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Abstract

Open-domain long-form text generation re-
quires generating coherent, comprehensive re-
sponses that address complex queries with both
breadth and depth. This task is challenging due
to the need to accurately capture diverse facets
of input queries. Existing iterative retrieval-
augmented generation (RAG) approaches often
struggle to delve deeply into each facet of com-
plex queries and integrate knowledge from var-
ious sources effectively. This paper introduces
ConTReGen, a novel framework that employs
a context-driven, tree-structured retrieval ap-
proach to enhance the depth and relevance of re-
trieved content. ConTReGen integrates a hierar-
chical, top-down in-depth exploration of query
facets with a systematic bottom-up synthesis,
ensuring comprehensive coverage and coherent
integration of multifaceted information. Exten-
sive experiments on multiple datasets, includ-
ing LFQA and ODSUM, alongside a newly in-
troduced dataset, ODSUM-WikiHow, demon-
strate that ConTReGen outperforms existing
state-of-the-art RAG models. 1

1 Introduction

Large Language Models (LLMs) have transformed
various domains through their remarkable per-
formance across a spectrum of tasks. However,
LLMs often struggle with generating hallucinated
or factually incorrect content, particularly when
addressing knowledge-intensive tasks in open-
domain settings (Asai et al., 2023a; Gao et al.,
2023). These limitations typically arise from ei-
ther the lack of long-tail relevant knowledge or
reliance on outdated information embedded within
their parameters. To address these challenges,
Retrieval-augmented Generation (RAG), therefore,
has emerged as a promising solution (Lewis et al.,
2020; Petroni et al., 2020; Izacard et al., 2023).

1Code and data are available at https://github.com/kkroy2/
ConTReGen

RAG enhances LLMs by incorporating external
knowledge from a corpus, effectively reducing hal-
lucinations and factual errors in knowledge-driven
tasks such as question answering.
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Figure 1: Schematic illustration of retrieval reasoning

Recently, significant progress has been made
in open-domain question answering, particularly
in the realm of short-form answers (Shao et al.,
2023; Press et al., 2023; Trivedi et al., 2022; Xu
et al., 2024). Rather than adhering to the tradi-
tional one-step retrieve-then-generation approach,
recent works increasingly adopt iterative retrieval
processes (Gao et al., 2023). These methods utilize
either previously generated responses (Shao et al.,
2023; Trivedi et al., 2022; Jiang et al., 2023; Asai
et al., 2023b), or employ a sequence of follow-up
questions or interlinked queries (Press et al., 2023;
Xu et al., 2024; Qi et al., 2019). Such iterative,
chain-like strategies have proven particularly ef-
fective in short-form factoid question-answering
tasks where questions often demand direct, spe-
cific pieces of information (Qi et al., 2019; Press
et al., 2023) and their supporting passages com-
monly form chain-reasoning of facts (Xiong et al.,
2020; Trivedi et al., 2022; Xu et al., 2021) as in
Figure 1(a).

Moving beyond short-form question answer-
ing, real-world queries often entail greater com-
plexity and necessitate more comprehensive, de-
tailed responses that encompass multiple facets

13773

https://github.com/kkroy2/ConTReGen
https://github.com/kkroy2/ConTReGen


0

20

40

60

LFQA-ASQA ODSUM-WikiHow ODSUM-Story

Prev. full response Prev. response segment
Next followup question Next query generation

Figure 2: Retrieval Recall Performance. Prev. full re-
sponse (Shao et al., 2023), Prev. response segment (Asai
et al., 2023b), Next followup question (Press et al., 2023;
Xu et al., 2024), Next query generation (Khattab et al.,
2022).

of the queries. For these multifaceted queries,
it is essential to retrieve supporting knowledge
from diverse sources, integrating this informa-
tion into coherent and comprehensive long-form
responses. We refer to this scenario as Open-
domain Long-form Text Generation. This perspec-
tive unifies the commonalities between existing
long-form question-answering (LFQA) and open-
domain multi-document summarization (ODSUM)
tasks, addressing both under a single framework.
LFQA (Krishna et al., 2021; Fan et al., 2019) re-
quires not only retrieval of relevant facts from di-
verse knowledge sources but also integrating them
into a coherent paragraph-length answer. Similarly,
ODSUM (Giorgi et al., 2023) involves the aggre-
gation of information from diverse sources into a
unified, coherent summary.

In our experiments with chain-like iterative ap-
proaches on LFQA and ODSUM tasks, we identi-
fied several limitations. One notable issue is the low
retrieval recall of performance across the datasets
in Figure 2, especially evident in ODSUM datasets
where the need for multi-faceted information is
more implicit. Secondly, we observed that these it-
erative approaches quickly reach a plateau in terms
of retrieval recall as demonstrated in Figure 3. In
other words, they fail to retrieve new relevant pas-
sages during subsequent iterations.

