
Findings of the Association for Computational Linguistics: EACL 2024, pages 13823–13837
November 12-16, 2024 ©2024 Association for Computational Linguistics

QEFT: Quantization for Efficient Fine-Tuning of LLMs

Changhun Lee1∗ Jungyu Jin2∗ Younghyun Cho2 Eunhyeok Park2

1Department of Convergence IT Engineering
2Graduate School of Artificial Intelligence

Pohang University of Science and Technology (POSTECH)
{changhun.lee, jgjin0317, yhcho97, eh.park}@postech.ac.kr

Abstract
With the rapid growth in the use of fine-tuning
for large language models (LLMs), optimiz-
ing fine-tuning while keeping inference effi-
cient has become highly important. However,
this is a challenging task as it requires im-
provements in all aspects, including inference
speed, fine-tuning speed, memory consumption,
and, most importantly, model quality. Previ-
ous studies have attempted to achieve this by
combining quantization with fine-tuning, but
they have failed to enhance all four aspects si-
multaneously. In this study, we propose a new
lightweight technique called Quantization for
Efficient Fine-Tuning (QEFT). QEFT accel-
erates both inference and fine-tuning, is sup-
ported by robust theoretical foundations, of-
fers high flexibility, and maintains good hard-
ware compatibility. Our extensive experiments
demonstrate that QEFT matches the quality and
versatility of full-precision parameter-efficient
fine-tuning, while using fewer resources. Our
code is available at https://github.com/
xvyaward/qeft.

1 Introduction

While the outstanding zero-shot performance of
large language models (LLMs) (Brown et al., 2020;
Radford et al., 2019; Touvron et al., 2023; Zhang
et al., 2022) significantly contributes to their popu-
larity, their versatility and adaptability are also cru-
cial factors in their widespread adoption. Through
transfer learning and fine-tuning, LLMs can be ex-
tended to handle unseen or complex tasks, includ-
ing new data types, which opens up new possibil-
ities across various applications (Qin et al., 2023;
Hao et al., 2024). As efficient inference and fine-
tuning become increasingly important, this paper
explores methods to enhance the efficiency of both
inference and fine-tuning for LLMs.

Examining past research, several methods have
been proposed to enhance the efficiency of in-

*These authors contributed equally.

0

30

60

90

120

150

48 52 56 60 64 68 72
Fine-tuning time (h)6-task average accuracy (%)

21 10 100

Higher Faster
QEFT (Ours)
OWQ

QA-LoRA

Platypus
QLoRA

FP16

In
fe

re
nc

e
sp

ee
d

(to
ke

ns
/s

)

3.1X

1.3X

0.3X

70B

7B
13B

Figure 1: Pareto-front comparison of PEFT methods.
(Left): Average few-shot accuracy after fine-tuning vs.
inference speed. (Right): Fine-tuning time vs. inference
speed. For more details, please see Sec. 6.1.

ference, including pruning (Frantar and Alis-
tarh, 2023; Sun et al., 2023), speculative decod-
ing (Leviathan et al., 2023; Miao et al., 2023), KV
caching (Hooper et al., 2024), and, particularly,
weight quantization (Frantar et al., 2022; Lin et al.,
2023; Yao et al., 2022; Shao et al., 2023; Lee et al.,
2024). However, studies focusing on lightweight
approaches for fine-tuning remain relatively lim-
ited. This is because when considering both fine-
tuning and inference, the factors requiring opti-
mization—such as inference speed, training speed,
memory consumption, and accuracy—become sig-
nificantly varied. Balancing all these conditions
simultaneously presents a substantial challenge.

In this context, LoRA (Hu et al., 2022) is a rep-
resentative study enabling parameter-efficient fine-
tuning (PEFT) (Houlsby et al., 2019; Zaken et al.,
2022; Liu et al., 2022; Hu et al., 2022) by freez-
ing the pre-trained weights while adding a decom-
posed path that undergoes updates. This approach
opens up new opportunities for updating LLMs
flexibly with limited resources, leading to numer-
ous emerging applications (Kim et al., 2023; Lee
et al., 2023; Wang et al., 2023). In addition, several
studies have advanced this concept by attempting
to harmonize weight quantization and LoRA to
reap the benefits of both methods. For instance, in
QLoRA (Dettmers et al., 2023) and QA-LoRA (Xu

13823

https://github.com/xvyaward/qeft
https://github.com/xvyaward/qeft

et al., 2023), the pre-trained weights remain fixed
after quantization, while only the FP16 low-rank
path is added and updated exclusively. However,
QLoRA exhibits slow inference speeds, and both
methods still entail noticeable fine-tuning overhead.
Achieving improvements in all aspects of inference
and fine-tuning is not easily accomplished by sim-
ply applying multiple optimizations in parallel.

In this study, we propose a new quantization tech-
nique called Quantization for Efficient Fine-Tuning
(QEFT), designed to achieve optimal performance
in both inference and training. This method em-
ploys the data format of OWQ (Lee et al., 2024),
storing weak columns vulnerable to quantization in
FP16 while storing the majority of weights in 4-bit
or less, and updating only the weak columns during
fine-tuning. This approach allows us to enjoy the
benefits of quantization while implementing PEFT.

However, QEFT offers its own unique innova-
tions. First, OWQ suffers from the irregular mixed
precision of columns in the weights of linear layers,
resulting in low hardware compatibility. In con-
trast, QEFT achieves a structured mixed precision
phenotype based on the novel Offline Global Re-
ordering (OGR), improving hardware compatibility
and resulting in substantial speed improvements in
both training and inference, as shown in Fig. 1.
Additionally, QEFT provides a theoretical frame-
work for selecting weak columns to minimize loss
values after fine-tuning. Lastly, despite being im-
plemented differently from LoRA, we validate that
QEFT can replace and be applied to applications
that previously used LoRA, demonstrating its flex-
ibility. Through various experiments, we showed
that QEFT is the state-of-the-art method in terms
of inference speed, training speed, and model qual-
ity. While it consumes slightly more memory than
OWQ, QEFT outperforms it in every other aspect
and surpasses other baselines in all areas.

2 Related Work

2.1 Weight-only Quantization of LLMs

Weight-only quantization stands out as one of
the most successful optimization methods for
LLMs, significantly reducing the model’s foot-
print and mitigating memory bottlenecks during
generation, thereby notably accelerating inference.
OPTQ (Frantar et al., 2022) pioneered this ap-
proach by demonstrating that the OPT-175B model
can be quantized to sub-4-bit without notable ac-
curacy degradation. Moreover, this low-precision

approach addresses the memory bottleneck, achiev-
ing performance benefits on real GPU devices.
AWQ (Lin et al., 2023) and TEQ (Cheng et al.,
2023) make advances that improve the model qual-
ity via fine-grained group-wise quantization.

2.2 Parameter-efficient Fine-tuning (PEFT)

PEFT is designed to minimize fine-tuning costs
for LLMs, unlocking their potential to address
new problems affordably. LoRA (Hu et al., 2022)
is a representative study that freezes pre-trained
weights and adds low-rank parameters, which
are updated exclusively during fine-tuning. LoRA
demonstrates PEFT’s potential by showcasing
LLMs’ remarkable adaptation to unseen tasks with
a constrained update scheme.

