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Abstract

We investigate how to elicit compositional gen-
eralization capabilities in large language mod-
els (LLMs). Compositional generalization em-
powers LLMs to solve complex problems by
combining foundational skills, a critical reason-
ing ability akin to human intelligence. How-
ever, even the most advanced LLMs currently
struggle with this form of reasoning. We ex-
amine this problem within the framework of
in-context learning and find that demonstrat-
ing both foundational skills and compositional
examples grounded in these skills within the
same prompt context is crucial. We refer to this
prompt structure as skills-in-context (SKiC).
With as few as two exemplars, this in-context
learning structure enables LLMs to tackle more
challenging problems requiring innovative skill
combinations, achieving near-perfect system-
atic generalization across a broad range of tasks.
Intriguingly, SKiC also unlocks the latent po-
tential of LLMs, allowing them to more actively
utilize pre-existing internal skills acquired dur-
ing earlier pretraining stages to solve complex
reasoning problems. The SKiC structure is ro-
bust across different skill constructions and ex-
emplar choices and demonstrates strong trans-
ferability to new tasks. Finally, inspired by
our in-context learning study, we show that
fine-tuning LLMs with SKiC-style data can
elicit zero-shot weak-to-strong generalization,
enabling the models to solve much harder prob-
lems directly with standard prompting.

1 Introduction

Large language models (LLMs) have achieved
great success in solving natural language process-
ing (NLP) tasks (Smith et al., 2022; Lewkowycz
et al., 2022; Wei et al., 2021; Mishra et al., 2022;
Chung et al., 2022; Ouyang et al., 2022; OpenAI,
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2023; Touvron et al., 2023b). When the size of
model and data scales up, LLMs exhibit strong
zero/few-shot performance on a wide range of NLP
tasks — a salient behavior characterized by the scal-
ing law (Kaplan et al., 2020; Hoffmann et al., 2022)
and emergent abilities (Wei et al., 2022a). However,
LLMs still struggle with compositional generaliza-
tion, i.e., the ability to use existing skills to solve
more complex unseen problems (Zhou et al., 2022a;
Dziri et al., 2023; Burns et al., 2023).

Ideally, if an LLM has already learned a rich
set of knowledge and foundational skills, it should
be able to solve any problem whose solutions are
composable from these skills. To unlock such great
potential, the key is to teach the LLMs how to use
these skills to construct a solution to more difficult
problems. Towards this goal, there have been a
series of in-context learning strategies developed to
improve the reasoning and composition capabilities.
Notably, chain-of-thought (CoT) prompting (Wei
et al., 2022b) significantly improves the reasoning
performance of LLMs by demonstrating how to
approach a complex problem through a sequence
of basic steps. Follow-ups such as Least-to-Most
prompting (Zhou et al., 2022a) and decomposed
prompting (Khot et al., 2022) propose a two-stage
strategy, which first decomposes the problem into
sub-problems, and then solve and combine them
sequentially. Although these methods significantly
boost the performance in solving many challeng-
ing compositional generalization tasks, they usu-
ally fail over problems that are significantly harder
than the ones they have seen. Moreover, least-to-
most prompting and decomposed prompting are
restricted to solving problem classes that can be de-
composed as a sequence of sub-problems. And for
problems with general computation graphs (Dziri
et al., 2023), it is generally less intuitive, if not
possible, to construct the prompting exemplars.

