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Abstract

By incorporating the latest external knowledge,
large language models (LLMs) can modify
their internal memory. However, in practical
applications, LLMs may encounter outdated in-
formation, necessitating the filtering of such
data and updating of knowledge beyond in-
ternal memory. This paper explores whether
LLMs can selectively update their memories
based on the time constraints between internal
memory and external knowledge. We evalu-
ate existing LLMs using three types of data
that exhibit different time constraints. Our ex-
perimental results reveal the challenges most
LLMs face with time-constrained knowledge
and highlight the differences in how various
LLMs handle such information. Additionally,
to address the difficulties LLMs encounter in
understanding time constraints, we propose a
two-stage decoupling framework that separates
the identification and computation of time con-
straint into a symbolic system. Experimental re-
sults demonstrate that the proposed framework
yields an improvement of over 60% in Chat-
GPT’s performance, and achieves a 12-24%
enhancement in state-of-the-art LLM GPT-4.

1 Introduction

Large language models (LLMs) can provide an-
swers that differ from their internal knowledge
when supplied with external information (Zheng
et al., 2023; Xie et al., 2024). This capability facili-
tates the updating of incorrect or outdated informa-
tion within LLMs (Yao et al., 2023). For instance,
as illustrated in Figure 1(a), when asked “Who
is the Prime Minister of the UK?”, the LLM can
provide the updated answer “Rishi Sunak,” based
on the latest knowledge, instead of relying on its
outdated memory like “Boris Johnson.”

In practical applications such as retrieval-
augmented tasks (Gao et al., 2023b), outdated infor-
mation may also be inputted into LLMs alongside
the latest knowledge. This necessitates LLMs to
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Figure 1: Updating LLM’s memory without and with
time constraints.

eliminate knowledge overlapping with their mem-
ory and update their internal memory with new
information. A straightforward approach involves
selectively updating the internal memory of LLMs
based on the time constraint relationship between
the question, internal memory, and the external
knowledge. For example in Figure 1(b), given the
question “How many LA metro rail stations as of
2024”, the LLM’s original internal memory states
“as of 2021, there are 93.” The first given piece
of knowledge has a time constraint of “May 20,
2016”, which is covered by the LLM’s current in-
ternal memory range, thus no update is needed.
The second piece of knowledge has a time con-
straint of “2022-2024”, which extends beyond the
LLM’s internal memory and necessitates an update.
Ignoring these time constraints can lead LLMs to
provide answers that either exceed the scope of the
intended question constraints or result in redundant
updates to already covered knowledge.

This paper conducts a comprehensive and con-
trolled study of how LLMs understand and update

13693

ycai@scut.edu.cn


time-constrained knowledge. Specifically, we con-
struct test data based on three time constraint rela-
tions between internal memory and external knowl-
edge (i.e., complete inclusion, intersection, and
disjunction) to examine whether LLMs can com-
prehend and selectively update time-constrained
knowledge. Additionally, we investigate the sen-
sitivity of LLMs to the sequential order of time-
constrained knowledge and the role of internal
memory in the process of knowledge updating. Our
experiments reveal several key findings:
(1) Most LLMs struggle to update memory with
time-constraint. Except for GPT4, the other
LLMs (e.g., Llama2, Mistral) exhibit poor abilities
for updating memory with time constraints. Addi-
tionally, ChatGPT performs worse in this regard
compared to smaller open-source models across
multiple scenarios.
(2) Different LLMs display distinct decision
styles when handling time-constrained knowl-
edge. GPT4 is more proactive in accepting time-
constrained knowledge, while ChatGPT generally
depends on its internal memory.
(3) Time constraints can affect LLMs’ decision
styles. Time constraints in the question act as trig-
gers to promote the stubborn LLMs, e.g., ChatGPT,
to update their internal memory more frequently.

In contrast to the poor temporal reasoning of
LLMs (Zhu et al., 2023; Li et al., 2023), the dis-
covery of the the relationship of time constraints
are easily achievable in symbolic systems (Li et al.,
2023). For example, in a Python solver, represent-
ing time-related information using specific data
structures enables checking for temporal contradic-
tions among multiple pieces of information. On
the other hand, LLMs have shown strong capabili-
ties in information extraction (Zhu et al., 2023; Pan
et al., 2023). Based on this, we propose a two-stage
decoupling framework for time-constrained knowl-
edge updating. We limit LLMs to information ex-
traction only and delegate information reasoning
to symbolic systems (i.e., Python solver). We con-
duct experiments on Mistral, ChatGPT, and GPT4,
and the results demonstrate significant performance
improvements for these three LLMs.