2.3 Quantization-aware PEFT

QLoRA (Dettmers et al., 2023) expands upon the
LoRA concept by incorporating weight quantiza-
tion, compressing pretrained weight through quan-
tization. While this makes the fine-tuning process
more lightweight, the additional path slows down
inference performance, as the additional FP16 path
cannot be freely merged to quantized base weights.

QA-LoRA (Xu et al., 2023) offers an alternative
approach where the updated weight is merged on
top of the zero-point of the low-precision weight.
This eliminates the need for a high-precision path
after fine-tuning unlike QLoRA, and demonstrates
comparable fine-tuning quality; however, it still
has a large fine-tuning overhead, and the flexibility
for the advanced LoRA applications such as PEFT
merging is not explored.

2.4 Outlier-aware Weight Quantization

Recently, OWQ (Lee et al., 2024) introduced intra-
layer mixed precision quantization scheme for
weight only quantization. In OWQ, the goal is to
reduce the layer-wise error, which is broken down
into the error for the i-th output channel as follows:

Ei = ||Wi,:X − Ŵi,:X||22 ≈ ∆Wi,:H∆W T
i,:. (1)

The Hessian of the weight matrix plays a crucial
role in estimating the sensitivity of specific weights.
However, the weights in the same output channel
share an identical Hessian value, calculated as:

H(i) = H =
∂2Ei

∂W 2
i,:

= 2XXT . (2)

13824

Frozen Fine-tune Groups for quantization

𝑔 = 64

Quantized
Weights

NF4

(a) QLoRA

𝑂𝐶

𝑋

𝑟

Up
Quantized
Weights

INT4

Reordered
Weak Columns

𝑔 = 128

(c) QEFT

Weak Columns

(b) OWQ

𝑂𝐶𝐼𝐶

𝐼𝐶
𝑋 𝑋

k		=	4

Figure 2: The overview of adaptable quantization in-
cludes: (a) QLoRA, (b) OWQ and (c) the proposed
QEFT with OGR. k = 4 case as an example.

From this formulation, it was observed that acti-
vation outliers can significantly increase the sensi-
tivity of specific weight columns even when only
weight quantization is applied. In OWQ, they cal-
culated the sensitivity of j-th column due to weight
quantization as follows:

sensitivityj = λj ||∆W:,j ||22, (3)

where λ is a diagonal element of the Hessian. Af-
terward, they preserved the top-k most sensitive
columns (weak columns) in FP16 and compressed
only the remaining robust weights into 4 or 3-bit.

OWQ enhances the model quality significantly
while only adding an extra 0.01 bits on average.
However, its mixed-precision format poses chal-
lenges in deployment in both GPU and non-GPU
environments, limiting thier practical benefits.

2.5 Weak Column Tuning

OWQ also introduced the concept that enables
PEFT with mixed-precision. This idea, known as
Weak Column Tuning (WCT), updates the FP16
weak columns in a task-specific manner while
freezing the remaining quantized data. WCT in
OWQ sustains the benefits of low precision for both
inference and fine-tuning, but it also has several
limitations; WCT lacks theoretical support to guar-
antee its optimality in selecting tuning parameters
based on weak columns and has only demonstrated
feasibility for specific tasks. Furthermore, the ver-
satility of WCT has not yet been validated, making
it less favored than LoRA-based approaches. Most
importantly, the irregular mixed-precision weights
in OWQ poses challenges for acceleration.

3 Detailed Overview of QEFT

In this study, we introduce QEFT, a mixed-
precision quantization that achieves higher speed

for both inference and fine-tuning and better fine-
tuned quality thanks to its hardware-friendly and
expressiveness. We begin by detailing QEFT in
this section and explain fine-tuning capabilities in
Sec. 4. Then, we discuss PEFT merging, an ad-
vanced example validating its versatility, in Sec. 5.

3.1 Data Structure and Quantization Process
QEFT applies mixed-precision quantization to the
dense weights of linear layers in LLMs. After quan-
tization, three data components are generated: the
dense low-precision matrix, group-wise quantiza-
tion parameters, and high-precision weak columns,
as depicted in Fig. 2(c). Similar to OWQ, we begin
by identifying the k sensitive columns and preserv-
ing them in FP16. However, the key difference in
implementation is that QEFT employs novel Of-
fline Global Reordering (OGR), as described in
Sec. 3.2, ensuring a structured format unlike to the
irregularity of OWQ (Fig. 2(b)).

Subsequently, the remaining weights are stored
in 4-bit or less. We introduce group-wise quantiza-
tion (Lin et al., 2023) to further minimize quanti-
zation errors from per-channel quantization based
OWQ. Therefore, every adjacent g weights share
the same quantization parameters, such as scaling
factor and zero-point. We perform a grid search
for each group to find the quantization parameters
that minimize the squared error of weights after
truncation. Then, we apply OPTQ (Frantar et al.,
2022) using the searched parameters to find the best
low-precision mapping. While OPTQ originally re-
lies on channel-wise min-max quantization, ours
leverage the benefits of group-wise quantization
and truncation (Esser et al., 2019; Li et al., 2021;
Nahshan et al., 2021; Wei et al., 2022), resulting in
high-quality quantized weights.

3.2 Offline Global Reordering
In OWQ, mixed-precision makes it difficult to ac-
celerate. While the indices of weak columns are pre-
determined offline, correlated with the location of
activation outliers (Fig. 2(b)), the irregular mixed-
precision format introduces multiple branches in
the decompression process, causing complex im-
plementation and slowdown. Moreover, these char-
acteristics are difficult to support on emerging hard-
ware, such as in-DRAM accelerators (Lee et al.,
2021) or NPUs (Intel, 2024), which only support
dense computation in general.

To address this limitation, we must revise the
data representation for predictability and conti-

13825

Figure 3: (a) Weak column indices at all transformer
blocks in the Llama-2 7B model, where "attn" indicates
input activation of the attention block and "ffn" indicates
activation of the feed-forward block. (b) An overview
of the offline global reordering.

guity. Previous efforts, such as reordering acti-
vations in the normalization layer during infer-
ence (Yuan et al., 2023), grouped high-precision
weights on one side, separating them from low-
precision weights. Although this accelerates com-
putation via dense matrix multiplication, the on-
line reordering incurs additional inference latency,
amortizing the benefits of quantization.

To eliminate irregularities without incurring on-
line costs, we introduce a novel concept called Of-
fline Global Reordering (OGR). This idea is moti-
vated by our key observation that outlier channel in-
dices significantly overlap across layers, as shown
in Fig. 3(a), which visualizes the layer-wise indices
of the top-8 weak columns for each transformer
block in the Llama-2 7B model. This overlap oc-
curs because outlier activations propagate through
subsequent layers via residual connections, caus-
ing weak column indices to align across layers.
Based on this observation, we identify and use the
common (global) weak columns across the entire
network, as depicted in Fig. 3(a). Since weight per-
turbation can vary significantly across layers, we
use only λj , instead of λj ||∆W:,j ||22 in Eq. (3). The

Reorder Group-wise 6task 4task Inference speed
technique quantization Avg. ↑ Avg. ↑ (tokens/s) ↑

51.24 55.46 112
Online 51.24 55.46 127
OGR 51.11 55.19 148

✓ 51.42 55.81 111
OGR ✓ 51.55 55.70 146

Table 1: Ablation results of QEFT (k = 128) for the
few-shot average scores and inference speed on Llama-2
7B. The bottom row represents QEFT. For more details,
please see Sec. 6.1.

optimality of this metric is discussed in Sec. 4, and
the detailed selection algorithm is in Appendix B.