In this paper, we examine how to elicit strong
compositional abilities in LLMs within the frame-

13838



Figure 1: Skills-in-Context Prompting. The prompt consists of three blocks: (i) the (basic) skills for solving a
complex task, (ii) examples of how to compose the skills, and (iii) the problem to be solved. The above prompt will
be fed into an LLM to generate the output — see Figure 26 for an example of the output. Note that the compositional
exemplars demonstrate how to explicitly ground the reasoning steps onto the basic skills (highlighted in colors).

work of in-context learning. We find that the key
insight is to teach the LLM to explicitly ground
each of its reasoning steps on the (more founda-
tional) skills. To this end, it is crucial to demon-
strate both the foundational skills and the composi-
tional examples grounded in these skills within the
same prompt context. We refer to this (one-stage)
prompting structure as SKills-in-Context (SKiC).
Specifically, the SKiC prompt is constructed from
three main blocks (Figure 1). The first block con-
tains a short (non-exhaustive) list of skills that
LLMs may need to use in order to solve a more
complex problem, which include the instructions of
the skills. These skills can be distilled either manu-
ally or automatically via LLMs. The second part
consists of a few (generally two) exemplars that
demonstrate how to compose skills into a complex
solution. The last part is the testing problem.

Interestingly, with both the skills and their ex-
plicit compositions presented in the context, the
LLMs successfully learn how to ground reason-
ing steps onto the skills that they have already
mastered, yielding much stronger generalization
abilities. It allows LLMs to achieve near-perfect
systematic generalization across a broad range of
tasks. In addition, it also allows the LLMs to gen-

eralize beyond the skills provided in the context
and solve problems by more actively and explicitly
using the vast reservoir of the internal skills they ac-
quired during the prior pre-training stage. It clearly
demonstrates that SKiC structure unleashes strong
synergies between skills and their composition ca-
pabilities, which teaches LLMs to generalize to un-
seen (harder) problems that require innovative com-
positions of skills. Furthermore, the SKiC structure
is robust across different skill constructions (e.g.,
handcrafted or discovered by LLMs) and exemplar
choices and demonstrates strong transferability to
new tasks. Finally, inspired by our in-context learn-
ing study, we show that fine-tuning LLMs with
SKiC-style data can elicit zero-shot weak-to-strong
generalization, enabling the models to solve much
harder problems directly with standard prompting.

2 SKiC: Elicit Compositionality with
In-Context Skills and Grounding

While humans naturally exhibit compositional gen-
eralization in problem-solving, LLMs often strug-
gle to compose basic skills to solve more difficult
problems (Dziri et al., 2023). Empowering LLMs
with the ability to compose skills that they have
seen to solve more complex tasks is important to
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mirror human intelligence and to reach superintel-
ligence. In this work, we investigate how to elicit
compositionality of LLMs in in-context learning
(ICL) setting. In particular, we want to reveal how
a meticulously designed prompt structure could
greatly enhance the compositional ability. The in-
sights obtained in the ICL setting can also inspire
how to further improve the fine-tuning (Sec. 4).

Demonstration of Composition We find that it
is crucial to instruct the LLM to explicitly ground
each of its reasoning steps onto the foundational
skills1. To facilitate this, it is important to demon-
strate both the foundational skills and the compo-
sitional examples grounded in these skills within
the same prompt context. Such a structure, which
we refer to as SKiC, provides a full-context demon-
stration of how to perform explicit composition
over skills for solving a (complex) problem, where
the detailed three-part construction is illustrated in
Figure 1 as we discussed earlier. It is also partly
inspired by the Elaborative Rehearsal from the hu-
man cognition theory (Berry, 1983), where studies
(Kheirzadeh and Pakzadian, 2016) have demon-
strated that by first summarizing relevant knowl-
edge and skills as the Scaffolding (Hammond and
Gibbons, 2005) and establishing connections be-
tween the problem-solving steps and the existing
Scaffolding, human would process the new infor-
mation with greater depth and thoroughness, thus
reinforcing both the concepts and their practical
applications (Bakker et al., 2015). Our ablation
study in Table 5 will reveal that both the in-context
skills and the explicit groundings are essential for
eliciting strong compositional abilities.