One of the key reasons behind these limitations
is the simplistic modeling of the reasoning of re-
trieving passages as a chain of semantic aspects as
shown in Figure 1(a). However, when the retrieval
of information spans multiple facets and originates
from diverse sources, it naturally forms a complex
retrieval reasoning structure as illustrated in Fig-
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Figure 3: Retrieval Recall Performance per iteration
on ODSUM-Story. Prev. full response (Shao et al.,
2023), Prev. response segment (Asai et al., 2023b),
Next followup question (Press et al., 2023; Xu et al.,
2024), Next query generation (Khattab et al., 2022)

ure 1(b). For example, a query like ’How to Detect
Hidden Cameras and Microphones’ may require
information from multiple facets such as ’Conduct-
ing a Physical Search’, ’Searching for Electrical
Signals’, and so on, where each facet may need in-
formation from its multiple subfacets. For instance,
this ’Conducting a Physical Search’ facet needs
information about its subfacets such as ’Investigat-
ing your smoke detectors and other electronics.’,

’Using to check for two-way mirrors’, etc. Conse-
quently, this yields a tree structure of facets that
organizes the need for information from the broad-
est to the most specific ones.

Furthermore, the method of formulating subse-
quent retrieval queries plays a crucial role in thor-
oughly exploring all facets of an input query. Cur-
rent iterative approaches often generate the next
query based on segments of the previous response
or all previously retrieved information. We argue
that this sequential approach to query formulation
inherently restricts the retrieval search scope. This
is because it tends to allow a few aspects of the in-
formation to dominate the retrieval process, poten-
tially leading to a biased exploration where certain
facets are disproportionately emphasized, while
others may remain underexplored or unexplored.

To accommodate these findings, we introduce a
novel tree-structured retrieval augmented genera-
tion framework (ConTReGen) that conceptualizes
the retrieval process as a hierarchical exploration
of an input question or query’s various facets, or-
ganized in a tree structure. Each branch of this
tree represents a specific facet, enabling a system-
atic and comprehensive exploration of the query.
This method enables an in-depth exploration of

13774



…

…

…

…

Query, Q

q1 qk qM

Planning

q11 q1N qM1 qMN

Planning Agent

Planning

Planning

query Plan: A set of 
subqueries {qx}

Retrieved 
documents

Query, Q

Generation (Gen.) Agent

query Output

Retrieved 
documents

Summaries 
from descendants

…….

…

q11 q1N

Gen. Gen.

q1

Gen. Output

Gen.

(a) Top-down Planning and Retrieval (b) Bottom-up Synthesis and Generation

Figure 4: ConTReGen Framework.

each query facet, from the broadest facet down
to the finer specific through a top-down strategy.
Additionally, to facilitate a more thorough aggre-
gation and synthesis of information, we leverage
a bottom-up generation technique that synthesizes
information from the leaf nodes upwards, ensuring
that all retrieved data contributes cohesively to the
final output. This integrated approach significantly
enhances the depth and relevance of the retrieved
content, contributing to more coherent and contex-
tually rich text generation.

To evaluate the efficacy of our framework on
open-domain long-form text generation, we con-
ducted experiments using both the LFQA and
ODSUM datasets, including ASQA (Stelmakh
et al., 2022) and ODSUM-Story (Zhou et al.,
2023). Additionally, we introduced a new, large-
scale open-domain summarization dataset named
ODSUM-WikiHow. The experimental results
demonstrate that ConTReGen significantly outper-
forms state-of-the-art RAG baselines across all
three datasets.

2 Methodology

Our framework addresses the task of context-driven
Long-Form Text Generation which aims to gener-
ate a comprehensive long text, Y for an input query
or question, denoted as, Q by leveraging relevant
passages from a given corpus C.

Our proposed framework is structured into a two-

stage process designed to enhance the retrieval and
generation of long-form text responses: 1) during
the top-down planning and retrieval stage as shown
in Figure 4(a), the process begins by retrieving
passages directly related to the input query or ques-
tion. Utilizing the insights gained from these initial
passages, the planning agent generates a series of
subquestions or subqueries, which serve as a plan
for deeper exploration. Each of these subquestions
is recursively used to generate successive plans to
continually expand the search scope of relevant pas-
sages. This recursive planning and retrieval results
in a comprehensive tree structure, where each node
represents a query and its associated retrieved pas-
sages; 2) in Figure 4(b), the bottom-up synthesis
and generation stage of the framework begins at
the leaf nodes, summarizes the relevant informa-
tion from retrieved documents. The model then
works its way upwards, synthesizing the retrieved
documents and the summarized information from
descendant nodes to generate text responses for
each intermediate node. This ascending integra-
tion continues until it reaches the root of the tree,
producing a final response that comprehensively
addresses the original input question or queries.
This methodical approach ensures that every facet
of the query is thoroughly explored, allowing for a
detailed and well-structured response generation.
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2.1 Top-down Planning and Retrieval

The concept of top-down planning and retrieval
stems from observing how humans approach com-
plex information-seeking tasks (Kuhlthau, 1991;
Marchionini, 1995). When faced with a multi-
faceted query, individuals naturally decompose
the complex query into smaller, specific facet-
focused manageable sub-queries (Wei et al., 2013).
Our framework aims to mimic this human-like ap-
proach to information retrieval by structuring the
process as a hierarchical exploration of various
facets of a complex query or question. This top-
down planning and retrieval stage is designed to
systematically break down the query into subques-
tions/subqueries from multiple facets that guide
the retrieval process towards a more thorough and
nuanced aggregation of relevant information.