Once the global weak columns are selected, we
can rearrange the weights of the embedding and
head layers, as well as the layers within the trans-
former block, offline, as shown in Fig. 3(b). By
globally reordering the model, the weak columns
of each linear layer form a structured dense ma-
trix, and their corresponding activations are located
contiguously. One exception is the attention output
projection layer, or WO in Fig. 3(b). To maintain
the multi-head attention mechanism, reordering is
not applicable to the WO weight. In this case, the
mixed-precision format is used without reordering.

Tab. 1 shows the effect of the component pro-
posed in QEFT for Llama-2 7B. For reference, we
begin with the OWQ configuration and measure
the impact of online reordering and OGR, respec-
tively. The table indicates that online reordering
offers limited benefits due to its overhead, whereas
OGR significantly accelerates inference. Although
most weak columns overlap, utilizing global weak
columns may result in subtle accuracy degradation
due to the small number of non-overlapping col-
umn indices. To realize the Pareto-front solution,
we seek to address this degradation and consider us-
ing group quantization instead of OWQ’s channel-
wise quantization. A group size of 128 was used
by default and it improves the fine-tuned perfor-
mance by reducing quantization error, with negli-
gible hardware overhead thanks to our optimized
kernel. Due to the increased number of group-wise
parameters, a slight increase in memory usage oc-
curs from 3923MB to 4107MB. Results show that
using OGR with group quantization is the best op-
tion and globally reordered model exhibits nearly
the same few-shot scores as the optimal selection at
each layer while greatly enhancing inference speed.

13826

: Tensors required for forward
: Weight gradient for update
: Activation stored for backward

𝜕𝐿
𝜕𝑋 = 𝜕𝐿

𝜕𝑦 	
𝜕𝑦
𝜕𝑋

𝝏𝑳

𝝏𝑾𝒘𝒆𝒂𝒌
=
𝜕𝐿
𝜕𝑦
	
𝝏𝒚

𝝏𝑾𝒘𝒆𝒂𝒌

𝑁

𝑋
∈ ℝ%&	×)

𝑘

𝐼𝐶

𝐼𝐶

𝑊
∈ ℝ!"	×	%"

𝑂𝐶

𝑊*+,-	 ∈ ℝ!"	×	&

𝑦

𝑦',)	 = ∑𝑊',*𝑋*,) 𝜕𝐿
𝜕𝑦

Matrix
Multiplication

Figure 4: Visualization of the reduction in computation
during forward and backward of QEFT in linear layers.

3.2.1 GPU Acceleration Kernel for QEFT

To realize the full potential of QEFT, we developed
a customized matrix-vector multiplication GPU
kernel tailored for the reordered format. This ker-
nel first processes the quantized dense matrix by
dequantizing the weights into FP16 format and mul-
tiplying them with the activations. Subsequently, it
performs the multiplication of the high-precision
dense weights and activations. Thanks to OGR,
we can seamlessly apply two dense computations,
which are fused into a single kernel in practice.
The impact of our customized kernel on inference
performance is validated in Sec. 6.4.

3.3 Efficient Backward Computation

Utilizing QEFT provides another significant ad-
vantage for fine-tuning. As depicted in Fig. 4, the
backward computation of the linear layer involves
two GeMM operations: calculating gradients for
the input X and the weights W . Unlike LoRA-
based approaches, QEFT reduces the GeMM cost
by computing gradients only for the rectangular-
shaped trainable weights, thus decreasing the over-
all FLOPs of weight gradients to k/IC. This reduc-
tion offers substantial performance benefits during
fine-tuning. Additionally, as shown in Fig. 4, we
only need to store the subset of activations corre-
sponding to the weak columns. The gradient of
weights for weak columns can be computed with-
out requiring the entire activation tensor, reducing
the memory footprint to k/IC. A crucial aspect of
QEFT is that it uses a structural data representation
based on OGR, allowing for easy backward imple-
mentation in existing frameworks such as PyTorch
(Paszke et al., 2019).

4 Optimal Weak Column Selection

While QEFT is efficient for both fine-tuning and
inference, it also offers superior fine-tuning quality.
In this section, we provide theoretical support by
proving that selecting weak columns as mask for
tunable parameters is an optimal strategy for mini-
mizing the loss value after sparse PEFT, under the
following conditions: 1. A fixed budget is allocated
to each linear layer. 2. The selection is applied at
a per-channel granularity.

Firstly, we formulate the sparse PEFT as follows:

min
∆θ,M

L(θ0 +M∆θ), (4)

where θ0 ∈ ROC×IC represents the pre-trained
weights, and OC and IC represent the output
and input channel dimensions, respectively. ∆θ ∈
ROC×IC represents the updated weights, L repre-
sents the target loss function, and M ∈ RIC×IC

represents the channel-wise parameter mask, where
Mi,j = 0 if i ̸= j or Mi,i ∈ {0, 1} otherwise.
To maximize the effect of fine-tuning, we need
to select an appropriate M that can minimize the
loss. According to the second-order approximation
method of (Fu et al., 2023), we can find out the op-
timal mask based on the magnitude of the gradient.
Theorem.

if M̂ii=1

(
m∑

j=1

1

(∣∣∣∣
∇L(θ0)2i

hi

∣∣∣∣>
∣∣∣∣
∇L(θ0)2j

hj

∣∣∣∣
)
≥m−k

)
,

where ∇L(θ0)i is the i-th element of ∇L(θ0), then

inf
∆θ

L(θ0 + M̂∆θ) ≤ inf
∆θ,∥M∥0=k;

L(θ0 +M∆θ).

This theorem states that the mask M̂ minimizing
the infimum of loss can be constructed by selecting
the top k indices in order of largest |∇L(θ0)2i | val-
ues. In the constraints of the channel-wise parame-
ter mask, by selecting the indices with the largest
|∇L(θ0)2:,i| values, we can construct M̂ that mini-
mizes the loss after fine-tuning among candidates.

In QEFT, tunable weak columns are selected
by Eq. (3), which is based on λi and the weight
perturbation. Meanwhile, the gradient of the weight
in the linear layer is calculated by the chain rule:

∇L(θ) =
∂L

∂θ
=

∂L

∂y

∂y

∂θ
=

∂L

∂y
XT , (5)

where X represents the activation and y = θX .
Most importantly, the presence of activation out-
liers causes both weak column selection (Eq. (3))

13827

Figure 5: Channel-wise sensitivity and magnitude of the
gradient in Llama-2 7B model. The yellow box indicates
the selected weak columns for k = 128 case.

and weight gradient to be dominated by the activa-
tion, thus the selection metric of QEFT is also valid
for selecting columns with the largest |∇L(θ0)2:,i|.

Fig. 5 illustrates the correlation between Eq. (3)
and |∇L(θ0)2:,i|. Sorting the channels using quan-
tization sensitivity reveals that the top-k channels
(weak columns) also represent the columns with
the largest gradient magnitude. This implies that
although we select weak columns considering the
quantization sensitivity, fine-tuning quality is also
accounted for.