Comparison to existing approaches Different
from Chain-of-Thoughts, our SKiC provides ex-
plicit grounding on the foundational skills at each
of the reasoning steps and also provides the rel-
evant skills within the same context. Compared
to recent prompting methods for handling com-
positional problems such as Least-to-Most (LtM)
(Zhou et al., 2022a) and Decomp (Khot et al.,
2022), our SKiC is superior in several dimension:
(i) Our SKiC is more general to solve extended
sets of problems. Previous decomposing-based
approaches like LtM and Decomp usually solve
complex problems in a two-stage fashion by first
decomposing the problem into a linear sequence

1“Foundational skills” are not necessarily atomic. Rather,
they could be any skills (e.g., a composite skill by itself) that
serve as the building blocks for tackling complex problems.

of subproblems and then solving them sequentially.
However, many of the tasks that have complex
computation graphs such as multiplication and dy-
namic programming problems (Dziri et al., 2023)
cannot be decomposed in a simple manner, which
makes these decomposition-based approaches less
applicable. (ii) The decomposition operation can
also be viewed as one basic skill in SKiC (see Fig-
ure 16 for an example in a question-answer task).
(iii) SKiC solves the complex problems in a single
stage, which could alleviate the error propagation
compared to decomposition-based approaches that
require multiple distinct stages. Due to the one-
stage nature, our SKiC can replace other one-stage
strategies such as the CoT in a plug-and-play man-
ner. And it can be easily combined with other en-
semble techniques such as self-consistency (Wang
et al., 2022) and Progressive-Hint (Zheng et al.,
2023a) to further boost the performance. Please
refer to Appendix C for the relations to tool-using.

Construction of the skills One important com-
ponent in the above SKiC structure is the founda-
tional skills. Note that these skills are not meant
to be an exclusive coverage over all the necessary
skills. Instead, they are intended to be used together
with the compositional exemplars to demonstrate
how to perform explicit and grounded composition.
For this reason, we only need a limited number of
in-context skills since they only need to be used to-
gether with a few (typically 2 ∼ 10) compositional
exemplars. Therefore, the human effort involved in
constructing these skills are generally minimal or
at most comparable to other few-shot prompting ap-
proaches. Indeed, our experimental analysis shows
that SKiC requires less number of demonstration
examples. Morever, these skills can also be con-
structed automatically by prompting LLMs while
still achieving good performance (see the results in
Section 3.3 and more details in Appendix B).

Grounding the composition As shown in Fig-
ure 1, we explicitly ground the reasoning steps onto
the corresponding skills in the compositional ex-
emplars. Besides the in-context skills, we may also
ground the reasoning steps to the internal skills not
presented in the context, where the existence of
these internal skills can be verified by prompting
the LLMs with the skill information (see Appendix
B). Intriguingly, with SKiC, the LLMs can more ac-
tively tap into the vast reservoir of the internal skills
they acquired during the pre-training stage in com-
plex reasoning. In Figure 2, we demonstrate an ex-
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Figure 2: An example of the generated solution on the MATH task using SKiC. Intriguingly, the two highlighted
skills <Angle Bisector Theorem> and <Heron’s Formula> are neither provided in the SKiC context (see Figure
22) nor used in any given exemplars. LLMs harness the internal skills in their pre-trained knowledge to solve the
problem, where these two highlighted skill names are also generated automatically by the LLM.

ample of the generated solution on the MATH task
using SKiC. The two highlighted skills <Angle
Bisector Theorem> and <Heron’s Formula> are
neither provided in the SKiC context (see Figure
22) nor used in any given exemplars. LLMs au-
tomatically ground onto the (pre-trained) internal
skills and compose them in their output reasoning
steps. Notably, these two highlighted skill names
are also automatically generated by the LLM.

3 Analysis of Compositional Abilities

We perform experiments in two settings, where
more details can be found in Appendix D:

Systematic Generalization: Composition over
in-context skills, where all the needed skills are
provided in the context. We evaluate (i) last let-
ter concatenation (Wei et al., 2022b; Zhou et al.,
2022a; Khot et al., 2022), where the LLM needs to
generate the concatenation of the last letter from
a given list of words, (ii) addition and multipli-
cation (Dziri et al., 2023), where the LLM needs
to generate the sum and product of two numbers,
(iii) CommaQA-E (Khot et al., 2022), where mod-
els need to answer multi-hop questions, and (iv)
dynamic programming (Dziri et al., 2023), where
LLMs need to find the highest sum for a subse-
quence where no two numbers are adjacent. These
tasks require only a limited skill set and we con-
struct SKiC prompts manually in Figures 10-19,
with similar human effort as in CoT prompting.

