing a gap in topic model evaluation. We propose

using BERTScore (Zhang et al., 2020) to evaluate
the coherence of topics and simultaneously evalu-
ate how representative topics are of the topic docu-
ments.

Our implementation will be available as a Python
library at the following link: https://github.
com/ddangelov/Top2Vec

Figure 1: 2D UMAP projected sub-document vectors
and top phrase topic labels discovered by C-Top2Vec
on the 20newsgroups dataset.

2 Model

2.1 Contextual Token Embeddings

The self-attention mechanism introduced in the
Transformer (Vaswani et al., 2017) and later used
by BERT (Devlin et al., 2019) led to contextual-
ized token embeddings. Unlike traditional word
embeddings which have a single vector representa-
tion, contextualized embeddings have different vec-
tors depending on their context. Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) uses the
BERT architecture to train embedding models that
ensure semantically similar documents are close in
the embedding space. The sentence embeddings
are created by pooling the contextualized token
embeddings of the document.

The first step in our algorithm is to create con-
textualized token embeddings for each document.
This is done by embedding the documents with an
SBERT model and taking the contextual token em-
beddings before the pooling layer. Any embedding
model can be used in this step as long as it has

13529

https://github.com/ddangelov/Top2Vec
https://github.com/ddangelov/Top2Vec


Figure 2: Example of labelled document topic spans.

Topic Labels BERTScoreR
C-Top2Vec

turkish genocide, victims of the turkish, genocide of the muslims 0.564
sports car, sports cars, mustang gt, toyota celica, sport coupe, honda accord 0.515
christian doctrine, bible contradictions, biblical interpretation, biblical contradictions 0.412
introduction to atheism, religious sects, atheist position, religious persecution 0.383

Top2Vec
graphics, graphical, freeware, tiff, bitmap, software, toolkits, fortran, adobe, pixmap 0.500
xmu, xterm, libxmu, xdm, xfree, openwindows, gui, xm, interface, xloadimage 0.448
propaganda, discussions, discussion, threatened, debate, rushdie, argument, arguments 0.359
prices, price, deals, sale, purchasing, sells, interested, offers, selling, buyer 0.351

CTM
key, secure, keys, security, chip, encryption, government, use, algorithm, secret 0.480
dos, ftp, graphics, code, software, pub, available, files, unix, pc 0.457
hr, suggested, un, remain, frequently, abuse, covered, bj, structure, capable 0.316
hr, suggested, dod, un, remain, changes, consistent, connected, capable, ordered 0.315

Table 1: Top 2 and bottom 2 topics based on topic BERTScoreR on the 20newsgroups dataset.

contextual tokens, it uses average pooling, and it
was trained for semantic similarity.

2.2 Multi-vector Document Representation

Most neural models represent documents as single
vectors. However, single vector document represen-
tations cannot capture all contextual information,
especially in long documents or ones with diverse
topics (Luan et al., 2021), (Zhang et al., 2022a).

The second step of our algorithm is to create mul-
tiple vectors for each document in order to capture
topical information from each part of the document.
This is done by using a sliding fixed-sized window
with mean pooling over the contextualized token
embeddings of each document. This operation ag-
gregates information from multiple contextualized
token embeddings and creates a single vector for

each position. The pooled vectors from each po-
sition represent the topical information from that
segment of the document. The size of the window
determines the granularity of the representation
of the document topic. We use a window size of
50 and stride of 40. See table 7 for window size
comparison.

2.3 Topic Vectors

The main premise of the algorithm is that the em-
bedding space represents semantic similarity and
density in that space represents a common underly-
ing topic (Angelov, 2020). Using our multi-vector
representation of documents we find dense areas
of those sub-document vectors. The dense areas
are representative of an underlying topic that is
common to them. The centroid of each dense area,
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being the central point, is the most representative
of the common topic of the sub-document vectors
in that region. Thus, to create topic vectors, we
find the centroids of each dense area.