5 Advanced Application: PEFT Merging

QEFT is designed for efficient inference and fine-
tuning, but it also needs to be general enough to
be an alternative to the LoRA-based approach. To
validate this, we applied QEFT to an advanced ap-
plication of LoRA known as PEFT merging (Lee
et al., 2023). Fig. 6 provides an overview of this
process. As shown in the figure, the LoRA adapter
is fine-tuned using the Open-Platypus dataset (Lee
et al., 2023) on the Llama-2 model. After fine-
tuning, the updated weights are transferred to the
StableBeluga (Mahan et al., 2023) model, which
was also initialized with Llama-2 but fine-tuned
on a different dataset, resulting in the creation of
Stable-Platypus2. Despite potential differences in
semantics, Stable-Platypus2 surprisingly exhibits
better quality than each model before the merge.

To assess the merging ability of QEFT, we also
attempt a similar approach, called QEFT merg-
ing. We generate the quantized Llama-2 model
and fine-tune the weak columns for the Open-
Platypus dataset. The updates of the weak columns
(∆ = B −A) are then merged into the StableBel-
uga model. If the target model is a full-precision
model, we add the update according to the weak
column index. For the quantized StableBeluga, we
add the update to the corresponding weak columns.
We show that QEFT merging works surprisingly

Figure 6: An overview of LoRA-based PEFT merging
and its QEFT counterparts, QEFT merging. (a) Target
model + LoRA case. (b) Target model + QEFT case.

well in Sec. 6.3, validating its generality.

6 Experiments

6.1 Experiments Setting

To demonstrate the superiority of QEFT, we con-
ducted extensive analysis. The fine-tuning envi-
ronment adheres to the setup of a baseline, Platy-
pus (Lee et al., 2023). We utilized the Open-
Platypus dataset for fine-tuning, specially filtered
to remove duplicates and redundancy among 11
open-source datasets. Given that the Open-Platypus
dataset focuses on STEM and logic question do-
mains, we also adopted their evaluation method,
which includes few-shot tasks from the open-llm-
leaderboard (Beeching et al., 2023).

Following the recent version of the leaderboard,
we report scores for 6 tasks (MMLU (Hendrycks
et al., 2020), HellaSwag (Zellers et al., 2019), ARC-
c (Clark et al., 2018), TruthfulQA (Lin et al., 2022),
Winogrande (Sakaguchi et al., 2021), and GSM8k
(Cobbe et al., 2021)), along with their average, to
assess fine-tuning performance. Additionally, we
report the average score of four tasks (MMLU, Hel-
laSwag, ARC-c, and TruthfulQA) used for eval-
uation in previous studies (Lee et al., 2023; Xu
et al., 2023). We utilized lm-eval-harness (Gao
et al., 2023) to measure few-shot accuracy.

We used Adamw optimizer with batch size of
16. We used constant learning rate of 1e-5 and 5e-
6 for k = 16 and 128, respectively. We observed
the overfitting issue of OPTQ reconstruction in the
70B model, which is also found in the previous

13828

Model Bits
Base Tunable Tuning Inference Speed ↑

MMLU
Hella

ARC-c
Truthful Wino

GSM8k
6task 4task

Size Params. Time ↓ (tokens/s) speedup Swag QA grande Avg. ↑ Avg. ↑
Llama-2 7B 16 12.9GB - - 93 1× 46.54 78.63 52.99 38.96 73.64 14.63 50.90 54.28
LoRA 16 12.9GB 160M 1.9h 93 1× 48.18 78.32 55.29 41.78 74.27 1.67 49.92 55.89
Platypus 8 6.7GB 23M 7.0h 11 0.12× 49.93 78.74 54.44 42.70 74.79 2.84 50.57 56.45
QLoRA 4 3.7GB 160M 3.5h 17 0.18× 48.44 77.75 54.44 41.71 74.12 1.48 49.65 55.58
QA-LoRA 4 4.4GB 89M 5.2h 47 0.51× 48.61 78.37 53.11 41.28 73.68 14.14 51.50 55.41
OWQ (k=16) 4 3.6GB 22M 1.7h 119 1.28× 46.59 78.00 52.26 40.86 73.16 12.58 50.58 54.43
OWQ (k=128) 4 3.9GB 174M 1.7h 112 1.20× 48.24 78.01 54.14 41.47 73.32 12.25 51.24 55.46
QEFT (k=16) 4 3.8GB 22M 1.7h 148 1.59× 48.70 78.21 53.54 41.96 73.29 12.17 51.31 55.60
QEFT (k=128) 4 4.1GB 174M 1.7h 146 1.57× 49.02 78.21 53.80 41.77 73.56 12.93 51.55 55.70

Llama-2 13B 16 24.8GB - - 52 1× 55.42 82.19 59.64 36.90 76.09 21.38 55.27 58.54
LoRA 16 24.8GB 250M 2.7h 52 1× 55.59 82.24 60.92 45.64 76.44 6.79 54.60 61.10
Platypus 8 12.7GB 36M 10.7h 8 0.15× 56.70 82.32 60.37 42.16 75.85 10.66 54.67 60.38
QLoRA 4 6.9GB 250M 6.1h 13 0.25× 55.86 81.76 59.56 44.30 76.44 8.57 54.41 60.37
QA-LoRA 4 8.2GB 140M 8.9h 39 0.75× 56.66 81.95 61.22 41.75 76.91 22.51 56.84 60.39
OWQ (k=16) 4 6.7GB 34M 2.6h 80 1.54× 56.03 81.81 60.32 40.81 76.00 20.32 55.88 59.74
OWQ (k=128) 4 7.2GB 273M 2.7h 76 1.46× 57.30 82.05 60.20 42.24 76.96 22.18 56.82 60.45
QEFT (k=16) 4 7.1GB 34M 2.5h 101 1.94× 56.40 81.71 61.86 42.99 76.24 23.13 57.05 60.74
QEFT (k=128) 4 7.6GB 273M 2.6h 98 1.88× 56.80 82.01 62.33 42.46 77.51 22.56 57.28 60.90

Llama-2 70B 16 131.6GB - - 11∗ 1× 69.83 87.33 67.32 44.92 83.74 54.06 67.87 67.35
Platypus † 8 66.3GB 141M 88h 4 0.36× 70.04 87.02 70.14 51.13 83.74 54.89 69.49 69.58
QLoRA 4 34.7GB 828M 28.1h 7 0.64× 69.82 87.06 69.03 51.05 84.93 55.04 69.49 69.24
QA-LoRA 4 41.8GB 442M 41.2h 20 1.82× 70.20 87.32 69.50 47.69 83.94 53.18 68.51 68.54
OWQ (k=16) 4 33.9GB 107M 11.0h 23 2.09× 69.97 86.91 69.28 51.56 84.17 54.28 69.36 69.43
OWQ (k=128) 4 35.3GB 860M 11.2h 22 2.00× 70.25 86.89 70.31 50.02 84.53 53.15 69.19 69.37
QEFT (k=16) 4 35.8GB 107M 10.9h 29 2.64× 70.49 86.85 70.05 50.52 83.90 56.03 69.64 69.48
QEFT (k=128) 4 37.3GB 860M 11.1h 28 2.55× 70.51 86.88 69.97 51.15 83.98 54.44 69.49 69.63

Table 2: Comparison of PEFT methods for various few-shot tasks. The model group is divided into 7B, 13B,
and 70B by horizontal double lines. Among the average scores, we bold the best score and underline the second
and third-best scores. † denotes that the accuracy was measured using an official checkpoint. The training cost is
measured by A100 GPU hours. * denotes using 2 GPUs, as FP16 70B model causes OOM on single GPU.

work (Wu et al., 2023). Therefore, we utilized sim-
ple round-to-nearest quantization instead of OPTQ
for 4-bit Llama-2 70B results. Please refer to Ap-
pendix A for the detailed experiment setups.