Complex Reasoning: Generalization beyond
in-context skills, where models need to harness
skills beyond the context and tap into the internal
skills for math reasoning like GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). For
GSM8K, which are simpler problems that could
be solved by basic math operations, we construct
SKiC via human in Figures 20-21. For MATH,
which is a more challenging benchmark, we prompt
the LLMs to generate the skills and then hand-
craft a few examples in Figures 22,23 (see the sec-
ond approach in Appendix B). The handcrafting
effort involved here is comparable to other few-shot
prompting approaches such as CoT.

We mainly compare SKiC with zero/few-shot
standard prompting (Brown et al., 2020), CoT (Wei
et al., 2022b), Least-to-Most (LtM) (Zhou et al.,
2022a), and Decomp (Khot et al., 2022) on dif-
ferent LLMs including LLAMA (Touvron et al.,
2023a), GPT3 (text-davinvi-003) (Brown et al.,
2020), ChatGPT and GPT4 (OpenAI, 2023). For
tasks in the second setting, we further com-
pare our methods with Scratchpad (Nye et al.,
2021), Learning-to-Program (LtP) (Guo et al.,
2023), ComplexCoT (Fu et al., 2022) and ensem-
ble strategies such as majority voting (maj1@k)
(Lewkowycz et al., 2022), Self-Consistency (SC)
(Wang et al., 2022), Progressive-Hint Prompting
(PHP) (Zheng et al., 2023a), and Code-based-
Verification (CSV)(Zhou et al., 2023). Note that all
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Figure 3: Accuracy on last letter concatenation, addition, multiplication, and dynamic programming. The gray area
is in-distribution evaluation where the testing examples are with the same level of complexity as examples in the
context, while the white area is out-of-distribution evaluation where the test set are increasingly harder problems.

Figure 4: Exact Match on Commaqa-E. The “Comp.
Gen” reports the results on the compositional questions.

the exemplars in SKiC are either a subset of or the
same as what have been used in baselines.

3.1 Near-Perfect Systematic Generalization

We report the main results for last letter concatena-
tion, addition & multiplication, Commaqa-E and
DP in Figures 3-4. Additional results can be found
in Appendix E. Standard zero/few-shot prompt-
ing generalizes poorly on the problems that are
harder than the exemplars in the prompting con-
text. CoT, LtM and Decomp improve the overall
performance but still degrade quickly over harder
inputs. SKiC significantly boosts the performance
in harder cases. Notably, SKiC achieves nearly
perfect generalization on tasks like last letter con-
catenation, addition, and dynamic programming
with text-davinci-003, ChatGPT or GPT4. These
significant improvements highlight the importance
of in-context skills and explicit grounding in elic-
iting compositionality. Examples of the generated
answers with SKiC can be found in Figures 26-30.

Figure 5: The accuracy on GSM8K tasks.

3.2 Enhanced Complex Reasoning

Figure 5 shows the significantly boosted accuracy
on GSM8K by SKiC compared to other baselines,
even with incomplete skills in SKiC prompts. We
observe several important generalization behaviors:
(i) generated reasoning steps effectively utilize the
provided skills that are not demonstrated in the
compositional examples (Figure 32), (ii) generated
reasoning steps successfully employ skills that are
not included in the prompts but may exist within
the pre-trained knowledge of the LLM (Figures 33-
34). They suggest that, with SKiC, LLMs can be
taught to use the skills provided in the context as
well as from their pretrained knowledge to solve
math problems via compositionality.