Finding dense areas of vectors that have high
dimensions is a challenge due to the curse of di-
mensionality, which makes finding density com-
putationally expensive and less effective. We use
Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP) (McInnes et al.,
2018) to find a low-dimensional representation of
the vectors. We use UMAP since it preserves the
local and global structure of the vectors, allowing
us to find dense areas in their low-dimensional rep-
resentation.

We use Hierarchical Density-Based Clustering
(HDBSCAN) (McInnes et al., 2017) on the low-
dimensional vectors to find dense areas. We use
HDBSCAN since it can find clusters of varying
densities and does not require the number of clus-
ters to be specified. For each dense area identified
by HDBSCAN we calculate the centroid of the vec-
tors in their original embedding dimension. The
resulting centroids become the topic vectors.

The number of initial topics is determined by the
number of dense areas found by HDBSCAN. Hier-
archical topic reduction can be used to reduce the
number of topics to any desired number using the
same method used by Top2Vec. Hierarchical topic
reduction is performed with the below algorithm
until the selected number of topics is reached:

1. For each sub-document vector di in the set of
sub-document vectors D = {d1, d2, ..., dn}:

• Assign di to the nearest topic vec-
tor in the set of topic vectors T =
{t1, t2, ..., tm}.

• The size of each topic vector in T is de-
termined by the number of sub-document
vectors assigned to it.

2. Find the topic vector tmin in T with the small-
est size.

3. Find the nearest topic vector tnearest to tmin,
based on cosine similarity.

4. Merge tmin and tnearest by taking their size-
weighted mean.

2.4 Topic Assignment and Segmentation
We assign topics to document segments at the token
level. The token level topic assignment is done

using the contextualized token embeddings of each
document and the topic vectors as follows:

1. For each document contextualized token vec-
tor ci in the set C = {c1, c2, ..., cn}:

• Using a centered window of size 3, aver-
age token vector ci with adjacent tokens

• Calculate cosine similarity of pooled ci
with each topic vector t.

• Assign ci to the topic vector t with the
highest similarity.

2. For each document d:

• Count the occurrences of each topic
based on tokens’ assigned topics.

• Create a topic distribution for document
d by dividing the count of each topic by
the total number of tokens in d.

3. For each topic t in a document d:

• Compute the mean cosine similarity be-
tween each contextualized token vector
ci assigned to t. This average represents
the relevance of topic t in document d.

2.5 Topic Labelling
To create labels for each topic we use phrases ex-
tracted from the entire set of documents. We use
pointwise mutual information to find n-gram collo-
cations (Bouma, 2009) (Rehurek and Sojka, 2011)
that are present across the documents.

The main assumption is that a topic vector is
the most central point of a topic area and therefore
near phrases are most representative of the topic.
To create labels for each topic we select the most
similar phrases based on cosine similarity to the
topic vector.

Using the phrases we create topic labels for each
topic with the below algorithm:

1. Embed all phrases to create a set of phrase
vectors P = {p1, p2, ..., pn}.

2. For each topic vector ti in the set of topic
vectors T = {t1, t2, ..., tm}:

• Find the N nearest phrase vectors in P
to the topic vector ti based on cosine
similarity.

3. Assign the N nearest phrases found for each
topic vector ti as the labels for that topic.
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3 Experiments

3.1 Datasets

We evaluated the models in two datasets: 20News-
groups (Pedregosa et al., 2011) and Yahoo! An-
swers (Zhang et al., 2015a), selected for their large
number of labelled topics. Both datasets contain
posts on various topics with labels, 20 topics for
20newsgroups and 10 topics for Yahoo! Answers.
Due to the size of Yahoo! Answers we take a strat-
ified sample of 50,000 documents, and we use all
18,846 from 20Newsgroups. We filter the datasets
by removing any empty documents and documents
shorter than 35 characters. For additional informa-
tion on datasets see Appendix B.

3.2 Metrics

Normalized Pointwise Mutual Information
CNPMI is used to evaluate topic coherence by
measuring co-occurrence of the top topic words
within documents from the actual corpus. It is a
widely used metric for topic coherence evaluation
that has been shown to correlate with human
judgements (Röder et al., 2015).