6.2 Overall Fine-tuning Results

In order to compare the superiority of QEFT, we se-
lecte five representative counterparts: LoRA, Platy-
pus, QLoRA, QA-LoRA, and OWQ. Platypus (Lee
et al., 2023) utilizes 8-bit quantization for the base
model and integrates the LoRA module only into
the FFNs. QLoRA/QA-LoRA and OWQ are in-
cluded for quality and performance comparisons
using 4-bit quantization. QLoRA/QA-LoRA ap-
plies the LoRA module to all linear layers, while
OWQ retains k weak columns as FP16 for all lin-
ear layers. It’s important to note that k/2 ≃ r in
terms of tunable parameters, as each LoRA module
employs two d× r adapters.

We reproduced all results from our control
groups (LoRA, Platypus, QLoRA, QA-LoRA, and
OWQ), excluding Platypus 70B due to its resource-
intensive nature (requiring 8xA100 GPUs) and
lengthy training time. Instead, we utilized the offi-
cially provided pre-trained weights of Platypus 70B
from Huggingface. Since OWQ does not provide

tuning code, we implemented it based on our setup.
Therefore, the tuning of OWQ was also accelerated
by using the QEFT’s customized code. In addition,
different from inference, computations are mostly
compute-bound matrix multiplication during fine-
tuning. In this case, the speed gain of OGR just
comes from the simple dequantization process, re-
sulting in negligible benefit (∼ 0.1h reduction of
training time) compared to OWQ.

Experimental results are detailed in Tab. 2.
QEFT clearly outperforms the other quantization-
aware PEFTs in the 13B model. However, Platypus
demonstrates the best tuning performance in the
7B model, primarily because accuracy degradation
due to quantization is dominant for the smaller
model. Yet, when considering the base size (6.7GB
vs. 4.1GB), QEFT’s performance stands out. More-
over, even in the 7B case, QEFT with k = 128
shows better results than other 4-bit baselines, and
in the 13B case, QEFT with just a budget of k = 16
exhibits tuning performance outperforms others.
Interestingly, Platypus, LoRA, and QLoRA consis-
tently display low GSM8k scores on 7B and 13B,
indicating they might be overly tuned for conven-
tional 4 benchmarks.

Platypus reports that their 70B model fine-tuning

13829

Model Type Bits MMLU HellaSwag ARC-c TruthfulQA 4tasks Avg. ↑
Llama-2 13B PT 16 55.42 82.19 59.64 36.90 58.54

StableBeluga-13B FT 16 57.65 82.35 61.95 49.21 62.79
Stable-Platypus2-13B target + LoRA 16 58.15 82.31 62.54 52.38 63.85
Stable-QEFT-13B target + QEFT 4 58.32 81.86 62.20 52.25 63.66
Stable-QEFT-13B 16 58.97 82.53 62.46 53.71 64.42
OpenOrcaxOpenChat-Preview2 FT 16 58.52 83.09 62.63 50.57 63.70
OpenOrca-Platypus2-13B target + LoRA 16 59.46 83.21 62.88 52.69 64.56
OpenOrca-QEFT-13B target + QEFT 4 59.18 82.51 63.48 53.40 64.64
OpenOrca-QEFT-13B 16 59.47 83.10 63.74 54.31 65.16

Table 3: PT, FT, and target + X denote pre-trained model, full fine-tuning, and parameter-efficient fine-tuning using
X, respectively. Among the PEFT merging results, we bold the best score and underline the second-best score.

required 4 × A100 GPUs for 22 hours. In contrast,
QEFT can be completed in 11 hours with just a
single A100 GPU. This represents approximately
an 8-fold acceleration in terms of GPU hours, high-
lighting the memory-time efficiency feature of the
proposed method. Despite having only 1/8 of the
training cost, the fine-tuned quality of QEFT-based
model is comparable to or better than the Platypus-
70B, significantly surpassing the baseline Llama-2
70B. Compared to other 4-bit methods, QEFT con-
sistently shows better accuracy. In particular, QEFT
has a much lower tuning time than LoRA-based
approaches.

6.3 PEFT Merging Results

Tab. 3 presents the PEFT merging results for
two fully fine-tuned models, StableBeluga and
OpenOrca (Lian et al., 2023). Following the ob-
jective of merging strategy from the Platypus study,
we report the scores of the four tasks (MMLU,
HellaSwag, ARC-c, and TruthfulQA) to assess
complementary effects. Although QEFT merging
only modifies the weight columns corresponding
to weak columns of the fully fine-tuned models, all
QEFT merging cases increases MMLU, ARC, and
TruthfulQA scores together; thus, merging tuned
weak columns enhances both reasoning ability and
knowledge capability. Furthermore, QEFT merg-
ing with a quantized target model (indicated as
4-bits in the table) demonstrates comparable ac-
curacy to FP16 LoRA merging. In this scenario,
we benefit from a reduced merged model size and
faster inference from the QEFT format. Both merg-
ing techniques prove highly beneficial for enhanc-
ing model quality. This observation confirms that
QEFT aligns well with the idea of PEFT merging.

Figure 7: The number of generated tokens per second in
auto-regressive generation scenario at the single batch.

6.4 Inference Acceleration

In this section, we demonstrate performance ben-
efits of QEFT in auto-regressive generation sce-
narios. We benchmark inference speed on the
LLaMA families on A100 80GB GPU, using the
full-precision model and different tuning methods
as a baseline. In this experiment, we utilize the op-
timized multi-head attention kernel and layer nor-
malization kernel of FasterTransformer (NVIDIA,
2023) for all methods except QA-LoRA, as they
use AutoGPTQ (AutoGPTQ, 2024) framework.
Please refer to Appendix A.2 for details. We re-
port the results as the median of generated tokens
per second, generating 256 tokens at batch size 1.

As shown in the Tab. 2, the low-rank path in
LoRA-based methods introduces a bottleneck in
inference, notably reducing overall speed. Addi-
tionally, as described in Tab. 2 and Fig. 7, even
though OWQ also utilizes their optimized kernel,
QEFT consistently achieved speedups of about
30% across from OWQ all model sizes in Llama-
1/3. This improvement stems from eliminating the
irregular memory access, a major contributor to the
overhead of mixed-precision operations, through
OGR. In particular, QEFT is about 2.4x faster on
the Llama-3 8B model compared to OWQ, because
QEFT’s kernel exhibits high parallel throughput
even for the model with small linear layers and
group query attention.