Planning. The process begins with analyzing the
input query or question and its initial retrieved pas-
sages. We employ LLM as the planning agent in
Figure 4(a) to generate a series of sub-questions as
a plan, ensuring a broad and diverse exploration of
the query or question. Each sub-question targets a
specific aspect/facet of the query.

A set of 
subqueries Necessary?

Self-verification

Yes

Rewriting

Support?
Retrieval

Retrieval Verification

Plan {qx}: A set of 
verified subqueries

Yes

Figure 5: Two-step Verification.

Verification. Ideally, each sub-question should
be essential for addressing the original question or
query and should be contextually well-informed to
ensure it can retrieve passages relevant to the origi-
nal query. We apply a two-step verification process
as shown in Figure 5: i) we leverage LLM to pre-
dict whether a sub-question is required to address
the main query/question. If the sub-question is
identified as necessary, the LLM is used to rewrite
it as a self-sufficient and contextually-rich search
query. This step ensures that each sub-question is
both relevant and comprehensive, making it capa-
ble of independently guiding the retrieval process;
ii) Each sub-question is then used individually as
a query to retrieve passages. We evaluate whether
these retrieved passages are relevant to the original
query. For this relevancy assessment, we again use
LLMs to ensure that the retrieved passages effec-
tively contribute to addressing the original query.
This verification process ensures that the decom-

Dataset ODSUM-Story ODSUM-WikiHow
Corpus Size 1138 506295

Number of Queries 635 25896
Avg # docs per Query 8.78 15.26

Avg Doc Length 621.93 81.29
Avg Query Length 10.18 6.83

Avg Summary Length 274.65 124.24

Table 1: Statistics of ODSUM-Story and ODSUM-
WikiHow: Avg length in terms of words.

position of the original query into sub-questions is
not only comprehensive and contextually accurate
but also effective in retrieving relevant information.

Recursive Exploration. Once obtained verified
set of subquestions for the original input, we recur-
sively repeat the same planning-then-verification
strategy to generate successive plans for each
subquestion, continuously expanding the retrieval
scope. This recursive process ensures an in-depth
exploration of each query dimension, from the
broadest facets to the finer ones. It continues un-
til no further plans are needed or the predefined
maximum depth is reached. This stage results in a
detailed and well-structured tree where each node
represents a specific sub-question and its corre-
sponding relevant passages and the root node cor-
responds to the original query.

2.2 Bottom-up Synthesis and Generation

This stage, as shown in Figure 4(b), focuses on
synthesizing the retrieved information to produce
a coherent and comprehensive long-form response
that addresses the original query. Key advantages
of this bottom-up strategy include: i) utilizing a
large volume of retrieved passages by summariz-
ing information at each descendant level without
exceeding the input token length limit, and ii) ef-
fectively filtering out irrelevant or less important
details, which enhances the quality of the final re-
sponse. The process begins at the leaf nodes of the
tree, which contain the most specific subquestions
and their retrieved passages. Each leaf subques-
tion represents a fine-grained aspect of the original
query. We employ LLM to summarize the key
information from the retrieved passages that are
relevant to the sub-question. answer to complex,
open-domain questions.

From the leaf nodes, the synthesis and generation
process works its way upwards through the tree.
Similar to the leaf node, each intermediate node
contains a subquestion and its retrieved passages.
Each intermediate node integrates the summarized
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information from its child nodes with its retrieved
passages. This involves merging the key insights
and details from the descendant queries to form a
coherent and contextually rich response for each
sub-question represented by the node. This upward
process continues through each level of the tree. At
each step, the synthesized response from a lower
level is combined with the retrieved passages at the
current level. The process stops at the root node,
which represents the original query or question.
At this point, the final comprehensive response is
generated to address the original query, effectively
utilizing the information gathered throughout the
process.

3 WikiHow: A new ODSUM dataset

Open-domain summarization (ODSUM) is to gen-
erate a comprehensive summary for a given query
by gathering information from a large index of
documents. One of the key challenges in open-
domain summarization (ODSUM) is the scarcity of
datasets that encompass real-world queries along-
side a well-curated document corpus (Giorgi et al.,
2023). While a recent work (Zhou et al., 2023)
constructed a dataset ODSUM-Story from SQuAL-
ITY (Wang et al., 2022), question-based abstraction
summarization for short stories. However, the cor-
pus size and the diversity of queries (only from the
story domain) are limited as shown in Table 1. To
address this gap, we introduce a large-scale open-
domain summarization derived from WikiHow2

articles. Existing datasets sourced from WikiHow,
such as (Cohen et al., 2021; Koupaee and Wang,
2018; Boni et al., 2021), are constructed for tra-
ditional text summarization tasks. Moreover, A
recent WikiHowQA dataset (Bolotova-Baranova
et al., 2023) focuses on multi-document long-form
question answering with supporting documents
sourced from article reference links. Unfortunately,
its corpus of documents is not publicly available,
which limits its utility in LFQA. In addition, it uti-
lizes only 11,746 queries from a potential 25,896.
On the other hand, we have developed the ODSUM-
WikiHow dataset, which includes 25,896 queries,
each paired with human-written, coherent sum-
maries and supported by a substantial corpus of
506,295 documents.

Dataset Construction We process the article ti-
tles as input queries and use author-provided sum-
maries as the ground-truth summaries. WikiHow

2https://www.wikihow.com/Main-Page

articles are categorized into two types: one type
describes tasks using a single method detailed in
successive steps, while the other type outlines mul-
tiple methods, with each method comprising sev-
eral steps. To prepare the corpus, we exploit this
structured format where each step is discussed in
a separate paragraph. We treat each paragraph as
an individual document, which makes this dataset
particularly retrieval-intensive. As a result, on av-
erage, each query is supported by 15 documents,
enhancing the complexity and depth of the retrieval
challenge. The detailed stats are reported in Table 1.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics
Open-domain Summarization In addition to
ODSUM-WikiHow, we use the recent ODSUM-
Story (Zhou et al., 2023) dataset in our experiments.
In this dataset, inputs are queries and a corpus of
documents, the task is to generate a summary by re-
trieving multiple relevant documents from the cor-
pus. For evaluation, we use commonly used Rouge-
L (R-L), BertScore (BS), NLI-based Entailment
(Ent.) and Contradiction (Con.) scores (Liu et al.,
2019). Additionally, we use UNIEVAL (Zhong
et al., 2022) to assess the coherence, consistency,
and relevance of the generated summaries.

Long-form QA In this work, we use the ASQA
(Stelmakh et al., 2022) dataset where inputs are
ambiguous questions with multiple interpretations,
and outputs should cover correct answers for all of
them. To evaluate the performance on this dataset,
we use a set of questions that requires 5 or more ev-
idence passages. disambiguation metrics defined as
a good long-form answer to an ambiguous question
should contain short answers to all disambiguated
questions as well as the context necessary to un-
derstand the source of ambiguity and the relation-
ship between the short answers in (Stelmakh et al.,
2022). EM (string Exact Match) is the fraction
of disambiguations for which the corresponding
short answer is present in the long answer. DA-
F1 (Disambig-F1) is the fraction of disambiguated
questions that can be answered from the predicted
long answers. DR is the geometric mean of DA-F1
and ROUGE-L.

4.2 Baselines
RetGen retrieves passages a single time using the
input query itself and then utilizes these passages
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ODSUM-Story ODSUM-WikiHow

RL BS
NLI UniEval

RL BS
NLI UniEval

Ent. Con. Rel. Coh. Cons. Ent. Con. Rel. Coh. Cons.
RetGen 15.19 48.19 10.75 44.52 64.02 63.41 64.91 27.51 60.17 18.64 11.67 81.71 81.11 80.55

IterRetGen 14.11 49.47 13.8 38.95 69.15 70.17 71.01 24.32 59.28 18.24 10.76 79.41 78.41 78.24
Self-Ask 17.29 50.88 12.99 24.68 85.5 85.64 86.23 28.99 60.66 22.79 7.98 82.97 82.13 82.97

SearChain 12.9 46.23 4.41 51.47 76.79 72.65 75.14 26.52 55.59 14.25 23.68 82.01 80.5 80.94
DSP 17.09 51.52 14.15 16.34 88.2 87.9 89 25.22 58.21 17.3 11.5 85.15 85.37 86.28

Self-RAG 17.81 50.16 11.73 16.26 55.81 52.6 54.81 19.77 56.24 21.35 7.76 83.95 84.07 83.78
ConTReGen 19.33 54.01 21.35 16.98 89.28 89.27 89.72 34.88 62.21 24.3 7.89 86.83 86.76 87.19

Table 2: ODSUM Performance Comparison

to generate the response.
IterRetGen (Shao et al., 2023) iteratively retrieves
passages by using the previously generated re-
sponse as the next query to retrieve passages in
subsequent iterations and use them to update and
refine the previously generated response.
Self-Ask (Press et al., 2023) utilizes an elici-
tive prompting technique that involves generating
follow-up questions based on the previous retrieved
knowledge. These follow-up questions are then
used to fetch additional relevant passages and use
them to generate intermediate responses.
SearChain (Xu et al., 2024) utilizes a structured,
iterative interaction between LLMs and retriever to
enhance reasoning in complex tasks. It dynamically
generates and refines a chain of query-answer pairs
that are verified through IR. Unlike our ConTRe-
Gen approach, which focuses on constructing tree-
structured reasoning by exploring each query facet
in-depth, it refines the generated CoQ at each round.
However, the linear chain-of-query approach of-
ten fails to fully explore all relevant facets of a
query, leading to potential gaps in the information
retrieved.
DSP (Khattab et al., 2022) methodically handles
complex queries by first demonstrating the desired
query processing behavior, then searching relevant
information through iterative decompositions of the
query into simpler sub-queries, and finally generat-
ing the response by synthesizing all information.
Self-RAG (Asai et al., 2023b) leverages adaptive
retrieval and self-reflection into the generation pro-
cess. This approach allows the LLM to dynam-
ically retrieve information when needed and use
reflection tokens to assess and improve the rele-
vance and factual accuracy of its outputs.

4.3 Implementation Details

In our experiments, we utilize LLAMA3-
8B (AI@Meta, 2024) as the Large Language Model
(LLM) for ConTReGen and all baselines, except

ODSUM-Story WikiHow-ODSUM LFQA-ASQA
RetGen 16.14 13.99 36.56

IterRetGen 26.98 18.01 49.42
Self-Ask 36.79 22.3 51.5

DSP 27.61 14.94 53.39
Self-RAG 21.14 19.37 46.27

ConTReGen 57.69 42.44 57.38

Table 3: Retrieval Recall Performance

for Self-RAG. For Self-RAG, which requires fine-
tuning of the LLM with additional reflection tokens,
we use the provided trained LLAMA2-7B model.
Across all methods, we use the pre-trained Con-
triever (Gautier et al., 2022) as the dense retriever,
setting the number of retrieved passages to topk
= 5 for ASQA and ODSUM-WikiHow datasets,
and topk = 3 for ODSUM-Story. For iterative ap-
proaches, the maximum number of iterations is set
to {5, 10}, while for ConTReGen, the maximum
depth of the tree is set to 2. These settings are
used as the default unless explicitly mentioned oth-
erwise. We have used 1-shot prompting in both
modules.

5 Experimental Results

5.1 Retrieval Performance

Table 3 presents a comparison of the retrieval recall
performance between our proposed ConTReGen
approach and existing baseline methods. RetGen
performs a single round of context passage retrieval
from the corpus, while the other baseline meth-
ods utilize iterative retrieval techniques. For these
baselines, we evaluate performance after five iter-
ations. The results demonstrate that ConTReGen
significantly outperforms all baseline approaches.
Notably, ConTReGen achieves substantial improve-
ments in recall across various datasets: it shows
a 20.9 points increase on ODSUM-Story, a 20.14
points increase on WikiHow-ODSUM, and a 3.99
points increase on ASQA, compared to the second-
best methods.
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EM DA-F1 DR
NLI

Ent. Con.
RetGen 28.91 20.64 18.95 24.58 29.27

IterRetGen 35.52 24.56 25.82 33.82 19.85
Self-Ask 37.02 25.08 26.89 31.99 22.22

SearChain 28.26 13.47 18.99 7.79 53.89
DSP 36.22 24.59 27.03 29.91 16.17

Self-RAG 22.41 12.09 18.27 21.63 38.33
ConTReGen 41.16 30.23 30.31 41.51 21.4

Table 4: LFQA Performance on ASQA dataset

5.2 ODSUM Performance

Table 2 illustrates the performance of ConTReGen
compared to several baseline methods on open-
domain summarization tasks: ODSUM-Story and
ODSUM-WikiHow datasets. Our approach, Con-
TReGen, consistently outperforms other methods
across multiple metrics, demonstrating its effective-
ness in generating high-quality summaries.

ConTReGen achieves the highest scores in most
metrics. It records a Rouge-L (RL) score of 19.33,
BertScore (BS) of 54.01 on the ODSUM-Story
dataset, and On ODSUM-WikiHow, RL score of
34.88, BS of 62.21 surpassing the second-best
methods by 1.52, 2.49, 5.89 and 1.55 points, re-
spectively. This improvement highlights ConTRe-
Gen’s ability to accurately capture and reproduce
more relevant information.

Going beyond token-level similarity-based met-
rics, we use NLI-based Entailment and Contra-
dict scores to evaluate how generated summary
sentences are logically aligned to the reference
summary. ConTReGen excels with an entailment
(Ent.) score of 21.35 on ODSUM-Story and 24.3
on ODSUM-WikiHow, outperforming all other
baselines. It achieves competitive contradiction
scores to Self-RAG. As Self-RAG utilizes the fine-
tuned LLMs with reflection tokens to not only filter
out the relevant passages but also to select best-
generated text segment, it helps to improve genera-
tion quality with less contradictory information.

Furthermore, we use pre-trained QA-based
UNIEVAL (Zhong et al., 2022) metric to eval-
uate the generated summary on multiple dimen-
sions: Relevance (Rel.), Coherence (Coh.), and
Consistency (Cons.). On both datasets, ConTRe-
Gen shows superior performance across all dimen-
sions, indicating its effectiveness not only in re-
trieving relevant information but also in integrating
it cohesively and consistently into the generated
summaries.

R-L BERTScore NLI Entailment
RetGen 15.19 48.19 10.75

ConTRe w/o BSG 18.62 53.45 19.23
ConTReGen 19.33 54.01 21.35

Table 5: Ablation Study

ODSUM-Story ODSUM-WikiHow LFQA-ASQA
ReP NReP ReP NReP ReP NReP

IterRetGen 53.8 8.46 41.43 6.18 72.35 16.96
Self-Ask 61.47 21.74 50.11 8.28 77.49 14.72

DSP 47.49 13.8 36.3 4.17 76.36 13.69
Self-RAG 40.02 8.01 47.63 9.25 72.75 8.86

ConTReGen 81.11 45.62 76.67 25.18 82.46 21.88

Table 6: Retrieval Reasoning Analysis

5.3 LFQA Performance

As shown in Table 4, ConTReGen achieves the
highest Exact Match (EM) score of 41.16 and DA-
F1 score of 30.23, indicating its superior ability
to recall short answers for more disambiguated
questions. Furthermore, the larger DR score of
30.31 highlights the effectiveness of ConTReGen
in terms of factual accuracy and text quality as this
score combines both Rouge-L and DA-F1 scores.
Additionally, ConTReGen achieves NLI entailment
(Ent.) scores of 41.51, outperforming baselines by
a large margin. However, DSP gets lower contra-
diction scores (Con.) than ConTReGen, because of
DSP’s advanced Chain-of-prompting compared to
ConTReGen’s one-shot prompting.

5.4 Ablation Study

Impact of Retrieval enhancements: To further
analyze the contribution of retrieval in downstream
tasks, we conducted an experiment on the ODSUM-
Story dataset where we replaced our Bottom-up
Synthesis and Generation (BSG) module with a
simple generation module. This simple generation
module takes the top K=3 passages retrieved by
our retrieval system and generates the response
once. We compared this performance with RetGen,
which directly retrieves the top K=3 passages from
the corpus index and generates a response. Table 5
shows that ConTRe w/o BSG outperforms the Ret-
Gen approach.
Impact of Bottom-up Synthesis and Generation:
The structure of our retrieval systems encourages to
leverage the BSG module in the generation process.
In Table 5, we can see that BSG module improves
the overall performance across all metrics.
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RetGen IterRetGen Self-Ask DSP Self-RAG ConTReGen
46.2 52.87 61.31 43.4 51.6 80.65

Table 7: Facet Coverage Analysis

5.5 Analysis

5.5.1 Retrieval Reasoning Analysis
We analyze the retrieval reasoning of iterative ap-
proaches and ConTReGen by examining the struc-
tural retrieval relationships among evidence pas-
sages. For each query and its associated evidence
passages, we construct a relationship graph. In this
graph, a directed edge from passage A to passage
B (A→B) indicates that passage A can retrieve pas-
sage B from the corpus. The query itself acts as
the root node, with edges leading from the query
to an evidence passage (Q→A) if the query can
directly retrieve Passage A. Based on this graph
structure, we divide evidence passages into two
categories: i) Reachable Passages (ReP), which are
reachable from the root query through the graph,
and ii) Non-Reachable Passages (NReP), which are
not reachable. We assess and compare the recall
performance for each category as detailed in Ta-
ble 6. This analysis shows that ReP recall scores
are significantly higher than those for NReP, illus-
trating that iterative approaches excel when there is
direct retrieval connectivity among passages. How-
ever, these methods often fail to capture passages
that lack explicit retrieval connectivity. Conversely,
ConTReGen shows superior capability of retrieving
both types of passage. This is because hierarchical
planning not only ensures the effective utilization
of retrieved knowledge to exploit explicit retrieval
connectivity among passages but also establishes
new implicit connections of passages.

5.5.2 Facet Coverage Analysis
To assess the facet coverage of input queries by
each approach, we analyze a set of queries from the
ODSUM-WikiHow dataset that require informa-
tion from multiple methods, treating each method
as a distinct facet. We considered a facet as cov-
ered if an approach successfully retrieves at least
one passage corresponding to that facet. Accord-
ing to the results presented in Table 7, iterative
approaches generally manage to retrieve passages
from facets directly accessible by the query itself.
In contrast, ConTReGen not only retrieves pas-
sages from aspects directly accessible by the query
but also effectively covers additional aspects not
directly retrievable by the query.

EM DA-F1 DR
NLI

Ent. Con.
DSP 36.22 24.59 27.03 29.91 16.17

DSP w/ ConTRe 50.34 28.57 32.09 33.81 14.75
Self-RAG 22.41 12.09 18.27 21.63 38.33

Self-RAG w/ ConTRe 37.58 17.8 23.25 26.63 34.73

Table 8: Versatility of ConTRe (Retrieval only)

RetGen IterRetGen SelfAsk SearChain DSP SelfRAG ConTReGen
1 5 6 19.56 12 22 44.52

Table 9: Number of LLM call

5.5.3 Versatility of ConTRe
Our retrieval-only module, ConTRe, is designed
to be compatible with any sophisticated generation
module. Among the baseline approaches evalu-
ated, only the DSP and Self-RAG frameworks em-
ploy distinct generation strategies different from
ConTReGen. Specifically, DSP integrates Chain-
of-Thought prompting into its generation process,
while Self-RAG enhances its fine-tuned large lan-
guage model (LLM) with additional reflection to-
kens to improve text generation quality. We inte-
grated ConTRe with both the DSP and Self-RAG
generation modules and reported results in Table 8
on ASQA. This integration of ConTRe significantly
enhances performance in both cases, surpassing
their respective default retrieval strategies.

5.6 Computation Overhead

Since the LLM is the most computationally inten-
sive component, we measured the average num-
ber of LLM calls made by each method on the
ODSUM-Story dataset, as shown in Table 9. Al-
though ConTReGen requires more LLM or re-
trieval calls, it uses a smaller LLM (Phi-3, 3.8B)
and still significantly outperforms all baselines with
larger models (LLAMA3, 8B), achieving a +16.72
improvement in recall, as detailed in Table 11. Ex-
ploring the trade-offs between computational cost
and task performance could be a promising direc-
tion for future work.

6 Related Works

Recently, considerable research has focused on
Retrieval-Augmented Generation (RAG) across
various NLP tasks (Gao et al., 2023). Existing
approaches to single-time retrieval augmented gen-
eration typically involved retrieving knowledge
directly from the input itself (Izacard and Grave,
2020; Lewis et al., 2020; Petroni et al., 2020), using
expanded queries (Chuang et al., 2023), or rewrit-
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ten queries (Ma et al., 2023). However, as these
methods often struggle to retrieve all relevant pas-
sages in one go, recent developments have shifted
towards iterative retrieval approaches. These in-
volve LLMs actively interacting with the retrieval
process by formulating contextually rich subse-
quent queries, which can include utilizing full or
partial responses (Shao et al., 2023; Trivedi et al.,
2022; Asai et al., 2023b; Jiang et al., 2023), or
generating new queries (Press et al., 2023; Xu
et al., 2024; Yao et al., 2022). Additionally, adap-
tive retrieval-augmented approaches have emerged,
which decide when to retrieve based on token prob-
ability (Jiang et al., 2023), by generating explicit
retrieval token (Asai et al., 2023a), or by leverag-
ing the LLM’s self-knowledge. No iterative ap-
proaches leverage hierarchical exploration of di-
verse facets of input queries in-depth. A recent
paper MEMWALKER (Chen et al., 2023) con-
structs a tree structure from a given long text ir-
respective of queries. The model traverses the
structure upon receiving an input query and gener-
ates the response, whereas our ConTReGen con-
structs a query-focused tree by retrieving the rel-
evant information from a corpus. It focuses on
understanding long text while ConTReGen focuses
on both retrieving relevant contexts and leverag-
ing them to generate the response. Similar to
MEMWALKER (Chen et al., 2023), another re-
cent paper (Sarthi et al., 2024) utilizes a bottom-up
method to build a hierarchical tree by clustering
and summarizing text chunks, transforming a flat
corpus into a multi-layered one for varied-level in-
formation retrieval. However, this approach may
struggle with very large retrieval corpora and highly
diversified queries because the clustering and sum-
marization processes are conducted independently
of the queries. In contrast, ConTReGen employs
a top-down strategy, systematically branching out
from the main query into sub-queries that explore
different facets and uses query-focused bottom-up
summarization, enhancing relevance and effective-
ness in information summarization without altering
the retrieval corpus.

7 Conclusion

In this paper, we introduced ConTReGen, an in-
novative framework designed to enhance the ca-
pabilities of open-domain long-form text genera-
tion through a novel context-driven, tree-structured
retrieval approach. ConTReGen organizes the re-

trieval process hierarchically, allowing for an in-
depth exploration of various facets of input queries,
and integrates a systematic bottom-up synthesis.
This approach addresses the prevalent challenges in
the field by ensuring comprehensive coverage and
coherent integration of multi-faceted information.
Additionally, our retrieval-only ConTRe module is
model-agnostic and can be seamlessly adapted to
various advanced generation techniques. Our ex-
tensive experiments across multiple datasets have
demonstrated that ConTReGen significantly outper-
forms existing state-of-the-art retrieval-augmented
generation models. These results not only validate
the effectiveness of our approach but also under-
line its potential to be a versatile tool in enhancing
the generation of contextually rich, accurate long-
form content. Moreover, the introduction of the
ODSUM-WikiHow dataset is particularly signifi-
cant for furthering research in open-domain sum-
marization.
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Limitation

While ConTReGen has shown promising results in
open-domain long-form text generation, its effec-
tiveness is contingent upon the quality of the infor-
mation retrieved. The model is susceptible to incor-
porating noisy or irrelevant documents, which can
degrade the quality of the generated content. NLI
contradiction scores of ConTReGen also highlight
the need for improvement in managing irrelevant
contexts. To mitigate this issue, explicitly trained
generation models, such as recent works (Yoran
et al., 2023; Asai et al., 2023b) could be employed
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to enhance the robustness of the generation process
against irrelevant contexts. Developing advanced
generation techniques tailored for ConTReGen rep-
resents a promising direction for future research.

Moreover, the planning agent in ConTReGen,
which is crucial for generating and organizing sub-
queries, could benefit from explicit training. This
training would enable the agent to adaptively gen-
erate plans and autonomously determine the nec-
essary depth of exploration for each aspect of a
query. Currently, ConTReGen may generate vague
or non-informative sub-queries, and its two-step
verification process relies heavily on the LLM’s
reasoning and existing knowledge base. Despite its
impressive retrieval capabilities, there is significant
potential for enhancing the system by implement-
ing a more sophisticated model. Such a model
would not only verify but also generate contextu-
ally rich, retrieval-effective sub-queries, thereby
substantially improving both the accuracy and rele-
vance of the retrieval process.

Furthermore, as this work focuses on long-form
text generation, it would be an interesting future di-
rection to explore tree-structured retrieval in single
factoid answer scenarios.
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Topk = 3, Iterations = 10 | LLAMA3-8B as LLM Topk = 5, Iterations = 10 | Phi-3-Mini-128K as LLM
R-L BERTScore NLI Entailment Retrieval Recall R-L BERTScore NLI Entailment Retrieval Recall

RetGen 15.19 48.19 10.75 16.14 15.39 51.16 10.82 21.69
IterRetGen 13.12 48.94 14.82 29.03 14.66 50.86 14.85 37.95
Self-Ask 16.86 51.13 15.14 37.65 16.46 51.32 15.73 39.13

DSP 17.82 52.06 12.92 28.67 16.85 50.36 10.57 32.93
Self-RAG 18.96 47.96 9.37 23.24 17.78 47.83 11.34 29.28

ConTReGen 19.33 54.01 21.35 57.69 18.36 53.42 18.15 53.51

Table 10: Performance comparison by varying the number of iterations and Top k on ODSUM-Story dataset

RetGen IterRetGen SelfAsk SearChain DSP SelfRAG ConTReGen (Phi-3) ConTReGen (LLAMA-3)
16.14 26.98 36.79 15.24 27.61 21.14 53.51 57.59

Table 11: Retrieval Performance of ConTReGen with different LLMs

A Appendix

A.1 Experimental results by varying
hyperparameters

We analyzed the performance of several iterative
retrieval techniques per iteration on ODSUM-Story
and reported the results in Figure 3, which high-
lights that they are likely to reach a plateau of re-
trieval recall very quickly. Additionally, Table 10
shows the performance comparison across base-
lines after 10 iterations, while keeping the setting
of ConTReGen as the number of subquestions in a
plan is 5, and the depth of tree is 2.

A.2 Retrieval Performance by varying LLMs

Considering resource-constrained scenarios,
we conducted further experiments using the
lightweight Phi-3-Mini-4K LLM in our retrieval
module. The recall performance on the ODSUM-
Story dataset demonstrates that our Phi-3 retrieval
significantly outperforms baseline approaches that
use the LLAMA-3-8B model as shown in Table 11

A.3 Error Analysis

We have conducted a detailed error analysis to iden-
tify scenarios where the input query might not be
sufficiently informative to retrieve relevant refer-
ence passages from the corpus. Specifically, we
have found 10 instances within the ODSUM-Story
dataset where the input query, when used as the re-
triever’s query, did not yield any evidence passages
in the Top 32 results. In these challenging cases:

• All other baselines: Failed to retrieve any evi-
dence passages in every case.

• ConTReGen: Successfully retrieved at least
one evidence passage in 3 out of the 10 cases.

To further illustrate the robustness and reliability of
ConTReGen, consider the following case where the
original query is too vague considering the corpus:

Original Query: “What is the storyline of
PRISON PLANET?”

Result: All approaches including retriever
(topk=32) and ConTReGen failed to retrieve any
evidence passages from the corpus.

Upon modifying the original query to include the
author’s name: Modified Query: “What is the sto-
ryline of PRISON PLANET by BOB TUCKER?”

Result:

• All baselines failed, except for DSP and Re-
triever (topk=32) retrieved just 1 evidence pas-
sage out of 9.

• ConTReGen: Retrieved 6 evidence passages
out of 9.

The identified error cases underline a crucial
aspect of query informativeness. In scenarios
where the input query lacks informativeness, all
approaches including ConTReGen face challenges
in retrieving relevant passages. However, ConTRe-
Gen shows a notable improvement over all base-
lines when the query is slightly modified to include
additional context, such as the author’s name. This
suggests that while ConTReGen is more robust and
reliable, its performance can still be influenced by
the informativeness of the input query.
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