Topic Coherence CV also looks at the top topic
words of a topic but it calculates NPMI of words
using a sliding window rather than at the document
level. (Röder et al., 2015).

Word Embedding Coherence CWE We use
pre-trained word2vec (Mikolov et al., 2013)
embeddings trained on a one-hundred-billion word
corpus. Using the embeddings we find the average
pairwise cosine similarity of top topic words
as proposed by (Ding et al., 2018) and used by
(Bianchi et al., 2021a). This is intended to evaluate
the coherence of the words relative to an external
corpus.

SBERT Word Embedding Coherence CSBERT
We also propose a modification the the word
embedding coherence by using an SBERT
(Reimers and Gurevych, 2019) model to embed
words instead of word2vec. This leverages the
advancements in neural architectures and also
allows for embedding phrases rather than just
words. We use this aproach to also calculate the
average pairwise cosine similarity of top topic
words and phrases.

Adjusted Rand Index ARI proposed by (Hubert

and Arabie, 1985) measures the similarity between
two clusterings by comparing the cluster labels
only. We use it to evaluate how well topic models
assign documents to topics compared to the
ground-truth labels from the reference dataset.
The reference clusters are the true topic labels of
each document from the labelled dataset which are
compared against the clusters formed by the topic
model topic assignment of each document.

Adjusted Mutual Information AMI proposed
by (Vinh et al., 2009) measures the similarity
of two clusterings by comparing cluster labels
only. It can be more effective when dealing with
unbalanced cluster sizes and small clusters as
compared to ARI. We use it in the exact same way
as ARI to evaluate document topic assignments
with the true labels as a reference.

BERTScore Most topic model evaluations focus
on topic coherence and do not directly evaluate
how representative topics are of documents of that
topic. A topic could be coherent but the wrong
documents could be assigned to that topic or it may
not represent topical content accurately. In order
to address this gap we propose using BERTScore
(Zhang et al., 2020) to evaluate both topic coher-
ence and how representative the topics are of their
underlying documents.

Score =
(0.818× 1.22) + (0.718× 4.21) + . . .

1.22 + 4.210 + 9.32 + 1.67

Figure 3: BERTScore maximum similarity

BERTScore was initially proposed to evaluate
text generation and has been shown to correlate
well with human judgements (Zhang et al., 2020).
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It has also been used to evaluate abstract summaries
of topics represented as phrases or multiple words
(Mrini et al., 2021). Given a reference and a can-
didate sequence, BERTscore uses contextualized
token embeddings of each to measure the similarity
between candidate and reference tokens.

BERTScore computes a recall, BERTScoreR,
precision, BERTScoreP , and F1 score,
BERTScoreF1. We use the recall as a mea-
sure of topic coherence as it evaluates how well
each of the topic words is represented in the
documents. We use precision to measure how
representative the topic is of the document as it
evaluates how well the contents of the documents
are captured by the topic words.

To evaluate topics we create contextualized em-
beddings for the top N topic words of each topic.
We also produce contextualized token embeddings
for documents of each topic. For each topic, we
calculate the cosine similarity between its contex-
tualized token embeddings and the embeddings of
the tokens from each topic document.

BERTScore uses maximum similarity as shown
in Figure 3, so for each topic word we take the
most similar token from the topic document to cal-
culate BERTScore. The greedy matching allows
BERTScore to be used even though topic descrip-
tions have fewer tokens than documents and al-
lows it to handle documents of varying lengths. To
compute BERTScore, a weighted average of the
max scores is taken using the Inverse Document
Frequency (IDF), which puts less weight on stop-
words and more weight on informative words.

BERTScoreR is computed by taking the maxi-
mum of cosine similarities for each of the topic’s
contextualized tokens. This approach ensures that
for each token in the topic, its best representation in
the document is recognized. BERTScoreP is com-
puted by taking the maximum of cosine similarities
for each of the document’s contextualized tokens.
This ensures that each token in the document is
matched with its closest counterpart in the topic,
reflecting how accurately the document tokens are
represented by the topic tokens. We average these
scores over all topics and their documents to evalu-
ate a model.