13830

7 Conclusion

The storage and computation demands of LLMs
present significant barriers to widespread adoption.
While quantization and PEFT optimize inference
and fine-tuning, respectively, their harmonization
is overlooked. In this work, we introduce QEFT, de-
signed to ensure fine-tuning compatibility while pri-
oritizing hardware compatibility. Our experiments
confirm that QEFT achieves the fastest fine-tuning
and yields the highest accuracy. Moreover, QEFT
shows superior performance in inference, highlight-
ing its excellence across all aspects.

Limitations

Although model quantization and parameter-
efficient fine-tuning can serve as regularizers dur-
ing training (AskariHemmat et al., 2022; Fu et al.,
2023), an explicit regularization mechanism is of-
ten beneficial for stabilizing fine-tuning outcomes.
In practice, additional regularizers like Dropout
(Srivastava et al., 2014) are employed in LoRA
modules to ensure stable training. However, in
QEFT, the Dropout-like regularizer is not currently
incorporated. While our experiments did not ex-
hibit evident signs of overfitting, this limitation
may lead to unaddressed overfitting concerns de-
pending on the specific task. As a future direction,
we aim to explore potential candidates for regular-
ization.

In terms of performance, QEFT requires time
to convert FP16 to low-precision representation.
Typically, the conversion process for the Llama-2
13B model takes about an hour and further details
are in the Tab. 8. We did not incorporate this con-
version cost into Tab. 2 because it is a one-time
expense, and its cost can be amortized by reusing
the quantized model for multiple downstream tasks.
However, if LLM capacities are further increased,
it may be necessary to consider this conversion
cost.

While we can determine the global weak
columns and enjoy the benefit of OGR, the
‘out_proj’ weight cannot be reordered either offline
or via equivalent out channel reordering of previ-
ous layers. Therefore, we have to specially handle
the reordering of ‘out_proj’ on the fly, utilizing the
customized kernel based on OWQ. This hinders the
advantage of QEFT’s high-throughput generation
system.

Acknowledgement

This work was supported by Institute of Informa-
tion & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (RS-2023-00213611, RS-2024-
00415602, RS-2024-00396013).

References
MohammadHossein AskariHemmat, Reyhane Askari

Hemmat, Alex Hoffman, Ivan Lazarevich, Ehsan
Saboori, Olivier Mastropietro, Sudhakar Sah, Yvon
Savaria, and Jean-Pierre David. 2022. Qreg: On reg-
ularization effects of quantization. arXiv preprint
arXiv:2206.12372.

AutoGPTQ. 2024. Autogptq. https://github.com/
AutoGPTQ/AutoGPTQ.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wenhua Cheng, Yiyang Cai, Kaokao Lv, and Hai-
hao Shen. 2023. Teq: Trainable equivalent trans-
formation for quantization of llms. arXiv preprint
arXiv:2310.10944.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Thirty-seventh Conference on
Neural Information Processing Systems.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S
Modha. 2019. Learned step size quantization. In
International Conference on Learning Representa-
tions.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

13831

https://github.com/AutoGPTQ/AutoGPTQ
https://github.com/AutoGPTQ/AutoGPTQ
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Optq: Accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On
the effectiveness of parameter-efficient fine-tuning.
Proceedings of the AAAI Conference on Artificial
Intelligence, 37(11):12799–12807.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting
Hu. 2024. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. 2024. Kvquant:
Towards 10 million context length llm inference
with kv cache quantization. arXiv preprint
arXiv:2401.18079.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR. OpenReview.net.

Intel. 2024. Intel gaudi 3 ai accelerator white
paper. https://www.intel.com/content/
www/us/en/content-details/817486/
intel-gaudi-3-ai-accelerator-white-paper.
html. Accessed: 2024-04-15.

Sanghyeon Kim, Hyunmo Yang, Younghyun Kim,
Youngjoon Hong, and Eunbyung Park. 2023. Hy-
dra: Multi-head low-rank adaptation for parameter
efficient fine-tuning. CoRR, abs/2309.06922.

Ariel Lee, Cole Hunter, and Nataniel Ruiz. 2023. Platy-
pus: Quick, cheap, and powerful refinement of llms.
In NeurIPS 2023 Workshop on Instruction Tuning
and Instruction Following.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim,
and Eunhyeok Park. 2024. Owq: Outlier-aware
weight quantization for efficient fine-tuning and in-
ference of large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 13355–13364.

Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu
Kim, Eojin Lee, Seungwoo Seo, Hosang Yoon, Se-
ungwon Lee, Kyounghwan Lim, Hyunsung Shin,
et al. 2021. Hardware architecture and software stack
for pim based on commercial dram technology: In-
dustrial product. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture
(ISCA), pages 43–56. IEEE.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu,
Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. 2021.
Brecq: Pushing the limit of post-training quantization
by block reconstruction. In ICLR.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin
Cook, Chanvichet Vong, and "Teknium". 2023.
Openorca: An open dataset of gpt augmented flan
reasoning traces. https://https://huggingface.
co/Open-Orca/OpenOrca.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. arXiv preprint arXiv:2306.00978.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Dakota Mahan, Ryan Carlow, Louis Castricato, Nathan
Cooper, and Christian Laforte. 2023. Stable beluga
models.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and
Zhihao Jia. 2023. Specinfer: Accelerating genera-
tive llm serving with speculative inference and token
tree verification. arXiv preprint arXiv:2305.09781,
1(2):4.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii
Zheltonozhskii, Ron Banner, Alex M Bronstein, and
Avi Mendelson. 2021. Loss aware post-training quan-
tization. Machine Learning, 110(11-12):3245–3262.

13832

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html
https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html
https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html
https://www.intel.com/content/www/us/en/content-details/817486/intel-gaudi-3-ai-accelerator-white-paper.html
https://doi.org/10.48550/ARXIV.2309.06922
https://doi.org/10.48550/ARXIV.2309.06922
https://doi.org/10.48550/ARXIV.2309.06922
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://huggingface.co/stabilityai/StableBeluga2
https://huggingface.co/stabilityai/StableBeluga2

NVIDIA. 2023. Fastertransformer. https://github.
com/NVIDIA/FasterTransformer.

NVIDIA. 2024. Trt-llm. https://github.com/
NVIDIA/TensorRT-LLM.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adversar-
ial winograd schema challenge at scale. Communica-
tions of the ACM, 64(9):99–106.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:
Omnidirectionally calibrated quantization for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter.
2023. A simple and effective pruning approach for
large language models. In The Twelfth International
Conference on Learning Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan
Zhang. 2023. Multilora: Democratizing lora for bet-
ter multi-task learning. CoRR, abs/2311.11501.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu,
and Fengwei Yu. 2022. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quan-
tization. In ICLR.

Xiaoxia Wu, Haojun Xia, Stephen Youn, Zhen Zheng,
Shiyang Chen, Arash Bakhtiari, Michael Wyatt, Yux-
iong He, Olatunji Ruwase, Leon Song, et al. 2023.

Zeroquant (4+ 2): Redefining llms quantization with
a new fp6-centric strategy for diverse generative tasks.
arXiv preprint arXiv:2312.08583.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen,
Heng Chang, Hengheng Zhang, Zhengsu Chen, XI-
AOPENG ZHANG, and Qi Tian. 2023. Qa-lora:
Quantization-aware low-rank adaptation of large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:
Reorder-based post-training quantization for large
language models. arXiv preprint arXiv:2304.01089.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

13833

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://doi.org/10.48550/ARXIV.2311.11501
https://doi.org/10.48550/ARXIV.2311.11501

A Experimental Details

A.1 Experimental Details of Fine-tuning
We used lm-eval-harness commit version b281b09
for a fair comparison. GSM8k is the only task in-
volving generation among the tasks, so we used
a batch size of 1 for evaluating GSM8k to mini-
mize the padding effect. Other few-shot tasks were
evaluated using the maximum available batch size.
We followed the evaluation methods and datasets
provided by lm-eval-harness (Gao et al., 2023), for
example, HellaSwag was evaluated using 10k vali-
dation data and GSM8k was evaluated using 1.3k
test data.

We utilized gradient checkpointing and gradient
accumulation to reduce fine-tuning memory usage.
Although these options make training slower, our
tuning costs (GPUh) were measured using these
options by default. For QEFT tuning of the Llama-
2 70B model, we used the max_grad_norm value
of 0.0. For the fine-tuning configurations of our
control groups, we mostly followed the original
training strategy and experimental configurations
of each control group. Additionally, The QA-LoRA
model is quantized using 128 calibration samples
extracted from the C4 dataset. We report the 2 seed
average score for 7B/13B in Tab. 2. Please refer to
the Tab. 4 for detailed hyperparameters.

A.2 Experimental Details of the Generation
Benchmark

QA-LoRA exploits the AutoGPTQ (AutoGPTQ,
2024) library for their fine-tuning and inference.
However, we found that the datatype of AutoG-
PTQ’s zero point is integer while QA-LoRA uti-
lizes floating point zero point. This difference could
potentially lead to a decrease in the kernel speed
of QA-LoRA when considering full functionality.
QEFT’s matrix vector multiplication kernel imple-
mentation is based on TensorRT-LLM (NVIDIA,
2024).

B Algorithm for Global Weak Column
Index Selection

In the Sec. 3.2, we analyzed the location of weak
columns and proposed efficient reordering by tak-
ing advantage of the fact that they overlap a lot.
Nevertheless, there are weak columns that do not
overlap. To determine optimal global weak col-
umn index within limited budget (top-k < union
of weak columns), we propose Algorithm 1 based
on their sensitivity value.

Algorithm 1 Global index selection

d: hidden state dimension of models.
k: number of outlier channel
X: encoded sequences. shape :[b, s, d]

def compute_sensitivity(layer, X):
H = (2*X @ X.T).mean(dim=0)
sensitivity = H.diag()
top_indices = sensitivity.topk(k).indices
return sensitivity, top_indices

s_global = torch.zeros(d)

for block in blocks:
for layer in block:

s_local, ids = compute_sensitivity(layer, X)
s_global[ids] += s_local[ids] / s_local.mean()

global_indices = torch.topk(s_global, k).indices

C Additional Experiments

C.1 Few-shot Results on 3-bit Settings

we added results for 3-bit settings to Tab. 5. The
accuracy gap between QEFT and other methods
increases, except for a single case: QA-LoRA with
Llama-2 13B. Two factors mainly affect fine-tuned
accuracy: (1) mask selection and corresponding
fine-tuning ability, and (2) quality of the frozen
quantized weights.

In the case of OWQ and QEFT, the fine-tuning
ability of (1) is the same according to the conver-
gence analysis in Section 3. Therefore, the differ-
ence in accuracy is caused by (2), where group-
wise quantization of QEFT makes a gap in quan-
tization quality. Thus, it is also natural that the
accuracy gap increases in 3-bit, where quantization
quality is even more important.

On the other hand, QA-LoRA utilizes a group
size of 32, so generally QA-LoRA has a better
quantization quality regarding (2) while having a
large storage overhead of base size in return, as
clearly shown in the table. Nevertheless, as QEFT
guarantees lower convergence, QEFT shows better
accuracy in most 4-bit and 3-bit cases as QEFT’s
(1) dominates QA-LoRA’s (2). However, as quanti-
zation quality becomes more important in 3-bit, we
assume a single reversed result occurred for 13B.

In this case, the base size of QA-LoRA is
6.68GB, which is about 12% larger than QEFT’s
6.05GB. However, it is difficult to match all other
configurations and conditions (e.g. tuning cost,
base size, inference speed, etc.).

C.2 Comparison of Quantization Methods

Selecting an adequate quantization method is im-
portant as it is directly connected to the post-tuned

13834

Hyper-parameter QEFT LoRA Platypus QLoRA QA-LoRA

k = 16 k = 128 7B/13B 7B/13B 7B/13B 70B 7B/13B 70B

group_size 128 - per-tensor 64 32
LR 1e-5 5e-6 2e-4 4e-4 2e-4 1e-4 2e-5 1e-5

Dropout - - 0.1 0.05 0.1 0.05 0 0
Scheduler constant constant constant cosine constant constant constant constant

warmup steps 0 0 0 100 0 0 0 0
Low rank (r) - - 64 16 64 64 64 64

LoRA modules - - all FFN all all all all
max_grad_norm 0.3 0.3 0.3 1.0 0.3 0.3 0.3 0.3

per_device_train_batch_size 1
gradient_accumulation_steps 16

Table 4: The experimental configurations and hyperparameters for fine-tuning.

Model Base Tunable
MMLU

Hella
ARC-c

Truthful Wino
GSM8k

6task 4task
Size Params. Swag QA grande Avg. ↑ Avg. ↑

Llama-2 7B
QA-LoRA 3.59GB 89M 44.97 76.68 49.91 40.75 71.98 11.90 49.36 53.08
OWQ (k=128) 3.15GB 174M 45.06 76.22 52.47 39.31 72.85 10.54 49.41 53.27
QEFT (k=128) 3.33GB 174M 45.07 76.88 52.86 42.86 72.45 10.85 50.16 54.42
Llama-2 13B
QA-LoRA 6.68GB 140M 55.75 81.16 59.04 42.77 75.77 20.62 55.85 59.68
OWQ (k=128) 5.69GB 273M 55.63 80.69 57.94 42.10 76.01 18.12 55.08 59.09
QEFT (k=128) 6.05GB 273M 56.18 80.67 58.41 42.54 75.89 20.74 55.74 59.45

Llama-2 70B
QA-LoRA 33.64GB 442M 69.64 86.65 68.09 46.89 83.58 52.08 67.82 67.82
OWQ (k=128) 27.14GB 860M 69.05 86.08 67.92 49.81 83.66 50.72 67.87 68.22
QEFT (k=128) 29.10GB 860M 70.07 85.97 68.17 52.55 83.66 51.18 68.60 69.19

Table 5: Comparison of PEFT methods for various few-shot tasks on 3-bit base settings. The model group is divided
into 7B, 13B, and 70B by horizontal lines. Among the average scores, we bold the best score and underline the
second scores.

WikiText-2 ↓ Avg. of 6 tasks ↑
7B 13B 7B 13B

RTN 5.25 4.65 50.04 56.43
OWQ 5.22 4.66 51.16 56.82

Table 6: Comparison of quantization methods of the
base model.

performance. While fine-tuning can boost task-
specific accuracy, quantization-aware PEFT must
overcome the accuracy degradation from quanti-
zation. We compared two quantization schemes,
OWQ and round-to-nearest (RTN) method on
Llama-2 7B. OWQ searches clipping value and
reduces quantization error by reconstruction, while
RTN uses naive minmax quantization. Tab. 6 shows
that few-shot accuracies using OWQ as quantiza-
tion are consistently better than RTN. Interestingly,
perplexity score after quantization (without fine-
tuning) is similar in both cases. Analyzing more
on the effect of quantization on fine-tuning is our
future research direction.

k 8 16 32 64 128

lr (×10−5) 1.4 1.0 0.7 0.5 0.4

Avg 56.66 56.98 56.94 56.90 57.28

Table 7: Average score of 6 few-shot tasks according to
change in the value of k.

C.3 The Number of Weak Columns k

In this paper, k presents the number of weak
columns, which are preserved in full-precision in
each linear weight. There is a trade-off depending
on the k value between the number of tunable pa-
rameters and the overall model cost. To find out the
effect of k on tuning performance, we measured the
score by changing the value of k (Tab. 7). When
we used the same learning rate, the score seemed
irrelevant to the k values. The result is the average
of the three seed values, and although there is some
variation, it was confirmed that the performance
improves as the k value increases. k = 16 and 128
were used for the experiments in Tab. 2 to match
the number of learnable parameters to the control
group.

13835

QEFT OWQ

Time(m) Storage(MB) Time(m) Storage(MB)

7B 39.5 4107 25.6 3923
13B 70.0 7561 46.7 7200
70B 107.0 37260 246.7 35296

Table 8: Quantization costs for QEFT and OWQ.

C.4 Quantization Cost for QEFT and OWQ

We measured quantization time and storage cost for
QEFT and OWQ on Llama-2 family (Tab. 8). In
the 7B and 13B models, QEFT is more expensive
than OWQ because it applies group-wise quantiza-
tion and grid search. However, please note that the
quantization process time is one-time cost and can
be amortized. If we create the quantized weights
for each base model once, they can be used for
multiple QEFT fine-tuning for several datasets and
tasks. For the Llama-2 70B model, OWQ takes 4.1
hours to perform quantization and reconstruction
on the single A100 80GB. On the other hand, group-
wise quantization process of QEFT 70B takes about
1.8 hours because QEFT 70B utilizes minmax and
round-to-nearest quantization instead of grid search
and reconstruction, respectively. Please refer to
Sec. 6.1 for more details about the quantization
of the QEFT 70B case. Regarding the storage cost,
grid search also does not affect the cost as it only
alters the value of each quantization parameter
(scales and zero points). Group-wise quantization
slightly increases storage overhead due to the in-
creased number of group-wise parameters. Tab. 8
shows the storage overhead of group-wise quanti-
zation for all model sizes (with k=128). We can see
that group-wise quantization imposes insignificant
storage overhead compared to the overall size of
the model.

C.5 Measuring the Tuning Time

The tuning cost reported in Tab. 2 measures the
time required to train 1 epoch of the platypus
dataset. Please note that these training time results
(except Platypus 70B) were measured during the
actual process of training QEFT or while repro-
ducing our control group results, under the same
environment of a single A100 80GB memory. We
referenced the tuning cost of Platypus 70B from its
paper due to its resource-intensive nature (requiring
8xA100 GPUs) and lengthy training time.

Additionally, we compare the forward and back-
ward times for a single model run with an input
length of 512. These results are reported in Tab. 9.

LLaMa-2 Model Forward Backward Total

QEFT 7B (k=128) 54ms 160ms 214ms
QLoRA 7B (r=64) 138ms 340ms 478ms

QEFT 13B (k=128) 90ms 290ms 380ms
QLoRA 13B (r=64) 254ms 590ms 844ms

Table 9: Speed measurement results for forward and
backward operations in QEFT and QLoRA. Gradient
checkpointing is applied to all methods.

7B 13B 70B

LoRA 14.33 27.08 OOM
Platypus 8.16 14.77 OOM
QLoRA 5.16 9.12 41.46

QA-LoRA 5.01 9.03 42.98
OWQ 4.10 7.41 35.75
QEFT 4.24 7.69 37.25

Table 10: Training memory footprint (GB) of each PEFT
method.

Compared to QLoRA, QEFT is significantly faster
in both forward and backward passes because there
is no low-rank decomposed path. In particular, the
backward pass is further accelerated due to the
reduced amount of computation, as explained in
Sec. 3.3. When we compare the combined forward
and backward time of QEFT and QLoRA, QEFT is
more than twice as fast, which is consistent with the
overall training time of the two methods in Tab. 2.

D Memory Footprint

D.1 Fine-tuning Memory Footprint

Tab. 10 shows the memory footprint during fine-
tuning using each PEFT method. We used the same
configuration as Tab. 2 for all methods, except in-
put sequence length, where we used 512 for this.
OWQ and QEFT use k=16.

First, the training memory footprint is domi-
nated by the base model size. LoRA has the largest
memory footprint because it uses a 16-bit base
model, followed by Platypus with an 8-bit base
model. Please note that as OWQ does not pro-
vide tuning code, we implemented it based on our
setup. Therefore, OWQ also benefits from QEFT’s
customized backward implementation, while both
memory footprints are much lower than other meth-
ods. The slight difference in memory footprint be-
tween OWQ and QEFT is due to the use of groups.

We further detailed a breakdown of memory us-
age during training in Fig. 8. The memory used by
the input-enabled gradient in all methods is small
because gradient checkpointing is applied and the

13836

Figure 8: The memory usage for training with QEFT
and baselines.

Llama-2 unoptimized (GB) optimized (GB)

7B 14.40 6.40
13B 18.38 8.38
70B 32.51 16.51

Table 11: Peak GPU Memory Usage during quantization
process of QEFT (and other OPTQ-based methods).

batch size is 1. At the k=16 setting, QEFT incurs
the smallest memory among QEFT, QLoRA, and
Platypus.

D.2 GPU Memory Overhead of the
Quantization process

Additionally, we report the peak GPU memory
usage during the QEFT quantization process in
Tab. 11.

First, the memory usage of the quantization pro-
cess in QEFT, OWQ, and QA-LoRA follows the
block-wise reconstruction method of OPTQ, where
only each decoder block is kept in GPU memory
every time. Therefore, the memory consumption
of these methods is almost identical. When we use
OPTQ’s implementation, the forward process of
the calibration set between each block consumes
the most GPU memory usage, as it keeps both 128
input and 128 output tensors on GPU memory. This
requirement is identical for QEFT, OPTQ, OWQ,
and QA-LoRA, demanding a reasonable amount of

GPU memory, as seen in the "unoptimized" column
of the Table.

However, in our experiment, we further opti-
mized the original OPTQ reconstruction process
to lower peak GPU memory usage. By allowing
only one calibration sample to be allocated to GPU
memory at a time on demand, without affecting
the quantization process, we reduced memory con-
sumption by half ("optimized" column of the Table)
over the OPTQ code. Please note that all of OPTQ-
related algorithms benefit from this optimization
as well. In environments where GPU memory for
parameter-efficient fine-tuning is available, the base
model can be quantized without difficulty.

13837