2 Related Work

Knowledge Editing. As the global landscape
changes, there is a growing need to update LLMs
without retraining them entirely. Knowledge edit-
ing has emerged as a solution to this challenge

(Meng et al., 2022a,b; Mitchell et al., 2022; Zheng
et al., 2023; Li et al., 2024). The current knowl-
edge editing methods can be mainly divided into
two categories. The first involves modifying the pa-
rameters of LLMs to alter their internal knowledge
(Meng et al., 2022a,b; Li et al., 2024). The sec-
ond approach injects knowledge directly into the
prompt, leveraging in-context learning to update
the LLMs (Mitchell et al., 2022; Zheng et al., 2023;
Xie et al., 2024). A comprehensive review with
unified experiments suggests that the latter method
more effectively ensures the reliability, generaliza-
tion, and locality of knowledge updates (Yao et al.,
2023). This paper primarily investigates the capac-
ity of LLMs to perform knowledge editing within
time constraints.
Time-sensitive Question Answering. Time-
sensitive QA is closely related to knowledge up-
dating. Since only knowledge that changes over
time needs updating. Currently, there is a growing
body of work on benchmarking LLMS’ temporal
reasoning capabilities (Chen et al., 2021; Wei et al.,
2023; Vu et al., 2023; Tan et al., 2023). However,
most time-sensitive QA datasets measure whether
LLMs can obtain answers to preset questions based
on contexts with time constraints. This differs
from knowledge updating, which modifies the in-
ternal memory of LLMs. Section 3.1 discusses how
to construct knowledge with time constraint from
some existing time-sensitve QA datasets.
Symbolic system Enhancement. LLMs often
struggle with rigorous logical reasoning and nu-
merical calculations (Liu et al., 2023; Pan et al.,
2023). Combining LLMs with symbolic systems
has proven effective in mitigating these challenges
(Pan et al., 2023; Li et al., 2023; Zhu et al., 2023).
Inspired by this, we propose a symbolic-enhanced
framework to update LLMs’ memories with time
constraints. Our approach involves identifying time
constraint relationships using Python code and per-
forming reasoning with a Python solver.

3 Dataset Construction

We introduce a framework to construct time-
constrained knowledge. Following prior work
(Mitchell et al., 2022; Zheng et al., 2023; Xie
et al., 2024), we adopt question answering (QA)
task as the testbed for evaluation. First, we collect
questions whose answers may change over time.
Second, we elicit LLMs’ internal memories about
these questions. Finally, we construct new time-
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Figure 2: Our framework to construct dataset with time-constrained knowledge.

constrained knowledge that need to be updated into
LLMs’ memories.

3.1 Task Definition

Given a question qi and supporting evidence ei,
requiring LLMs to answer qi based on both ei and
its internal memories mi, and obtain the answer ai.
Our experiment focuses on testing whether LLMs
can understand and process time constraints in ei
and mi.

To construct data with time constraints in ei and
mi, in this paper, we mainly use time sensitive
how-many questions as qi. Since the answer to
time-sensitive how-many questions usually is a
number that changes over time, we can build a
lot of external evidence ei to indicate that the an-
swer is changing. LLMs need to analyze the time
constraints between external evidence ei and inter-
nal memories mi and update their memories. For
example, the answer to the question “How many
subway stations are there in Los Angeles?” will
continually increase or decrease with the addition
of new evidence.

3.2 Questions Collection

According to the task definition, we limit the scope
of the questions to time-sensitive how-many types
of questions. For example, “In 2024, how many
subway stations are there in LA?” As illustrated in
Figure 2 step 1, we construct time-sensitive how-
many questions Q in two ways. Firstly, we extract
them from existing time-sensitive or how-many QA
datasets. Secondly, to enhance question diversity,
we utilize ChatGPT to generate questions spanning
various domains such as movies, sports, literature,
and politics.

3.3 Internal Memories Elicitation

As shown in Figure 2 step 2, we obtain internal
memories mi from LLMs in a closed-book manner.
We instruct LLMs to answer questions qi without
any external evidence. For example, given a ques-
tion “how many subway stations are there in LA?”,
LLMs are instructed to provide an answer “93” and
its supporting background information.