3.3 Evaluated Models
We evaluate LDA, ETM, CTM, Top2Vec,
BERTopic and our proposed model. To level the
playing field between the neural methods we use
the same SBERT model, all-mpnet-base-v2,

which is based on MPNet (Song et al., 2020) for
all of them except ETM which uses word2vec. We
use OCTIS (Terragni et al., 2021), a framework for
topic model evaluation, to evaluate models with
CNPMI, CV, and CWE. For the experimental setup,
see Appendix C.

3.4 Results

We train LDA, ETM, CTM, Top2Vec, BERTopic
and C-Top2Vec on the 20newsgroups dataset for
20, 60, 100 and 140 topics and on the Yahoo!
Answers dataset for 10, 60, 100 and 140 topics.
We average results over the multiple runs for each
dataset.

Topic Coherence Evaluation To evaluate topic
coherence we use the top 10 words of each topic
for LDA, ETM, CTM, Top2Vec, and BERTopic.
For our approach, we used the top 10 phrases of
each topic. To evaluate the phrases with CNPMI,
CV, and CWE we split up the ordered phrases into
words and take the top 10, as these methods require
single-word descriptions. For CSBERT we use the
entire phrases for our approach.

Table 2 shows that C-Top2Vec outperforms all
other models on CNPMI and CSBERT while remain-
ing competitive in the other metrics, demonstrat-
ing that C-Top2Vec produces more coherent topics.
Top2Vec has better performance than our approach
on CWE results, this is likely because we split up
the phrases into single words and take only the top
10 words. This reduces the coherence as can be
demonstrated by the CSBERT score which allows for
measuring the coherence using the entire phrases.

Model CNPMI CV CWE CSBERT
20newsgroups

LDA -0.068 0.460 0.026 0.244
ETM -0.004 0.508 0.042 0.244
CTM 0.032 0.615 0.046 0.269
BERTopic 0.027 0.540 0.043 0.260
Top2Vec -0.070 0.561 0.126 0.480
C-Top2Vec 0.138 0.684 0.116 0.514

YahooAnswers
LDA -0.086 0.374 0.023 0.235
ETM -0.010 0.426 0.022 0.249
CTM 0.050 0.601 0.038 0.294
BERTopic 0.028 0.486 0.052 0.290
Top2Vec -0.068 0.494 0.106 0.473
C-Top2Vec 0.094 0.532 0.090 0.506

Table 2: Topic coherence scores.
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Topic Assignment Evaluation To evaluate how
well the models group documents into topics we
compare their topic assignment with the original
topic labels of the datasets. For LDA, ETM, and
CTM we use the document topic distribution and
assign each document to the topic with the highest
probability. Top2Vec and BERTopic only assign
documents to a single topic so we just use those
assignments. For our approach, we combine the
document topic probability and the document topic
relevance by taking their element-wise multiplica-
tion and then assigning each document to the topic
with the highest resulting score.

The results in Table 3 show the AMI and ARI
results averaged over 5 runs comparing the true
topic labels to assigned topic labels for each dataset.
Our results are tied with Top2Vec with a very slight
edge, over all other models.

Model AMI ARI
20newsgroups

LDA 0.261±0.018 0.096±0.024

ETM 0.447±0.019 0.266±0.016

CTM 0.210±0.012 0.102±0.008

BERTopic 0.420±0.010 0.138±0.013

Top2vec 0.574±0.008 0.437±0.011

C-Top2Vec 0.582±0.008 0.442±0.008
YahooAnswers

LDA 0.147±0.017 0.083±0.019

ETM 0.247±0.002 0.195±0.002

CTM 0.153±0.005 0.101±0.005

BERTopic 0.217±0.015 0.054±0.006

Top2Vec 0.371±0.018 0.314±0.017

C-Top2Vec 0.376±0.020 0.318±0.025

Table 3: Topic assignment evaluation.

