@inproceedings{uemura-etal-2024-afriinstruct,
title = "{A}fri{I}nstruct: Instruction Tuning of {A}frican Languages for Diverse Tasks",
author = "Uemura, Kosei and
Chen, Mahe and
Pejovic, Alex and
Maduabuchi, Chika and
Sun, Yifei and
Lee, En-Shiun Annie",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.793/",
doi = "10.18653/v1/2024.findings-emnlp.793",
pages = "13571--13585",
abstract = "Large language models (LLMs) for African languages perform worse compared to their performance in high-resource languages. To address this issue, we introduce AfriInstruct, which specializes in instruction-tuning of multiple African languages covering various tasks. We trained the LLaMa-2-7B using continual pretraining and instruction fine-tuning, which demonstrates superior performance across multiple tasks. Our mixed task evaluation shows that our model outperforms GPT-3.5-Turbo and other baseline models of similar size. Our contributions fill a critical gap of LLM performance between high-resource and African languages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="uemura-etal-2024-afriinstruct">
<titleInfo>
<title>AfriInstruct: Instruction Tuning of African Languages for Diverse Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kosei</namePart>
<namePart type="family">Uemura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahe</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Pejovic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chika</namePart>
<namePart type="family">Maduabuchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yifei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">En-Shiun</namePart>
<namePart type="given">Annie</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) for African languages perform worse compared to their performance in high-resource languages. To address this issue, we introduce AfriInstruct, which specializes in instruction-tuning of multiple African languages covering various tasks. We trained the LLaMa-2-7B using continual pretraining and instruction fine-tuning, which demonstrates superior performance across multiple tasks. Our mixed task evaluation shows that our model outperforms GPT-3.5-Turbo and other baseline models of similar size. Our contributions fill a critical gap of LLM performance between high-resource and African languages.</abstract>
<identifier type="citekey">uemura-etal-2024-afriinstruct</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.793</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.793/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>13571</start>
<end>13585</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AfriInstruct: Instruction Tuning of African Languages for Diverse Tasks
%A Uemura, Kosei
%A Chen, Mahe
%A Pejovic, Alex
%A Maduabuchi, Chika
%A Sun, Yifei
%A Lee, En-Shiun Annie
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F uemura-etal-2024-afriinstruct
%X Large language models (LLMs) for African languages perform worse compared to their performance in high-resource languages. To address this issue, we introduce AfriInstruct, which specializes in instruction-tuning of multiple African languages covering various tasks. We trained the LLaMa-2-7B using continual pretraining and instruction fine-tuning, which demonstrates superior performance across multiple tasks. Our mixed task evaluation shows that our model outperforms GPT-3.5-Turbo and other baseline models of similar size. Our contributions fill a critical gap of LLM performance between high-resource and African languages.
%R 10.18653/v1/2024.findings-emnlp.793
%U https://aclanthology.org/2024.findings-emnlp.793/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.793
%P 13571-13585
Markdown (Informal)
[AfriInstruct: Instruction Tuning of African Languages for Diverse Tasks](https://aclanthology.org/2024.findings-emnlp.793/) (Uemura et al., Findings 2024)
ACL