Accuracy on MATH is reported in Table 1. With
SKiC constructed in a semi-automated manner,
models could explicitly ground the reasoning steps
to both in-context skills and their internal knowl-
edge to resolve math problems, leading to SKiC’s
superior performances. We also show the internal
skill activation rate that measures the percentage of
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Table 1: Accuracy and internal skill activation rate on the MATH.

Model Prompting Ensemble Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus NumTheory Overall

PaLM-2 CoT SC - - - - - - - 48.8
Minerva-540B CoT, Scratchpad maj1@k 71.1 42.0 27.1 72.7 43.5 34.5 36.3 50.3

ChatGPT Verification CSV 58.9 22.0 14.8 45.6 35.2 13.0 33.5 34.7
GPT-4 Verification CSV 76.2 38.6 25.3 70.4 57.0 28.6 53.5 51.8

ChatGPT ComplexCoT PHP 57.7 25.4 17.1 49.1 33.7 16.1 35.1 36.5
GPT-4 ComplexCoT PHP 73.8 41.9 26.3 73.4 56.3 29.8 55.7 53.9

PaLM-2 CoT % - - - - - - - 34.3
Minerva-540B CoT, Scratchpad % 54.9 26.7 13.6 51.2 27.9 18.0 21.2 33.6

ChatGPT

CoT, LtP % 52.3 22.5 16.9 49.6 30.2 16.3 29.8 31.1
ComplexCoT % 53.8 22.3 14.6 49.1 29.7 16.8 33.4 34.1
SKiC (Ours) % 62.0 ↑ 8.2 30.1 ↑ 7.8 17.8 ↑ 3.2 57.9 ↑ 8.8 38.2 ↑ 8.5 23.0 ↑ 6.2 35.5 ↑ 2.1 40.6 ↑ 6.5

Internal Skill Activation Rate 6.5 19.0 13.2 5.7 9.1 45.2 7.8 14.9

GPT4

CoT % - - - - - - - 42.2
ComplexCoT % 71.6 36.5 23.4 70.8 53.1 26.7 49.6 50.3
SKiC (Ours) % 79.7 ↑ 8.1 43.6 ↑ 7.1 29.5 ↑ 6.1 74.6 ↑ 3.8 58.2 ↑ 5.1 36.6 ↑ 9.9 55.9 ↑ 6.3 56.4 ↑ 6.1

Internal Skill Activation Rate 12.7 37.0 33.4 16.0 4.4 65.5 12.1 24.3

Table 2: Accuracy on RTE and Last Letter (12 words)
with ChatGPT models using skills crafted by human or
skills discovered by LLMs in SKiC.

Methods RTE Last Letter

COT 85.2 72.5

SKiC by Human - 100.0
SKiC by LLM 89.8 100.0

skills utilized in the generated reasoning steps that
originates from pre-trained knowledge (rather than
being introduced in the SKiC prompt). It further
verifies that SKiC allows the LLMs to generalize
beyond the in-context skills and more actively in-
voke the massive reservoir of internal capabilities
in LLMs (e.g., 24% of skills utilized in the out-
put reasoning steps are from the GPT4 internal
knowledge) — see Figures 35-38 for more exam-
ples, where the reasoning process carried out by the
LLM effectively utilize both in-context and internal
skills. The frequently used in-context and internal
skills are illustrated in Table 25 in Appendix.

3.3 Synergy between Skills and Composition

Skills from Human vs. Skills Discovered by
Models We conduct experiments to show that the
skills can be discovered automatically by LLMs,
which makes our SKiC more applicable to a wider
range of tasks. We provide ChatGPT with exam-
ples from the training sets of RTE (Wang et al.,
2018) and last letter tasks, and instruct it to dis-
cover the skills from the examples to solve the tasks,
which results in skills such as Context Understand-
ing and Inference Evaluation for RTE, and Identify

Table 3: Accuracy and internal skill activation rate on
MATH with two variants of SKiC on ChatGPT: the
skills are generated from (i) ChatGPT and (ii) GPT-4.