Topic BERTScore Evaluation To evaluate the
model’s topic coherence and how well the top-
ics represent their underlying documents we use
the top 10 topic words for LDA, ETM, CTM,
BERTopic and Top2Vec as the references. For
C-Top2Vec we use the top 10 phrases as the ref-
erences. For the candidates, we use the top 50
documents of each topic. For LDA, ETM, CTM
we select the top 50 candidates by taking the 50
documents with the highest probability of each
topic. For BERTopic and Top2Vec we select the 50
documents with the highest similarity score to each
topic.

In order to select the top 50 candidates for our
model, we find the top 50 most relevant documents

to each topic by using the element-wise multipli-
cation of the document topic probability and the
document topic relevance. Further, to evaluate our
topic segmentation, we use only the segments from
the document that are assigned to the topic rather
than using the entire document.

To compute the contextualized token embed-
dings of topics and documents, as suggested
by the official BERTScore Github1, we use the
microsoft/deberta-xlarge-mnli model (He
et al., 2021) which has the best correlation with
human judgments.

To compute BERTScore recall, BERTScoreR,
we create contextualized token embeddings for
each topics top 10 words and its top 50 documents.
We then compute pairwise cosine similarity be-
tween the embeddings of the topic’s top 10 words
and the embeddings of the topic documents. We
calculate BERTScoreR for each topic by taking
the maximum of similarity scores for each of the
topic’s contextualized tokens and doing a weighted
sum using the IDF values of each word as shown
Figure 3. We then average all the scores from each
topic to have a single BERTScoreR.

The results in Table 4 show that our approach
outperforms all other models. The BERTScoreR
demonstrates that our topics are significantly more
coherent in relation to their underlying documents.
The BERTScoreP shows that the documents are
well represented by the topics.

Model BERTScoreR BERTScoreP BERTScoreF1

20newsgroups
LDA 0.384 0.316 0.344
ETM 0.378 0.250 0.300
CTM 0.398 0.294 0.336
BERTopic 0.356 0.290 0.318
Top2Vec 0.410 0.309 0.351
C-Top2Vec 0.456 0.374 0.409

YahooAnswers
LDA 0.365 0.347 0.352
ETM 0.392 0.265 0.315
CTM 0.414 0.322 0.359
BERTopic 0.351 0.308 0.326
Top2Vec 0.387 0.344 0.362
C-Top2Vec 0.439 0.399 0.416

Table 4: Topic BERTScore evaluation.

1https://github.com/Tiiiger/bert_score
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Qualitative Analysis We show our sub-document
vectors in a 2D UMAP plot along with the topic
label assigned by C-Top2Vec for 20 topics on the
20newsgroups dataset in Figure 1. In Figure 2,
we show the topic spans assigned by C-Top2Vec
visualized with displacy (Honnibal and Montani,
2017). In Table 1, we show the top 2 and the
bottom 2 topics based on their BERTScoreR from
the top performing models.

Execution Time Our model uses contextual
token embeddings instead of a single vector per
document however the embedding generation time
remains unchanged. Table 5 shows a comparison
of the running times for all the evaluated models
on 20 topics for the 20newsgroups dataset.

Model Runtime
LDA 1 min
ETM 16 min
CTM 5 min
BERTopic 1 min
Top2Vec 2 min
C-Top2Vec 4 min

Table 5: Model run time comparison.

Topic Span Effect Analysis We assess our topic
span segmentation with BERTScore using three
variations: the complete document, solely the topic
segments, and the non-topic segments. The same
datasets and configuration as in the BERTScore
Evaluation section are used. The results shown
in Table 6, demonstrate that C-Top2Vec correctly
selects the topic segments as the topic span
BERTScoreR remains high when non-topic spans
are removed and is much lower when non-topic
spans are used.

Configuration BERTScoreR

20newsgroups
Whole Document 0.457
Topic Spans 0.456
Non-topic Spans 0.365

YahooAnswers
Whole Document 0.440
Topic Spans 0.439
Non-topic Spans 0.313

Table 6: Topic span evaluation.

Window Size Effect Analysis We evaluate the
impact of window size on our multi-vector docu-
ment representation by calculating the Silhouette
Score (Rousseeuw, 1987) for UMAP-reduced vec-
tors, using the dataset’s topic labels as a reference.
Table 7 shows that when using all tokens, equiv-
alent to a single document vector, or very small
window sizes, the Silhouette scores are low, indi-
cating poor cluster separation. In contrast, a win-
dow size of around 50 yields the highest Silhouette
score and thus provides the best clustering. This
demonstrates that the multi-vector document repre-
sentation is better for generating topic vectors than
the single-vector representation.

Window size Silhoutte Score
20newsgroups

15 0.140
25 0.182
50 0.194
100 0.192
All tokens 0.133

YahooAnswers
15 0.144
25 0.152
50 0.162
100 0.127
All tokens 0.114

Table 7: Effect of the window size.

4 Conclusion

We propose a novel topic modeling approach that
leverages contextual token embeddings to create
multi-vector document representations that capture
topical information from each segment of a docu-
ment. Our method finds topic vectors and labels
each topic using coherent and easily interpretable
phrases. C-Top2Vec supports hierarchical topic re-
duction, enabling it to handle topics at various lev-
els of granularity. Our model segments documents
into topic spans, enabling detailed and granular
analysis of topics. Our model produces a document
topic distribution and a document topic relevance
score which allows for ranking of document seg-
ments according to their relevance to a specific
topic. We propose the use of BERTScore for evalu-
ating both topic coherence and how informative top-
ics are of their underlying documents overcoming
previous gaps in evaluation. Our findings, based on
a comprehensive set of topic modeling evaluation
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metrics, demonstrate that our model outperforms
current state-of-the-art models.

Limitations

Using pre-trained embedding models in neural
topic modeling offers significant benefit by bring-
ing external knowledge; however, these models
may not fully grasp the nuances of a specific corpus.
Additionally, the models can introduce external bi-
ases as they are pre-trained on diverse datasets,
potentially affecting the accuracy of the topic mod-
els.

Topic model evaluation measures have limita-
tions as they cannot fully capture the nuances of
natural language. The effectiveness of a model
is highly dependant on the specific use case and
dataset therefore a custom approach should always
be used for model selection and evaluation.

Ethical Statement

In order to ensure the reproducibility of our re-
search and in the spirit of fostering openness and
transparency, we will make the source code associ-
ated with this paper available on GitHub.

In our research, we used datasets commonly used
in evaluating topic models and do not use or infer
any sensitive information.

Using pre-trained embedding models does inher-
ently introduce bias into topic modeling, thus it
is very important to understand what datasets the
embedding models were trained on.

In general, the risk of possible abuse of
C-Top2Vec is low.
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A Additional Related Work

Recent interest in neural topic modeling methods
has created a rapidly evolving landscape that is dif-
ficult to cover exhaustively. This appendix attempts
to highlight additional relevant neural topic mod-
eling approaches that are not detailed in the main
text. The purpose is to acknowledge the depth of
ongoing research and to guide the reader to other
relevant methods.

In their work, (Zhang et al., 2022b) explore clus-
tering methods for topic modeling and follow a sim-
ilar approach to BERTopic (Grootendorst, 2022)
for topic labelling. They demonstrate competitive
topic coherence compared to neural topic modeling
approaches. The limitation of their approach is the
BOW representation of clusters for topic labeling.

Another notable contribution is from (Bianchi
et al., 2021c) introduce cross-lingual neural topic
models that can be trained on one language and
applied to another. This paper uses contextual doc-
ument representations instead of BOW represen-
tations of documents which allows for zero-shot
cross-lingual topic modeling.

In their study, (Ding et al., 2018) propose adding
a training objective to maximize topic coherence.
They show that their approach increases topic co-
herence while maintaining a similar level of per-
plexity as baseline models.

The authors of (Doan and Hoang, 2021) evalu-
ate several neural topic models and compare them
to traditional probabilistic models. Their results
show that neural models are better at finding co-
herent topics and creating representations useful
for downstream tasks; however, they also conclude
that traditional models are strong baselines and are
sometimes better at modeling the documents.

For further reading, we suggest "A survey on
neural topic models: Methods, applications, and
challenges" (Wu et al., 2024) and "Topic modeling
algorithms and applications: A survey" (Abdel-
razek et al., 2023).

B Additional Datasets

The most commonly used dataset for topic model
evaluation is the 20newsgroups dataset (Pedregosa
et al., 2011). It contains around 18,000 posts from
20 newsgroups that are each on a different topic.
It is popular due to the diverse range of topics and
associated labels.

Another very popular dataset is Reuters-21578
(Hayes and Weinstein, 1990) which contains
around 20,000 news articles from Reuters news-
wire and it contains multiple labels for each docu-
ment.

The AG news topic classification dataset (Zhang
et al., 2015b) contains roughly 130,000 news arti-
cles with 4 different topic labels.

The M10 dataset (Pan et al., 2016) contains
roughly 10,000 documents that are scientific publi-
cations with 10 distinct topic labels.
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The BBC News (Greene and Cunningham, 2006)
dataset contains roughly 2,000 articles with 5 dis-
tinct topic labels.

The Yahoo! Answers topic classification dataset
(Zhang et al., 2015a) contains roughly 1,400,000
questions and their answers. The original dataset
can be acquired from the Yahoo! Webscope pro-
gram.

Our goal was to evaluate not just topic coherence,
but also how representative topics are of their un-
derlying documents. An essential criterion of our
dataset selection process was to have ground truth
on topic labels so that we can perform cluster eval-
uation. There are many other available datasets but
based on our review of the literature and datasets
20newsgroups and Yahoo! Answers best met our
criteria. We chose the two datasets due to their
size and number of topic labels. All other available
datasets were either too small, contained too few
labels, or did not have a single label per document.

C Experimental Setup

Model Training We trained LDA and ETM us-
ing the OCTIS framework (Terragni et al., 2021)
for standardization and reproducibility. We trained
CTM, BERTopic and Top2Vec using thier respec-
tive Github implementations234.

Due to the computational cost and time required
for training multiple models across a range of
topics and evaluating with BERTScore and other
evaluation metrics, we opted to train each model
once for each configuration.

Model Parameters To train LDA and ETM we
used OCTIS (Terragni et al., 2021) and their sug-
gested model parameters. For CTM we use the sug-
gested parameters from the paper (Bianchi et al.,
2021a) and their Github2. For BERTopic (Groo-
tendorst, 2022), due to the little information on
parameters in the paper we use the default values
from their Github3. For Top2Vec (Angelov, 2020)
we use the suggested parameters from the paper
and their Github4. All relevant evaluated model
parameters are shown in Table 8.

2https://github.com/MilaNLProc/contextualized-topic-
models

3https://github.com/MaartenGr/BERTopic
4https://github.com/ddangelov/Top2Vec

Model Parameters
Parameter Value

LDA
decay 0.5
gamma_threshold 0.001
iterations 50

ETM
num_epochs 100
t_hidden_size 800
t_hidden_size 800
rho_size 300
embedding_size 300
activation relu
dropout 0.5
lr 0.005
optimizer adam
batch_size 128
wdecay 1

CTM
embedding_model all-mpnet-base-v2
hidden_sizes (100, 100)
dropout 0.2
learn_priors True
batch_size 64
lr 2 ×10−3

momentum 0.99
solver adam
num_epochs 100

BERTopic
embedding_model all-mpnet-base-v2
top_n_words 10
umap_n_neighbours 15
umap_n_components 5
hdbscan_min_cluster_size 10

Top2Vec
embedding_model all-mpnet-base-v2
umap_n_neighbours 15
umap_n_components 5
hdbscan_min_cluster_size 15
min_count 50

C-Top2Vec
embedding_model all-mpnet-base-v2
umap_n_neighbours 50
umap_n_components 5
hdbscan_min_cluster_size 15
min_count 50
window_size 50
stride 40
smoothing_window_size 3

Table 8: Model parameters for all the evaluated models.
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