To facilitate the next step of time-constrained
knowledge construction, we also convert internal
memories into a timeline Tinter. As shown in Fig-
ure 2, we guide the LLMs to construct a timeline
correlating with the question. To ensure the stabil-
ity of testing, we manually filter out samples where
the answer, internal memories, and timeline are
inconsistent.

3.4 Time-Constrained Knowledge
Construction

Given the inconsistent cutoff times for training
data across various LLMs are not consistent, but
with all cutoffs occurring before 2024, we define
“new knowledge” as events fabricated to occur after
2024. To achieve this goal, as illustrate in Figure 2
step 3, we instruct the LLMs to extend the internal
memory timeline Tinter to obtain a new timeline
Tall = Tinter + Tnew, where Tnew is the timeline
after 2024. For each event in Tinter and Tnew, we
instruct LLMs to paraphrase them to include more
details. Thus, we obtain sets of event descriptions
Dinter and Dnew.

3.5 Dataset Construction

There are various time constraint relationships be-
tween internal memory and external evidence, such
as complete inclusion, intersection, and disjunction.
Based on these relationships, we constructed three
types of data to assess the performance of LLMs
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w/o Internal memories w/ Internal memories
Fully Partially Not Fully Partially Not

BASE
Llama2 (7b-chat) 7.76 16.81 51.54 25.43 18.97 42.05
Vicuna (7b-v1.5) 11.21 14.22 47.16 19.83 16.38 55.68
Mistral (7b-instruct-v0.2) 11.64 19.83 47.73 47.84 31.47 51.7
ChatGPT (gpt3.5-turbo) 6.47 9.05 63.64 19.83 8.62 68.75
GPT4 (gpt4-turbo) 44.4 44.4 54.55 81.03 60.78 69.32

COT
Llama2 (7b-chat) 8.62 15.09 39.77 28.88 18.1 49.43
Vicuna (7b-v1.5) 9.48 16.81 40.34 31.9 18.97 56.82
Mistral (7b-instruct-v0.2) 17.24 17.67 34.09 51.72 25.43 56.82
ChatGPT (gpt3.5-turbo) 12.93 23.71 53.41 36.64 15.95 67.05
GPT4 (gpt4-turbo) 57.33 51.29 68.18 84.48 73.71 76.14

Table 1: The accuracy of tested LLMs on the construted dataset.

in different scenarios. As shown in Figure 2 step 4:
Fully Update, Not Update, and Partially Update.
Each sample xi of is defined as {qi,mi, ei, ai},
where mi and ai represent the internal memories
and answer corresponding to question qi. The dif-
ference among the three types of data lies in the
use of different external supporting evidence ei.
Specifically:
Fully Update: The ei used for Fully update type
data is entirely extracted from Dnew. In this case,
all information mentioned in ei needs to be updated
into the answer. This type of data mainly verifies
whether LLMs have basic capabilities to identify
and update time-constrained knowledge.
Not Update: The ei used for data of the Not up-
date type comes entirely from Dinter. In this case,
all the information mentioned in ei does not need
to be updated into the answer because this infor-
mation has already been mentioned in the inter-
nal memories. This type of data mainly verifies
whether LLMs have the ability to discern whether
the accepted information overlaps with their inter-
nal memories.
Partially Update: The ei used for Partially Update
type of data comes from Dinter and Dnew. In this
case, the information mentioned in ei that belongs
to Dnew needs to be updated into the answer, while
the information belonging to Dinter does not need
to be updated. Partially updated data is mainly for
verifying whether LLMs can selectively process
the received information.

After manually filtering out inconsistent data, we
ultimately collect 640 test samples for each LLMs,
with 232 Fully Update samples, 176 Not Update

samples, and 232 Partially Update samples.

4 Experiments

4.1 Dataset and Metric

We conduct experiments using the constructed
dataset. Specifically, for each LLM, the test data
consists of 640 samples with their internal memo-
ries, i.e., {qi,mi, ei, ai}, and 640 samples without
internal memories, i.e., {qi, ei, ai}. This setup aims
to determine the ability of LLMs to accurately re-
call their internal memories during the knowledge
update process. Throughout all experiments, we
employ accuracy as the metric.

4.2 Baselines

We select widely used LLMs and prompt meth-
ods as baselines. Specifically, we experiment with
ChatGPT (Ouyang et al., 2022), GPT4 (Achiam
et al., 2023), Llama2 (Touvron et al., 2023), Vi-
cuna (Chiang et al., 2023), and Mistral (Jiang et al.,
2023) as LLMs, and conduct experiments using
two prompt methods: BASE and COT. Specifically,
BASE prompt directly prompts the LLM to gener-
ate the answer to the question, while COT prompt
involves breaking down the question and gradually
obtaining the answer (Kojima et al., 2022).

4.3 Experimental Setup

For the BASE method, we directly use the re-
sponses generated by LLMs as the predicted an-
swers. For the COT method, we take an additional
step to extract the final answer from the responses
of LLMs. We employ ChatGPT to perform this
extraction step.
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Fully △ Partially △ Not △
With time constraint in question

ChatGPT (gpt3.5-turbo) BASE 19.83 - 8.62 - 68.75 -
COT 36.64 - 15.95 - 67.05 -

Mistral (7b-instruct-v0.2) BASE 47.84 - 31.47 - 51.70 -
COT 51.72 - 25.43 - 56.82 -

Without time constraint in question
ChatGPT (gpt3.5-turbo) BASE 3.88 -15.95 1.72 -6.90 99.43 +30.68

COT 20.26 -16.38 8.62 -7.33 97.73 +30.68
Mistral (7b-instruct-v0.2) BASE 34.91 -12.93 22.41 -9.06 83.52 +31.82

COT 31.03 -20.69 13.79 -11.64 79.55 +22.73

Table 2: Comparison analysis of whether the question contains time constraints. △ denotes the change in perfor-
mance after removing the time constraint in question.

4.4 Results

Most LLMs struggle to update memories with
time constraints. As shown in Table 1, small
LLMs with 7b parameters (Llama2, Vicuna, Mis-
tral) and ChatGPT perform poorly across three
data types. Notably, ChatGPT, using the BASE
method, often underperforms compared to the 7
billion parameter models. Among current models,
only GPT-4 shows relatively good proficiency in
updating time-constrained knowledge, yet it still
fails to achieve an accuracy of 70% in many cases.
Some LLMs are stubborn, while some LLMs
are proactive. LLMs exhibit certain preferences
across three types of data. For instance, GPT-4 gen-
erally performs optimally but has a notable drop
in performance with Not Update data compared
to its robust outcomes with Fully Update and Par-
tially Update data. This suggests that GPT-4 excels
at incorporating new information but struggles in
scenarios where updates are not required, i.e., Not
Update. Conversely, although ChatGPT does not
perform as well as some 7b LLMs on Fully Update
and Partially Update data, it excels on Not Update
data, sometimes even outperforming GPT-4. This
indicates ChatGPT’s more conservative strategy
that it rely on its own memory.
LLMs exhibit amnesia phenomenon. Our exper-
iments reveal significant performance differences
in LLMs depending on whether internal memo-
ries are explicitly present (w/ Internal memories)
or absent (w/o Internal memories). This indicates
that even if LLMs possess correct memories, the
absence of explicit memory retrieval can lead to
memory loss during response generation. These
findings corroborate existing research (Xie et al.,
2024) and highlight the importance of explicitly

informing LLMs of known knowledge to enhance
their performance.

COT facilitates knowledge updating for large
LLMs, but not small LLMs. We can observe that
the COT method brings positive improvements to
LLMs such as ChatGPT and GPT4 (except for a
decline in COT+ChatGPT on Not Update). How-
ever, COT does not consistently improve small-
parameter models like Llama2, Vicuna, and Mis-
tral. One possible reason is ChatGPT and GPT4
possess stronger chain reasoning capabilities.

The time constraint in the question is the trigger
for changing the LLMs’ decision styles. Apart
from the time constraints in knowledge, we also
compare the impact of time constraints in question
qi. Table 2 presents the experimental results for the
open-source LLM Mistral and the closed-source
ChatGPT. We make the following observations: (1)
When there is no time constraint in the question,
the performance of both Mistral and ChatGPT de-
crease on both Fully Update and Partially Update
data types. This indicates that these two LLMs
are more inclined to rely on their own memory in
such cases, showing that the presence or absence
of a time constraint in the question can change the
decision styles of the LLMs. This also provides en-
gineering insight, indicating that even when useful
knowledge is provided to LLMs, explicit time con-
straints in the question are needed to trigger LLMs
to update their memories. (2) On the Not Update
dataset, when there are no time constraints in the
question, the LLMs tend not to update. Therefore,
the accuracy of both Mistral and ChatGPT signifi-
cantly improved.

LLMs are sensitive to the order of information.
The input internal memories and external evidences
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Figure 3: The comparative analysis of the order of information in the instructions.

Fully △ Partially △ Not △
PAL

Mistral (7b-instruct-v0.2) 43.53 -4.31 30.17 -1.3 65.91 +14.21
ChatGPT (gpt3.5-turbo) 67.67 +47.84 34.91 +26.29 63.64 -5.11
GPT4 (gpt4-turbo) 90.09 +9.06 81.9 +21.12 91.48 +22.16

Two-stage Decoupling Framework
Mistral (7b-instruct-v0.2) 65.52 +17.68 48.71 +17.24 81.82 +30.12
ChatGPT (gpt3.5-turbo) 77.59 +57.76 75.43 +66.81 94.89 +26.14
GPT4 (gpt4-tubo) 93.97 +12.94 80.6 +19.82 93.75 +24.43

Table 3: The accuracy of code-enhanced methods. △ indicates performance gain over BASE method.

Figure 4: Two-stage decoupling framework.

in each sample are arranged in chronological order.
An intuitive question is whether LLMs are sensitive
to the order of received information. To investigate
this, we conduct a set of comparative experiments
testing three order types: chronological, reverse,
and random. Figure 3 shows the results of Mistral
and ChatGPT on these three types of ordered data.

Our findings indicate that both Mistral and Chat-
GPT exhibit varying degrees of sensitivity to order.
Performance notably decrease with reverse order
across all data types. For random order, perfor-
mance is intermediate, falling between the results
for chronological and reverse orders.

5 Two-stage Decoupling Framework

The above experimental results indicate that, ex-
cept for GPT-4, most LLMs exhibit weak abilities
to identify and update time-constrained knowledge.
One possible reason is that LLMs lack of under-
standing of temporal reasoning (Wei et al., 2023).
In contrast, LLMs demonstrate excellent perfor-
mance in information extraction (Zhu et al., 2023;
Pan et al., 2023). Additionally, most temporal rea-
soning problems can be solved through symbolic
computation (Gao et al., 2023a), such as a Python
solver. Therefore, we propose a two-stage frame-
work for updating time-constrained knowledge. We
decouple information extraction and temporal rea-
soning into two separate modules. Specifically, this
framework includes an Evidence Extractor for ex-
tracting time-sensitive information and a Timeline
Builder for calculating the final answer based on
the extracted information. The overall architecture
is illustrated in Figure 4.
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5.1 Evidence Extractor

Formally, Evidence Extractor is a LLM M that
takes question qi, internal memories mi, and ex-
ternal information ei as input. It extracts a set of
evidence E from mi and ei that is necessary to
answer qi. All evidence is represented in the form
of Python class. Specifically, each evidence con-
sists of a quantity, a start time and a end time. For
example, the information “2 new LA metro sta-
tions were built in 2023-2024.” would be extracted
as evidence: “evidence1 = Evidence(quantity=2,
start_time=2023, end_time=2024).”

5.2 Timeline Builder

Formally, Timeline builder is a task-specific Python
solver P . We utilize the logical reasoning mecha-
nism within Python to construct a timeline from the
extracted evidence set E. For any time constraint ti
in question, P is able to return the evidence subset
prior to ti along with the total sum of quantities
corresponding to all evidence in the subset.

5.3 Framework Evaluation

We validate the effectiveness of the proposed frame-
work on the constructed dataset. Specifically, since
the framework requires explicit input of internal
memories, we test it on data with internal memo-
ries (w/ Internal memories). We select three LLMs:
Mistral, ChatGPT, and GPT-4, based on prelimi-
nary experiments that demonstrate their code com-
prehension and generation capabilities. Addition-
ally, we chose the code enhanced prompt method
PAL as the baseline (Gao et al., 2023a). The exper-
imental results are shown in Table 3. We make the
following observations:
Code-enhanced methods facilitate updating
time-constrained knowledge. The experimental
results indicate that the PAL method generally im-
proves performance compared to the BASE method.
For instance, with GPT-4, PAL achieves improve-
ments of 9.06%, 21.12%, and 22.16% across three
different data types. In the case of ChatGPT, PAL
significantly enhances performance by 47.84% on
Fully Update and 26.29% on Partially Update
datasets. This improvement may be attributed to
PAL’s ability to adjust ChatGPT’s conservative
strategy in the BASE method, steering it towards
more frequent knowledge updates. However, this
adaptation leads to a performance decline on Not
Update data, where updates are unnecessary. Con-
versely, for Mistral, a model with weaker coding

abilities, PAL results in performance decreases of
4.31% and 1.30% on Fully Update and Partially
Update datasets, respectively. These outcomes sug-
gest that the effectiveness of PAL is influenced by
the coding capabilities of the LLMs.
Decoupling is beneficial for identifying and up-
dating time-constrained knowledge. The pro-
posed two-stage framework consistently yields sig-
nificant improvements across all cases. For in-
stance, it enhances ChatGPT’s performance by
57.76% on Fully Update and 66.81% on Partially
Update tasks. Even the top-performing GPT-4
model shows improvements of 12.94%, 19.82%,
and 24.43% across three types of data. Further-
more, by decoupling the framework, LLMs can
focus on information extraction, reducing errors
associated with code generation compared to PAL,
thereby providing stable enhancements across all
tested LLMs.
LLMs are good at information extraction. We
manually verify the evidence extraction capabilities
of Mistral, ChatGPT, and GPT-4 due to the absence
of ground truth. Specifically, for each LLM, we
randomly sample 50 instances. The accuracy of
evidence extraction for the three LLMs is 68.00%,
80.00%, and 88.00%, respectively. This indicates
that LLMs can perform the extraction task well in
most cases. We further analyze the errors, which
predominantly fall into three categories: semantic
understanding errors, instruction following errors,
and code generation errors.

• Semantic understanding errors involve the
LLMs failing to comprehend the information
correctly, either generating evidence not men-
tioned or omitting relevant evidence. These
issues, often due to hallucinations, represent
10.00%, 12.00%, and 8.00% of errors for Mis-
tral, ChatGPT, and GPT-4, respectively. For
example, for information “"Breaking Bad"
had a total of 62 episodes spread across 5
seasons as of the latest information.”, LLM
incorrectly takes the number of episodes 62 in
the text as the number of seasons.

• Instruction following errors occur when the
LLMs misinterpret the extraction instructions
as a question-answering task and generate the
final answer directly rather than extracting
the required evidence. These errors primarily
affect Mistral and ChatGPT, accounting for
10% and 4%, respectively. For example, for
information “The FDA added sesame as the
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Case 1 Case 2

Question As of 2028, how many member states are
there in the Eurozone?

As of 2030, how many food allergens with mandatory labeling
are there in the United States?

Answer 20 14

Internal
Memory

As of 2021, there are currently 19 mem-
ber states in the Eurozone....

As of 2021, there are eight food allergens with mandatory labeling
in the United States. . .

External
Evidence

On January 1, 2024, Poland officially
adopted the Euro currency and became a
member of the Eurozone....

1.In 2024, the FDA made an important update ... by adding
sesame to the list of mandatory allergens for labeling. 2.In 2026,
the FDA made an significant update ... by adding molluscan
shellfish and mustard .... 3.In 2028, FDA included Shellfruit as
a mandatory allergen for labeling purposes. 4.In 2029, the FDA
expanded the list ... by adding sunflower seeds and quinoa protein.

BASE 19 12

COT Sure, let’s break it down step by step.
First, we know that as of 2021, there
are 19 member states in the Eurozone.
Next, we need to determine how many
years have passed between 2021 and
2028. 2028 - 2021 = 7 years So, if
we assume that no countries have joined
or left the Eurozone during those 7
years, then as of 2028, there would
still be 19 member states in the Euro-

zone.

Step 1: We know that as of 2021, there are eight food allergens
with mandatory labeling in the United States. Step 2: We also
know that there have been several updates to the list of mandatory
allergens for labeling in the United States, with sesame, molluscan
shellfish, mustard, and Shellfruit being added in 2024, 2026,
2028, and 2029, respectively. Step 3: Based on the information
provided, we can add these four allergens to the original list
of eight, bringing the total number of mandatory allergens for
labeling to 12 .

Ours Evidence1 = Evidence(19, year=2021)
Evidence2 = Evidence(1, year=2024,
month=1, day=1) Answer = 19+1 = 20

Evidence1 = Evidence(20, year=2021) Evidence2 = Evidence(1,
year=2024) Evidence3 = Evidence(2, year=2026) Evidence4 =
Evidence(1, year=2028) Evidence5 = Evidence(2, year=2029)
Answer = 8+1+2+1+2 = 14

Table 4: Comparison of generation results under different methods used by ChatGPT. The baseline methods generate
incorrect responses, while our proposed framework can provide correct answers.

9th mandatory allergen for labeling.”, LLM
mistakenly thought to answer the question and
extract 9 as the evidence.

• Code generation errors mainly involve the gen-
eration of incorrect or redundant code by the
LLMs. The proportions of code generation
errors for the three LLMs are 12.00%, 4.00%,
and 4.00%, respectively.

Case Study Figure 4 depicts ChatGPT’s cases un-
der different methods. In the first scenario, Chat-
GPT does not identify any time constraint con-
flicts between the given knowledge and its memory.
Therefore, ChatGPT does not update its internal
memory. Conversely, in the two-stage framework,
ChatGPT accurately extracts temporal information
from both its internal memory and the provided
knowledge, updating it precisely with the help of
a Python solver. In the second scenario, although
ChatGPT detects time constraint contradictions us-
ing the BASE and COT methods and try to update
its memory. However, a computational error oc-
curs during the update. In the proposed framework,

calculations are performed by a Python solver, en-
suring no computational errors. These examples
demonstrate that while LLMs can accurately ex-
tract time-related information, they cannot inde-
pendently perform temporal reasoning accurately.
In contrast, a Python solver can effectively exe-
cute temporal reasoning. The proposed framework
effectively combines the strengths of LLMs and
symbolic systems in information extraction and
temporal reasoning, respectively.

Generalization Ability Our proposed method can
be transfer to non-numerical case. The core idea of
the decoupling framework is to decouple temporal
reasoning into two steps, completed by the LLM
and a symbolic system, respectively. The experi-
ment results show that the LLM’s ability to extract
information is far superior to its reasoning ability.
Based on this conclusion, we can quickly transfer
this two-stage framework to other tasks. We sup-
plement our experiments with time-sensitive entity
type QA data (Wei et al., 2023). We utilize LLM
to extract time-sensitive evidence from the context
and answer questions by matching the timing with
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Accuracy
BASE 40.81
COT 42.85
Our Two-stage Framework 57.14

Table 5: Accuracy on entity-type QA task.

the question. For example, one piece of knowl-
edge is like “Detmer was traded to the Cleveland
Browns in 1999 ; the Browns wanted him to men-
tor rookie quarterback Tim Couch . Detmer started
the first game of the 1999 season , then served as
backup until Couch sprained his foot in week 15
. He started the final game of the 1999 season .
Detmer injured his right Achilles and was inactive
the entire 2000 season .” LLM extract evidence
as: “{"subject": "Ty Detmer", "relation": "team",
"object": "Cleveland Browns", "start_time": 1999,
"end_time": 2000}”, which can be used to answer
the question“Ty Detmer played for which team
from 1999 to 2000?” The results using different
methods in ChatGPT are as showed in Table 5.
This demonstrates that our method has good gener-
alizability across different scenarios.

6 Conclusion

In this paper, we explore the capabilities of LLMs
for updating knowledge with time constraints. We
propose a framework for constructing test data for
time-constrained knowledge and construct test data
to evaluate LLMs including Llama2, Vicuna, Mis-
tral, ChatGPT, GPT4, respectively. Experimental
results reveal that most LLMs lack the ability to
update time-constrained knowledge. On the other
hand, different models also exhibit different deci-
sion styles for time-constrained knowledge. Addi-
tionally, we find that time constraints in question is
a trigger that can change the LLMs’ decision styles.
Finally, we propose a two-stage decoupling frame-
work that decouples the discovery and computation
of time constraints from LLMs into a symbolic
system. Experimental results show that this decou-
pling approach can bring ChatGPT an improvement
of over 60%, and also has a 12-24% improvement
for state-of-the-art LLMs GPT4.
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Limitations

In this paper, we explore the three common types of
time constraints in our experiments: complete in-
clusion, intersection, and disjunction. However,
time constraints in real-world scenarios can be
more complex and may require external knowl-
edge retrieval to aid reasoning. Additionally, we
primarily examine the ability of LLMs to update
knowledge through question-answering (QA) tasks,
as well as considering their performance in other
tasks such as natrual language generation task.
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