Metric Source of Skills Overall

Accuracy
GPT4 38.9

ChatGPT 40.6

Internal Skill
Activation Rate

GPT4 12.5
ChatGPT 14.9

Words, Determine Last Letters, Concatenate Last
Letters, Form New Sequence for last letter. Based
on the summarized skills from LLMs, we then con-
struct SKiC prompts. The results are shown in
Table 2, which demonstrates the effectiveness of
SKiC with automatically discovered skills.

Skills from Stronger Model vs. Skills from
the Same Generative Model Another impor-
tant question we want to understand is whether
it is beneficial to generate the in-context skills
from the same foundation model used for predic-
tion. We prompt the ChatGPT using the SKiC
constructed from itself or the stronger GPT-4 (i.e.,
the in-context skills are generated by GPT-4). The
accuracy and the internal skill activation rate on
MATH are reported in Table 3 (see Table 20 for the
complete result). With the skills prompted from
itself, we observe improved accuracy and skill ac-
tivation rate. This suggests that (i) aligning the
model that is used to prompt the in-context skills
and the model that is used to generate answers helps
the models’ capability to link and utilize internal
skills, and (ii) activating more internal skills leads
to higher performance for complex problems.
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Table 4: Accuracy of MATH and FOLIO when using
prompts designed for GSM8K with ChatGPT models.

TASK COT for GSM8K SKiC for GSM8K

MATH 28.2 31.34
FOLIO 68.8 72.5

Table 5: Accuracy on DP (8 numbers) of SKiC with
ChatGPT after removing different components.

Methods Dynamic Programming

COT 72.0

SKiC 98.0
- skill 94.0

- skill grounding 82.0

Generalization to New Tasks We further show
that SKiC generalizes better than CoT when we
apply a prompt (originally designed for a different
task) directly to new unseen tasks. To see this, we
apply the prompts designed for GSM8K to MATH
(competition-level math reasoning) and to FOLIO
(logical inference) (Han et al., 2022), which are
unseen new tasks (see Table 4). Compared to CoT,
SKiC shows better cross-task transfer abilities.

Ablation Analysis of SKiC Components In our
work, we discover that besides step-by-step rea-
soning, explicit grounding is another key factor to
elicit compositional generaization, demonstrated
by significantly better performances of SKiC. We
perform ablation study to highlight the finding (the
importance of skills and skill grounding). We com-
pare SKiC with the settings where (i) we remove
the skills but keep the skill grounding in reasoning
steps and (ii) we remove the skill grounding in rea-
soning steps but keep the basic skill introduction
in the front. The performance on Dynamic Pro-
gramming is shown in Table 5. Removing either
parts would lead to performance drop, which fur-
ther indicates the importance of both skills and skill
grounding to for compositional generalization.

Robustness to Few-shot Exemplars We evalu-
ate the robustness of SKiC to the choices and the or-
ders of exemplars in Tables 6-7, respectively, where
SKiC is robust against the selection of few-shot ex-
emplars and shows a similar level of robustness as
CoT while achieving better overall performance.

Table 6: Accuracy of different sets of few-shot exem-
plars in CoT and SKiC on the last letter with ChatGPT.

Examples in Prompts COT SKiC

’apple, banana’; ’apple, pie’ 91.4 100.0
’math, code’; ’science, computer’ 92.5 100.0

’ashc, edhoh’; ’shbod, wojois’ 90.8 100.0

Table 7: Accuracy of different orders of few-shot exem-
plars in CoT and SKiC on GSM8K with ChatGPT.

Order of Examples COT SKiC

Random order 1 74.4 87.2
Random order 2 73.8 86.9
Random order 3 73.0 87.8

3.4 Error Analysis

We perform error analysis on the tasks that are
still far away from (nearly) perfect generalization
when applying SKiC on ChatGPT — multiplica-
tion, question answering, GSM8K and MATH. For
each task, we randomly sample 50 error cases and
perform an examination of them. We summarize
five types of errors: (i) seen basic skills: errors arise
due to a lack of mastery of the skills in context, (ii)
unseen basic skills: errors caused by the absence of
skills in context, particularly when these skills do
not exist in the pre-trained knowledge, (iii) incor-
rect composition: errors of incorrect composition
or reasoning over the skills, (iv) incorrect copying:
copying or merging errors between different steps,
(v) others: such as incorrect labels in the test set.

The distributions are visualized in Figure 6. We
observe that (i) the most common errors arise from
unseen basic skills, (ii) a lack of mastery of the
basic skills leads to more errors when there are
more complex or more basic skills to be used (for
example, the question decomposition capability in
the CommaQA-E task is generally a complex skill,
and the GSM8K and MATH dataset requires more
basic skills), (iii) incorrect composition is a ma-
jor error type for tasks that require more complex
reasoning steps such as GSM8K, (iv) copying er-
rors become more prevalent when there are more
reasoning steps with longer context, and (v) math
reasoning generally requires a wider variety of skill
compositions, and the way of composition varies
significantly from one problem to another, making
it considerably harder to master the appropriate
skill composition for each problem.
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Figure 6: Error distributions in Multiplication, QA, GSM8K and MATH tasks.

Figure 7: Generalization from GSM8K to MATH.

4 Beyond In-Context Learning

Inspired by the above in-context learning study,
we show that instruction tuning data constructed
with SKiC structure can be utilized to fine-tune
LLMs, enhancing their easy-to-hard generalization
capabilities. Specifically, we generate training data
by using GPT4 to produce answers for GSM8K
problems with SKiC prompts. This ensures that
the reasoning steps for each GSM8K problem are
explicitly grounded on basic skills, as illustrated in
Figure 33-34. Using the GSM8K data annotated
with SKiC-structure reasoning steps, we fine-tune
Llama2 models and evaluate their performance
on MATH dataset, which consists of significantly
more challenging evaluation problems compared
to the training problems from GSM8K. The re-
sults, shown in Figure 7, indicate that fine-tuning
with SKiC data significantly improves accuracy on
MATH compared to training data annotated with
CoT reasoning steps (also by GPT4). This demon-
strates that models fine-tuned with SKiC reasoning
steps achieve better generalization to complex and
challenging test cases. These findings suggest that
SKiC could potentially replace CoT in instruction
tuning, eliciting stronger reasoning capabilities and
enabling better weak-to-strong generalization.

5 Related Work

There has been a long history of studies on com-
positional generalization (Lake and Baroni, 2018;
Jia and Liang, 2016; Andreas, 2019; Lake and Ba-

roni, 2018; Ouyang et al., 2023; Keysers et al.,
2020; Chen et al., 2020; Dziri et al., 2023; SHAO
et al., 2023; Saparov and He, 2022; Nye et al.,
2021; Welleck et al., 2022; Dong et al., 2019;
Schwarzschild et al., 2021). Different types of
approaches have been developed to solve compo-
sitional generalization. One widely studied ap-
proach is neuro-symbolic methods (Dong et al.,
2019; Schwarzschild et al., 2021), which blend
symbolic and distributed representations for mod-
eling the reasoning process. A recent line of work
that has gained significant traction is to prompt
large language models to unlock its potential com-
positional generalization abilities (Nye et al., 2021;
Zhou et al., 2022a; Khot et al., 2022; Dua et al.,
2022; Dziri et al., 2023). For example, least-to-
most prompting (Zhou et al., 2022a) and decom-
posed prompting (Khot et al., 2022) boosts com-
positional generalization by first decomposing a
difficult problem into a sequence of easy-to-hard
problems and then solving them sequentially. How-
ever, the performance still degrade quickly over
increasingly harder problems. Moreover, their ap-
plications are limited to a class of problems that
can be decomposed into a set of subproblems. For
more general complex problems, where the sub-
problems are highly nested (e.g., the ones shown in
Dziri et al. (2023)), it becomes quite challenging
to construct the prompts and the exemplars. Re-
cent work (Zhang et al., 2023; Zhou et al., 2023)
have also explored multiple agents for solving com-
plex problems. Unlike these multi-stage/agents
prompting methods, which require multiple calls
of multiple LLM in inference process, our pro-
posed Skills-in-Context prompting is a simple one-
stage/single-agent strategy that can be used in a
plug-and-play manner to replace existing standard
or CoT prompting. While concurrent work (Zhou
et al., 2024; Zheng et al., 2023b) also highlights the
appearance of skills in prompts, our studies further
show the importance of explicit grounding to basic
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skills in reasoning steps.

6 Conclusion

In this work, we examine how to elicit composi-
tional generalization abilities in LLMs. Specifi-
cally, within the in-context learning framework, we
find that it is crucial to explicitly ground each of the
reasoning steps on the foundational skills. To fa-
cilitate this, it is important to demonstrate both the
foundational skills and the compositional examples
grounded in these skills within the same prompt
context. We refer to this prompt structure as skills-
in-context (SKiC). SKiC demonstrates strong (near-
perfect) systematic generalization abilities across
many tasks and enhanced complex reasoning capa-
bilities. Notably, with SKiC, the LLMs could gen-
eralize beyond the skills provided in the prompting
context and learns to activate the skills and knowl-
edge that are acquired through earlier pre-training
stages for solving unseen complex problems. Fur-
thermore, SKiC structure could be utilized in fine-
tuning to improve the easy-to-hard generalization.

7 Limitations

In this work, we follow the previous work (Dziri
et al., 2023; Zhou et al., 2022a) and mainly fo-
cus on the compositional (easy-to-hard) general-
ization. Specifically, the in-distribution/seen tasks
here means the testing samples are sampled from
the same problem size (Dziri et al., 2023). For
example, we demonstrate examples of 2-digit ad-
dition, and then test it over unseen samples that
are also from 2-digit addition. In contrast, the
out-of-distribution/unseen tasks here are defined
to be the harder unseen variants of the problem.
For example, the testing samples of 5-digit addi-
tions are the harder variant of the problem that are
not seen in the context examples. And we utilize
the SKiC to improve such easy-to-hard composi-
tional generalization and complex reasoning tasks
compared to previous methods. In the era of LLMs,
although it is challenging to investigate whether the
LLMs have been pre-trained on some of the tasks,
we believe that even if some of the tasks could be
crawled into the pretraining corpus, they are mostly
general and simple examples (e.g., last letters of
4 or 5 words) rather than the harder cases that we
tested on (e.g., last letters of 12 words). This is
also demonstrated in the zero-shot performances
on the harder cases: for example, the zero-shot
performances of ChatGPT on last-letter, addition,

multiplication and dynamic programming are quite
low (lower than 50% in most of the cases)). With
our SKiC, the easy-to-hard generalization capabil-
ity is significantly boosted to even near-perfect gen-
eralization, while other strong prompting methods
such CoT and Least-to-Most cannot do so.

Furthermore, despite the promising results
demonstrated by Skills-in-Context (SKiC), there
are several limitations and challenges to explore in
future work. First, from our error analysis, there
are several key directions for further improvements:
(i) providing high-quality basic skills and illustra-
tions to improve the execution quality of these basic
skills, (ii) expanding the range of task-related ba-
sic skills to prevent errors caused by unseen skill,
(iii) providing more examples of how to compose
basic skills, especially for more complex tasks,
and (iv) utilizing better foundation models that can
handle longer context and have a more extensive
set of well-mastered skills in their pre-pretrained
knowledge. Second, while SKiC has shown strong
performance in problems with relatively clear and
limited skill sets, scaling it to more complex do-
mains where the number and variety of required
skills are vast remains challenging. The manual or
semi-automatic approach to skill distillation may
not be feasible for problems requiring a broad and
intricate combination of skills, such as those in
dynamic, real-world scenarios. Future work could
explore how to improve the adaptation through fine-
tuning with SKiC structures. