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Abstract
Multimodal Large Language Models (MLLMs)
extend the capacity of LLMs to understand mul-
timodal information comprehensively, achiev-
ing remarkable performance in many vision-
centric tasks. Despite that, recent studies have
shown that these models are susceptible to jail-
break attacks, which refer to an exploitative
technique where malicious users can break the
safety alignment of the target model and gener-
ate misleading and harmful answers. This po-
tential threat is caused by both the inherent vul-
nerabilities of LLM and the larger attack scope
introduced by vision input. To enhance the se-
curity of MLLMs against jailbreak attacks, re-
searchers have developed various defense tech-
niques. However, these methods either require
modifications to the model’s internal structure
or demand significant computational resources
during the inference phase. Multimodal in-
formation is a double-edged sword. While it
increases the risk of attacks, it also provides
additional data that can enhance safeguards.
Inspired by this, we propose Cross-modality
Information DEtectoR (CIDER), a plug-and-
play jailbreaking detector designed to iden-
tify maliciously perturbed image inputs, utiliz-
ing the cross-modal similarity between harm-
ful queries and adversarial images. CIDER
is independent of the target MLLMs and re-
quires less computation cost. Extensive ex-
perimental results demonstrate the effective-
ness and efficiency of CIDER, as well as its
transferability to both white-box and black-
box MLLMs. The resource is available at
https://github.com/PandragonXIII/CIDER.

1 Introduction
The remarkable advancements in Large Language
Models (LLMs) have significantly improved per-
formance benchmarks in various natural language
processing (NLP) tasks (Achiam et al., 2023; Tou-
vron et al., 2023; Zhao et al., 2023; Chiang et al.,
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Figure 1: The architecture of a typical MLLM.

2023). To extend the capacities and open up the
potentials of LLMs in comprehensively understand-
ing diverse types of data, such as visual informa-
tion, researchers have developed Multimodal Large
Language Models (MLLMs) that integrate visual
modalities to handle vision-centric tasks. MLLMs
use LLMs as a core, complemented by modal-
specific encoders and projectors, enabling them
to process, reason, and generate outputs from mul-
timodal data (Yin et al., 2023; Dai et al., 2024;
Bai et al., 2023). A typical MLLM architecture is
illustrated in Figure 1.

The widespread adoption of MLLMs in various
applications brings significant safety challenges,
particularly due to inherited vulnerabilities from
traditional LLMs, such as the susceptibility to
jailbreak attacks (Carlini et al., 2024; Li et al.,
2024; Qi et al., 2024). Jailbreak attacks refer to
an exploitative technique where malicious users
can craft sophisticated-designed prompts to lead
LLMs to answer misleading or harmful questions,
effectively breaking the safety alignment. Various
jailbreak attack algorithms targeting LLMs have
been proposed, which can mainly be categorized
into template-based (Deng et al., 2024; Chao et al.,
2023; Li et al., 2023) and optimization-based (Zou
et al., 2023) approaches.

Additionally, MLLMs not only inherit the vul-
nerabilities of LLMs but also become more sus-
ceptible to jailbreak attacks due to their integration
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Figure 2: The workflow of safeguarding MLLM against jailbreak attacks via CIDER.

with other modalities. On the one hand, jailbreak
attacks against MLLMs can originate from both the
textual and visual modalities, significantly broad-
ening the scope of potential adversarial examples
(Gong et al., 2023; Shayegani et al., 2023). On
the other hand, recent research indicates that fine-
tuning MLLMs to learn the vision modality can
cause LLMs to disregard their previously learned
safety alignment (Zong et al., 2024).

The existing jailbreak attacks on MLLMs can
be categorized into two strategies. One is white-
box optimization-based attacks, which define a loss
function to generate imperceptible perturbations in
the image modality (Carlini et al., 2024; Qi et al.,
2024; Niu et al., 2024). The other is black-box
strategies including typographically transforming
harmful queries into images such as FigStep (Gong
et al., 2023) or adding related images containing
harmful text such as QR (Liu et al., 2023).

From the defense perspective, optical character
recognition (OCR) can serve as an effective de-
tection tool for the second strategy but fails when
defending against optimization-based adversarial
attacks. In addition, Zong et al. (2024) creates
a vision-language dataset named VLGuard con-
taining both safe and unsafe queries and images,
which can be used to fine-tune MLLMs for im-
proved safety against jailbreak attacks. However,
the effectiveness of VLGuard is only tested on Fig-
Step attack and it requires the model to be white-
box to fine-tune. Zhang et al. (2023) proposed a
mutation-based jailbreaking detection framework
named Jailguard. However, the performance of
Jailguard heavily relies on the MLLMs’ original
safety alignment, and it significantly increases com-
putational costs during the inference phase.

Multimodal information is a double-edged
sword: while it increases the risk of attacks, it

also provides additional data that helps enhance
safeguards. Inspired by this potential, we propose
Cross-modality Information DEtectoR (CIDER),
a plug-and-play jailbreaking detector designed to
identify maliciously perturbed image inputs, specif-
ically targeting optimization-based jailbreak at-
tacks that are more imperceptible and susceptible.
The intuition is that optimization-based perturba-
tions break the MLLM’s safeguards by capturing
the main harmful content in the malicious query.
As a result, the semantic distance between a harm-
ful query and an adversarially perturbed image is
significantly smaller than that between a harmful
query and a clean image.

Directly utilizing the difference between clean
and adversarial images on the semantic distance
to harmful query is challenging, as the absolute
value of the distance varies across different harm-
ful queries. To address this issue, we incorpo-
rate a denoiser to preprocess the vision modality,
using the relative shift in the semantic distance
before and after denoising to reflect the differ-
ence between clean and adversarial images. As
shown in Figure 2, the key insight of CIDER is
to identify whether an image is adversarially per-
turbed based on the semantic similarity between
image and text modality before and after denoising
(⟨Etext,Eimg(o)⟩ − ⟨Etext,Eimg(d)⟩). If the image
modality is not perturbed, the semantic similarity
between text and image remains stable. However,
the adversarially perturbed image designed for jail-
break will experience a significant drop. By setting
a threshold based on this change, we can effec-
tively detect adversarially perturbed images aimed
at jailbreaking MLLMs. The detailed intuition is
elaborated in Section 2.

As a pre-detection module encapsulated before
any MLLMs, the key advantage of CIDER is its
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plug-and-play nature, making it independent of
the target model. Additionally, timely inference is
crucial for safeguarding MLLMs. CIDER achieves
this with denoising procedures, ensuring efficiency
and minimal latency.

In this work, we propose CIDER, an effective
and efficient pre-detection module that denoises
and inspects each input image. For images identi-
fied as adversarially perturbed for jailbreak pur-
poses (where the semantic shift exceeds a pre-
defined threshold), the MLLM will refuse to gen-
erate a response. Images deemed normal will be
processed along with the text input for model infer-
ence by the MLLM. The workflow of safeguarding
MLLMs against jailbreak attacks using CIDER is
illustrated in Figure 2. Our contribution can be
summarized as follows:

• Based on the intuition that cross-modality in-
formation is a double-edged sword, we investi-
gate the relationship between malicious queries
and adversarial perturbed images in the seman-
tic space. By incorporating a diffusion-based
denoiser to uncover the potential of mitigat-
ing harmful information in adversarial images
through denoising.

• We propose a plug-and-play jailbreaking detec-
tor, CIDER, which can effectively safeguard
MLLMs while incurring almost no additional
computational overhead.

• Extensive experiments validate that CIDER
outperforms the baseline method, achieving a
higher detection success rate while reducing the
computational cost as well. Experimental re-
sults also demonstrate its strong transferability
across both white-box and black-box MLLMs
and attack methods.

2 Intuition: Cross-modality information
is a double-edged sword

While multimodal information aggravates model
vulnerability to jailbreak attacks, it also provides
additional information for defense. The design of
CIDER is based on the intuition that optimization-
based jailbreak attacks break the MLLM’s safe-
guards by sharing harmful content in the malicious
query to the image modality. Consequently, the ad-
versarially perturbed image is closer to the harmful
query in the semantic space than the clean images.
To support this intuition, we first explain the funda-
mentals of the optimization-based jailbreak attacks
on MLLMs. Then, we design a few experiments
to explore how cross-modal analysis can help safe-

guard MLLMs, and we analyze the semantic differ-
ence between clean and adversarial images relative
to harmful queries, both before and after denoising.

2.1 Preliminaries: Optimization-based
Jailbreak Attacks on MLLMs

Optimization-based MLLM jailbreaking is simi-
lar to adversarial attacks on image classification
tasks (Goodfellow et al., 2014), with the primary
difference being the difference in the loss function.
Specifically, given a dataset D = {(q, a)} where
q represents the harmful queries and a is the cor-
responding targeted answers, the attacker aims to
find an adversarial image xadv that can encourage
the MLLM F to generate a when inputting q along
with xadv. The objective can be formulated as:

xadv = argmin
xadv∈[0,1]d

log(F(a|q, xadv)) (1)

where F(a|q, xadv) represents the likelihood
that the MLLM F generate answer a when given
the adversarial image xadv and the query q.

2.2 Experimental Setup
We design a series of experiments to explore how
cross-modality information can help safeguard
MLLMs and to analyze the semantic difference
between clean and adversarial images to harmful
queries, before and after denoising. We utilize
the image and text encoder of the state-of-the-art
MLLM LLaVA-v1.5-7B (Liu et al., 2024) to cap-
ture the semantic meanings. To measure the seman-
tic similarity, we employed cosine similarity which
is a standard metric widely used in information re-
trieval and natural language processing (Park et al.,
2020; Pal et al., 2021). In terms of denoiser, we
incorporate a diffusion-based denoiser (Nichol and
Dhariwal, 2021) to preprocess the image modality.

The inputs to the MLLMs consist of two modali-
ties: images and text queries. For malicious queries,
we utilize the validation set proposed in the Harm-
bench framework (Mazeika et al., 2024), which
contains 40 textual harmful behaviors across 7 se-
mantic categories. For images, we use 5 adver-
sarial images generated by an optimization-based
jailbreak attack Qi et al. (2024) and 5 clean images
from ImageNet (Deng et al., 2009). As a result,
we have 200 adversarial text-image pairs and 200
clean pairs.

2.3 Findings

According to the results displayed in Figure 3, the
key findings can be summarized as follows:
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Figure 3: Experimental result. (a) The distribution of the difference between clean and adversarial images regarding
their cos-sim with harmful queries. (b) The distribution of cos-sim between harmful queries and clean/adversarial
images. (c) The change of the cos-sim during denoising. (d) The distribution of ∆cos-sim before and after denoising
of clean/adversarial images.

Finding 1: Adversarial images indeed contain
harmful information.

For each harmful query, we calculate the cosine
similarity between the queries and both clean and
adversarial images, denoted as ⟨EM

text,E
C
img(o)⟩ and

⟨EM
text,E

A
img(o)⟩ respectively. Figure 3a shows the

distribution of ⟨EM
text,E

C
img(o)⟩ − ⟨EM

text,E
A
img(o)⟩. It

can be observed that the distribution is almost en-
tirely concentrated in the negative region, indicat-
ing that, for a specific harmful query, the semantic
distance between it and an adversarial image is
smaller than that between it and a clean image.
Therefore, we can conclude that adversarial images
indeed carry harmful information from queries.

Finding 2: Directly utilizing the semantic
difference between clean and adversarial
images to harmful query is challenging

Figure 3b shows the distribution of the absolute
value of ⟨EM

text,E
C
img(o)⟩ and ⟨EM

text,E
A
img(o)⟩. Al-

though the distribution differs in the peak and con-
centration, distinguishing between adversarial and
clean images based solely on the absolute value
of the difference is challenging. This difficulty
arises because the cosine similarity between differ-
ent queries and adversarial images varies signifi-
cantly, and the absolute value of the difference does
not fully capture the characteristics of the images.

Finding 3: Denoising can reduce harmful
information but cannot eliminate
Subsequently, we applied denoising to each image
350 times, assessing cosine similarity with harm-
ful queries every 50 iterations (visualization of the
denoising is relegated to Appendix A). Figure 3c
illustrates how cosine similarity between harmful
query and adversarial images decreases as denois-
ing progresses, indicating a reduction in harmful
information. Despite this reduction, denoised ad-
versarial images, when tested with harmful text
inputs in the MLLM, still enabled a significant
number of queries to jailbreak. Thus, while de-
noising mitigates harmful information in images, it
does not eliminate their adversarial properties.

Finding 4: Relative shift in the semantic
distance before and after denoising can help
detect adversarial images.
In Figure 3d, we present the change of cosine simi-
larity before and after denoising (⟨EM

text,Eimg(o)⟩ −
⟨EM

text,Eimg(d)⟩). The distribution of cosine simi-
larity between harmful queries and images shifts
notably after denoising, contrasting with the distri-
bution in Figure 3b. This observed shift supports
our intuition that relative changes before and after
denoising, rather than absolute differences, provide
a method to distinguish adversarial images. Fig-
ure 3c further demonstrates this trend, showing a
consistent decrease in cosine similarity between
adversarial images and harmful queries, while the
cosine similarity with clean images varies less.
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3 Method
In this section, we first overview the defense
pipeline and the components of CIDER, followed
by introducing the threshold selection strategy.

3.1 Overview

CIDER is implemented on top of the MLLMs to
defense optimization-based adversarial jailbreak at-
tacks. Figure 2 presents the overview of the CIDER
pipeline. Specifically, given a text-image input pair,
denoted as <text, img(o)>, CIDER calculates the
embeddings of text and image modalities, denoted
as Etext and Eimg(o). Then, the built-in denoiser in
CIDER will perform 350 denoising iterations on
the image(o), calculating the denoised embeddings
every 50 iterations, denoted as E = Eimg(d). The
img(o) will be identified as an adversarial example
if any Eimg(d) ∈ E satisfy the following condition:

⟨Etext,Eimg(o)⟩ − ⟨Etext,Eimg(d)⟩ > τ (2)

where ⟨·⟩ represents the cosine similarity and τ is
the predefined threshold. Consequently, CIDER
will directly refuse to follow the user’s request by
responding “I’m sorry, but I can not assist.” if the
image modality is detected as adversarial. Oth-
erwise, the original image and query will be fed
into the MLLM. The pseudo-code of CIDER is
illustrated in Algorithm 1.

Algorithm 1: CIDER defense pipeline
Input: img(o): input image, text: input query, F :

target MLLM, τ : predefined threshold.
flag ← true;
for i← 0 to 350 Step 50 do

img(d)← denoiser(img(o), i);
Etext ← TextEncoder(text);
Eimg(o) ← ImgEncoder(img(o));
Eimg(d) ← ImgEncoder(img(d));
d← ⟨Etext,Eimg(o)⟩ − ⟨Etext,Eimg(d)⟩;
if d > τ then

flag ← false;

if flag = true then
Return F(img(o), text);

else
Return "I’m sorry, but I can not assist."

3.2 Threshold selection
The threshold is selected based on the harmful
queries and clean images ensuring that the vast
majority of clean images pass the detection. The
selection of threshold τ can be formulated as:

r =

∑
I(⟨EM

text,E
C
img(o)⟩ − ⟨EM

text,E
C
img(d)⟩ < τ)

#samples
(3)

where r represents the passing rate and EM
text,

EC
img(o), E

C
img(d) stand for the embeddings of input

query, the input image and denoised image respec-
tively. The threshold τ is determined by controlling
the passing rate r. For example, using the τ when
setting r to 95% as the threshold indicates allowing
95% percent of clean images to pass the detection.

The selection of the threshold significantly im-
pacts the effectiveness of CIDER: a threshold that
is too high will cause many adversarial examples
to be classified as clean samples, resulting in a low
true positive rate (TPR); conversely, a threshold
that is too low will lead to a high false positive rate
(FPR), affecting the model’s normal performance.
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Figure 4: TPR-FPR trade-off on validation set.

The ablation study is conducted to determine the
optimal threshold. By treating adversarial pairs as
positive samples and clean pairs as negative sam-
ples, we plot the TPR-FPR curve with thresholds
ranging from 80% to 100% in 1% increments, as
shown in Figure 4. Ideally, we expect high TPR
and low FPR (the upper left corner of the plot).
Therefore, we selected τ when r equals 95% as the
detection threshold of CIDER.

4 Experiment
In this section, we begin by outlining the configu-
rations of our experiments, including the models,
datasets, baselines, and evaluation metrics. We then
evaluate the effectiveness and efficiency of CIDER,
comparing with the baseline methods. Next, we
discuss the trade-off between robustness and utility,
and the choice of denoising method. Finally, we
demonstrate the generalization of our method.

4.1 Configurations

Models. Note that CIDER is an auxiliary model
that is independent of the MLLMs. We use LLaVA
to capture the semantic meaning of each modality,
but CIDER can be plugged into any other MLLMs.
To demonstrate the effectiveness of CIDER, we
test the detection and defense performance on four
open-source MLLMs, including LLaVA-v1.5-7B
(Liu et al., 2024), MiniGPT4 (Zhu et al., 2023),
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Figure 5: ASR of base MLLM, defending with CIDER and defending with Jailguard

InstructBLIP (Dai et al., 2024), and Qwen-VL (Bai
et al., 2023), as well as the API-access MLLM,
GPT4V (Achiam et al., 2023).

Datasets. Similar to the dataset used in Section
2.2, we generate 800 adversarial text-image pairs
utilizing the 160 harmful queries in Harmbench
(Mazeika et al., 2024) and adversarial images pro-
vided by Qi et al. (2024). To further demonstrate
CIDER will not destroy the original utilities on
the normal queries, we also evaluate the utility of
CIDER protected MLLMs on MM-Vet benchmark
(Yu et al., 2023), which examines 6 core vision lan-
guage capabilities, including recognition, optical
character recognition (OCR), knowledge, language
generation, spatial awareness, and math.

Baseline and evaluation metrics. We use Jail-
guard (Zhang et al., 2023) as a baseline, which is a
SoTA mutation-based jailbreak detection strategy
that protects the MLLMs at the inference stage. We
involve four evaluation metrics to demonstrate the
performance of defending methods from different
aspects. From the perspective of the effectiveness
of CIDER, we incorporate detection success rate
(DSR) and Attack success rate (ASR). DSR repre-
sents the proportion of adversarial examples D that
can be successfully detected:

DSR def
=

1

|D|
∑

(q,xadv)∈D
Iadv((q, xadv)) (4)

ASR is a standard evaluation metric indicating
the proportion of samples that can successfully jail-
break MLLM F and generate harmful contents,
which can be stated as:

ASR def
=

1

|D|
∑

(q,xadv)∈D
Iharm(G(F(q, xadv))) (5)

G refers to an LLM classifier (Mazeika et al., 2024)
that determines the harmfulness of a response. Iadv
and Iharm represent the adversarial and harmful in-
dicator. In terms of efficiency, we measure the time
cost of processing a single query. In addition, to

evaluate the model utility on regular tasks, and re-
sponses, we incorporate an online evaluator (MM-
Vet-Evaluator, 2024) provided along with MM-Vet
benchmark, which utilizes GPT-4 to generate a soft
grading score from 0 to 1 for each answer.

4.2 Effectiveness

DSR. We first demonstrate the overall DSR that
CIDER can achieve and compare it with the base-
line method, Jailguard. Table 1 shows that CIDER
achieves a DSR of approximately 80%, while the
DSR of Jailguard varies, depending on the target
MLLMs. Note that CIDER is independent of the
MLLMs, thus the DSR does not vary with the
choice of MLLMs. However, Jailguard’s detec-
tion capability relies heavily on the model’s safety
alignment, so the DSR also varies. MLLMs with
good alignment achieve high DSR (e.g., GPT4V),
while poorly aligned MLLMs have relatively low
DSR (e.g., InstructBLIP). In other words, Jailguard
does not significantly enhance MLLM robust-
ness against adversarial jailbreak attacks, whereas
CIDER does. Nonetheless, CIDER achieves a
higher DSR than most of the Jailguard results, ex-
cept Jailguard on GPT4V.

Method detection success rate (↑)

Jailguard with LLaVA-v1.5-7B 39.50%
Jailguard with InstructBLIP 32.25%
Jailguard with MiniGPT4 69.50%
Jailguard with Qwen-VL 77.50%
Jailguard with GPT4V 94.00%

CIDER 79.69%

Table 1: DSR of CIDER and Jailguard

ASR. To evaluate the effectiveness of CIDER, we
measure the decline in ASR after applying CIDER.
Figure 5 compares the original ASR without de-
fense (red bar), ASR after CIDER (blue bar), and
ASR after Jailguard (yellow bar). Note that, Jail-
guard is solely designed to detect jailbreak input.
To ensure a fair comparison, we add an output mod-
ule following Jailguard’s detection. Specifically,
if Jailguard detects a jailbreak, it will refuse to
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respond, similar to CIDER. Otherwise, the MLLM
will process the original input.

Across all models, defending with CIDER sig-
nificantly reduces the ASR, yielding better results
than the baseline. This indicates that CIDER effec-
tively enhances the robustness of MLLMs against
optimization-based jailbreak attacks. The most
notable improvements are seen in LLaVA-v1.5-
7B, where ASR drops from 60% to 0%, and in
MiniGPT4, from 57% to 9%. For MLLMs with ini-
tially low ASRs, such as InstructBLIP and Qwen-
VL, ASR is reduced to approximately 2% and 1%
respectively. Another notable disadvantage of Jail-
guard is observed in models like GPT4V, Instruct-
BLIP, and Qwen-VL, which already had strong
safety alignment and resistance to adversarial at-
tacks. In these cases, the use of Jailguard resulted
in a slight increase in ASR.

We conclude that the threshold determined by
CIDER can be effectively applied to different
MLLMs due to their shared transformer-based
LLM backbones, which generate comparable rep-
resentations of harmful information. This harmful
information, distilled from malicious queries, is
embedded into adversarial images using similar
optimization-based attacks. As a result, the consis-
tent noise patterns produced by these attacks across
different MLLMs can be detected using the same
threshold, highlighting the robustness and transfer-
ability of CIDER.

4.3 Efficiency
Timely inference is crucial for safeguarding
MLLMs in real-world applications. Table 2 shows
the time required to process a single input pair and
generate up to 300 tokens with different MLLMs,
comparing no defense, CIDER, and Jailguard.

Model Original CIDER Jailguard

LLaVA-v1.5-7B 6.39s 7.41s (1.13×) 53.21s (8.32×)
InstructBLIP 5.46s 6.48s (1.22×) 47.83s (8.76×)
MiniGPT4 37.00s 38.02s (1.03×) 313.78s (8.48×)
Qwen-VL 6.02s 7.04s (1.19×) 48.48s (8.05×)
GPT4V 7.55s 8.57s (1.16×) 61.04s (8.08×)

Table 2: Time cost to process a single pair of inputs.

CIDER surpasses Jailguard in efficiency, adding
only 1.02 seconds per input pair on average, which
is relatively acceptable compared to the original
inference time. In contrast, Jailguard requires 8-9
times the original processing time. Additionally,
CIDER detection is irrelevant to the number of
generated tokens in the query answers. Therefore,
CIDER does not cause additional overhead when in-

creasing the number of generated tokens, ensuring
the stability of CIDER’s efficiency.

4.4 Robustness-utility trade-off

To further demonstrate CIDER’s influence on the
original utilities on normal queries, we also eval-
uate the utility of CIDER protected MLLMs on
MM-Vet benchmark, including recognition, OCR,
knowledge, language generation, spatial awareness,
and math. As shown in Figure 6, employing CIDER
leads to an approximate 30% overall performance
decline on normal tasks. Specifically, CIDER
mostly affects the MLLM’s recognition, knowl-
edge, and language generation capabilities, while
it has minimal impact on OCR, spatial awareness,
and math skills. We hypothesize that CIDER’s
stringent decision-making process, which outright
rejects tasks once an image is identified as adver-
sarial, hampers the model’s overall performance.
To further illustrate the robustness-utility trade-off,
we conducted an ablation study using denoised im-
ages as inputs for the adversarial images, termed
CIDER-de. The result is relegated to Appendix B.

To find the optimal balance between safety and
utility, we could design a more flexible rejection
strategy, such as implementing multi-level thresh-
olds for different types of content. This approach
could reduce the negative impact on the model’s
functionality and we leave it to our future work.

4.5 Ablation study on denoising method

We perform an ablation study on the choice of
denoising method in the CIDER architecture, as
it significantly impacts both defense effectiveness
and general task performance. Image smoothing
methods commonly fall into two categories: DNN-
based approaches, such as diffusion-based denois-
ers (Nichol and Dhariwal, 2021), and traditional
filtering methods, like the Non-local Means filter
(NLM; Buades et al., 2011). We compare the ASR
and MM-Vet scores of these two denoising meth-
ods, with the results presented in Table 3. The
NLM filter performs similarly to the diffusion-
based denoiser in terms of ASR, except on the
LLaVA model, where it falls significantly behind.
However, for general tasks, the NLM filter under-
performs the diffusion-based denoiser across all
models. This suggests that while the diffusion-
based denoiser effectively reduces noise, it also
preserves essential image details, making it a supe-
rior choice overall.
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Figure 6: MLLM performance with and without CIDER on MM-Vet.

Model
ASR(%; ↓) Score(↑)

Denoiser NLM Denoiser NLM
LLaVA-v1.5-7B 0.00 8.12 19.1 18.9
InstructBLIP 2.34 2.56 12.7 11.1
MiniGPT4 9.22 9.06 13.0 11.2
Qwen-VL 1.09 0.78 29.2 27.6

Average 3.16 5.13 18.5 17.2

Table 3: The ASR and MM-Vet score of different de-
noising methods.

4.6 Generalization
In the previous sections, we evaluated the DSR and
ASR against adversarial examples generated by Qi
et al. (2024). To further assess the generalization
of our defense method, which is critical for its ap-
plicability to other types of attacks, we test CIDER
under different attack settings.

Dataset. In addition to Harmbench, we employ
RedTeam-2k (Luo et al., 2024) as a harmful query
dataset, which compiles harmful queries from five
different datasets and filters them according to the
safety policies of OpenAI and Llama2, resulting
in 2,000 red-teaming questions. We randomly se-
lect 200 queries and generate 800 text-image pairs
using a similar processing method described in Sec-
tion 2.2. On this dataset, CIDER achieves a DSR
of 81.37%, with the reduction in ASRs presented
in Table 4.

Model
Base CIDER

ASR(%) ASR(%) ∆ (%)
LLaVA-v1.5-7B 29.87 1.87 28.00
InstructBLIP 24.13 4.37 19.76
MiniGPT4 43.75 15.63 28.12
Qwen-VL 10.62 2.37 8.25

Table 4: Generalization to RedTeam-2k dataset

Attack Method. To evaluate the generalization of
our defense against different attack methods, we
generated 800 adversarial pairs using ImgJP, an

optimization-based approach proposed by Niu et al.
(2024). Table 5 shows the decrease in ASRs across
four open-source MLLMs, with all ASRs falling be-
low 4%, and Qwen-VL achieving a 0% ASR. More-
over, CIDER attained a DSR of 93.87% against
ImgJP. These results demonstrate that CIDER effec-
tively generalizes to defend against optimization-
based adversarial attacks, underscoring its practical
value in real-world applications.

Model
Base CIDER

ASR(%) ASR(%) ∆ (%)
LLaVA-v1.5-7B 61.0 3.5 57.5
InstructBLIP 4.0 1.5 2.5
MiniGPT4 52.5 4.0 48.5
Qwen-VL 6.5 0.0 6.5

Table 5: Generalization to ImgJP attack

5 Related Work
Multimodal Large Language Model. A typical
Multimodal Large Language Model (MLLM) con-
sists of an image encoder (Dosovitskiy et al., 2020)
to extract feature maps, a projector to align im-
age modality information with text modality, and a
Large Language Model (LLM) to integrate textual
and visual input for generating responses. The im-
pressive multimodal capabilities of these models
have spurred significant research interest, leading
to contributions from both academia and industry
(Achiam et al., 2023; Liu et al., 2024; Zhu et al.,
2023; Dai et al., 2024; Bai et al., 2023).

Jailbreaking MLLMs. Incorporating visual in-
formation into the LLM framework significantly
broadens its range of applications but also intro-
duces new security vulnerabilities, complicating
the security issues of MLLMs. Besides transfer-
ring text jailbreak templates from LLMs to MLLMs
(Luo et al., 2024), effective strategies for jailbreak-
ing MLLMs include using gradient-based methods
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to generate adversarial images (Carlini et al., 2024;
Zhao et al., 2024; Qi et al., 2024; Niu et al., 2024),
and submitting screenshots containing harmful in-
structions (Gong et al., 2023) or related images (Liu
et al., 2023; Shayegani et al., 2023). This paper
focuses on safeguarding MLLMs against gradient-
based jailbreak attacks via adversarial images, aim-
ing to fortify MLLMs against such sophisticated
threats and ensure their robustness and reliability
in practical applications.

Safeguarding MLLMs. Various defense mecha-
nisms have been proposed to address vulnerabilities
in MLLMs and enhance their security and robust-
ness. These mechanisms can be categorized into
proactive and reactive defenses based on their pre-
ventive and responsive nature. Proactive defenses
aim to prevent attacks through techniques like ad-
versarial training (Zong et al., 2024) and reinforce-
ment learning (Chen et al., 2023) during the train-
ing phase. In contrast, reactive defenses focus on
detecting attacks during the inference phase using
methods such as (Wang et al., 2024a; Pi et al., 2024;
Wang et al., 2024b). However, many of these meth-
ods require access to internal model parameters or
rely on additional large models for implementation.
Our approach prioritizes a reactive defense strat-
egy for its practicality and ease of implementation.
Notably, Jailguard (Zhang et al., 2023) is closely
related to our work, as it detects jailbreak queries
by analyzing variations in responses to perturbed
inputs. However, Jailguard’s detection success
heavily depends on the safety of the underlying
LLM and involves significant computational costs.

6 Conclusion

In this work, we propose a plug-and-play cross-
modality information detector, CIDER, which can
effectively and efficiently defend against adver-
sarial jailbreak attacks. Compared to previous
methods, CIDER achieves superior defense per-
formance, as evidenced by higher DSR and a sig-
nificant decline in ASR, while greatly reducing pro-
cessing time. We also evaluate the generalization
of CIDER to other datasets and optimization-based
adversarial attacks, and demonstrate the robustness-
utility trade-off in MLLMs. In future research, we
aim to improve CIDER by reducing the negative
impact on MLLM utilities to normal tasks. Ad-
ditionally, it would be useful to develop defense
mechanisms against non-optimization-based jail-
break attacks.
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Limitations

We outline the limitations of our study as follows:
1. While CIDER is an effective, efficient, and

user-friendly defense mechanism, it does impact
MLLM performance to some extent. We believe
this is due to CIDER’s stringent handling of adver-
sarial examples. In future work, we plan to imple-
ment multi-level thresholds to process adversarial
examples with varying degrees of rigor, aiming to
maintain robust defense capabilities without com-
promising MLLM performance.

2. CIDER is specifically designed to defend
against optimization-based adversarial jailbreak at-
tacks, and its effectiveness against other types of
jailbreak attacks is uncertain. Future research will
explore CIDER’s effectiveness against these alter-
native attacks and develop corresponding defense
strategies, aiming to enhance the overall security
and resilience of MLLMs against a wider array of
adversarial threats.

Ethics Statement

Ensuring the security of Vision Large Language
Models (MLLMs) is crucial as they become more
widely used in various applications. This paper
introduces CIDER, a simple yet effective cross-
modality information detector designed to defend
against adversarial jailbreak attacks in MLLMs.
Our work significantly contributes to the field by
providing a tool that mitigates known vulnerabil-
ities and lays the groundwork for future improve-
ments in safety measures. While CIDER marks
significant progress, it doesn’t make MLLMs im-
mune to all threats. Continuous evaluation and
updates are crucial as MLLMs evolve. By shar-
ing CIDER and our findings, we aim to encourage
ongoing research and collaboration, promoting ad-
vanced and secure MLLMs. We are committed
to addressing the ethical implications of MLLM
deployment, ensuring transparency, and prioritiz-
ing the responsible use of these technologies for
societal benefit.

13723



References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel.
2011. Non-local means denoising. Image Processing
On Line, 1:208–212.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-
Choo, Matthew Jagielski, Irena Gao, Pang Wei W
Koh, Daphne Ippolito, Florian Tramer, and Ludwig
Schmidt. 2024. Are aligned neural networks adver-
sarially aligned? Advances in Neural Information
Processing Systems, 36.

Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong.
2023. Jailbreaking black box large language models
in twenty queries. arXiv preprint arXiv:2310.08419.

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng
Ji, and Ajay Divakaran. 2023. Dress: Instructing
large vision-language models to align and interact
with humans via natural language feedback. arXiv
preprint arXiv:2311.10081.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023), 2(3):6.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi.
2024. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances
in Neural Information Processing Systems, 36.

Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying
Zhang, Zefeng Li, Haoyu Wang, Tianwei Zhang, and
Yang Liu. 2024. Masterkey: Automated jailbreaking
of large language model chatbots. In Proc. ISOC
NDSS.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.

An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang,
Tianshuo Cong, Anyu Wang, Sisi Duan, and Xiaoyun
Wang. 2023. Figstep: Jailbreaking large vision-
language models via typographic visual prompts.
arXiv preprint arXiv:2311.05608.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao,
Tongliang Liu, and Bo Han. 2023. Deepinception:
Hypnotize large language model to be jailbreaker.
arXiv preprint arXiv:2311.03191.

Yifan Li, Hangyu Guo, Kun Zhou, Wayne Xin Zhao,
and Ji-Rong Wen. 2024. Images are achilles’ heel of
alignment: Exploiting visual vulnerabilities for jail-
breaking multimodal large language models. arXiv
preprint arXiv:2403.09792.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024. Visual instruction tuning. Advances in
neural information processing systems, 36.

Xin Liu, Yichen Zhu, Yunshi Lan, Chao Yang,
and Yu Qiao. 2023. Query-relevant images jail-
break large multi-modal models. arXiv preprint
arXiv:2311.17600.

Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo,
and Chaowei Xiao. 2024. Jailbreakv-28k: A bench-
mark for assessing the robustness of multimodal large
language models against jailbreak attacks. arXiv
preprint arXiv:2404.03027.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou,
Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, et al. 2024. Harmbench: A
standardized evaluation framework for automated
red teaming and robust refusal. arXiv preprint
arXiv:2402.04249.

MM-Vet-Evaluator. 2024. MM-Vet Evaluator
- a Hugging Face Space by whyu — hug-
gingface.co. https://huggingface.co/spaces/
whyu/MM-Vet_Evaluator. [Accessed 15-06-2024].

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.
Improved denoising diffusion probabilistic models.
In International conference on machine learning,
pages 8162–8171. PMLR.

Zhenxing Niu, Haodong Ren, Xinbo Gao, Gang Hua,
and Rong Jin. 2024. Jailbreaking attack against
multimodal large language model. arXiv preprint
arXiv:2402.02309.

Sayantan Pal, Maiga Chang, and Maria Fernandez Iri-
arte. 2021. Summary generation using natural lan-
guage processing techniques and cosine similarity.
In International Conference on Intelligent Systems
Design and Applications, pages 508–517. Springer.

13724

https://huggingface.co/spaces/whyu/MM-Vet_Evaluator
https://huggingface.co/spaces/whyu/MM-Vet_Evaluator


Kwangil Park, June Seok Hong, and Wooju Kim. 2020.
A methodology combining cosine similarity with
classifier for text classification. Applied Artificial
Intelligence, 34(5):396–411.

Renjie Pi, Tianyang Han, Yueqi Xie, Rui Pan, Qing Lian,
Hanze Dong, Jipeng Zhang, and Tong Zhang. 2024.
Mllm-protector: Ensuring mllm’s safety without hurt-
ing performance. arXiv preprint arXiv:2401.02906.

Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter
Henderson, Mengdi Wang, and Prateek Mittal. 2024.
Visual adversarial examples jailbreak aligned large
language models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
21527–21536.

Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh.
2023. Jailbreak in pieces: Compositional adversar-
ial attacks on multi-modal language models. In The
Twelfth International Conference on Learning Repre-
sentations.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Pengyu Wang, Dong Zhang, Linyang Li, Chenkun Tan,
Xinghao Wang, Ke Ren, Botian Jiang, and Xipeng
Qiu. 2024a. Inferaligner: Inference-time align-
ment for harmlessness through cross-model guidance.
arXiv preprint arXiv:2401.11206.

Yu Wang, Xiaogeng Liu, Yu Li, Muhao Chen, and
Chaowei Xiao. 2024b. Adashield: Safeguarding mul-
timodal large language models from structure-based
attack via adaptive shield prompting. arXiv preprint
arXiv:2403.09513.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2023. A survey on
multimodal large language models. arXiv preprint
arXiv:2306.13549.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2023. Mm-vet: Evaluating large multimodal
models for integrated capabilities. arXiv preprint
arXiv:2308.02490.

Xiaoyu Zhang, Cen Zhang, Tianlin Li, Yihao Huang,
Xiaojun Jia, Xiaofei Xie, Yang Liu, and Chao
Shen. 2023. A mutation-based method for multi-
modal jailbreaking attack detection. arXiv preprint
arXiv:2312.10766.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang,
Chongxuan Li, Ngai-Man Man Cheung, and Min
Lin. 2024. On evaluating adversarial robustness of
large vision-language models. Advances in Neural
Information Processing Systems, 36.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin
Yang, and Timothy Hospedales. 2024. Safety fine-
tuning at (almost) no cost: A baseline for vision large
language models. arXiv preprint arXiv:2402.02207.

Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrik-
son. 2023. Universal and transferable adversarial
attacks on aligned language models. arXiv preprint
arXiv:2307.15043.

A Visualization of denoising

Figure 7 presents an example of an adversarially
perturbed image, showing the effects of denoising
it after 100, 200, and 300 iterations.

Figure 7: An example of the denoising procedure.

B Ablation study on robustness-utility
trade-off

To further illustrate the robustness-utility trade-off,
we perform an ablation study using denoised im-
ages as inputs for adversarial images, referred to as
CIDER-de. Figure 8 shows the ASR of CIDER-de
and Figure 9 shows the MM-Vet score of it. It can
be observed that using CIDER-de hardly impacts
the utility of the MLLM. However, this comes at
the expense of greatly diminished defensive effec-
tiveness.
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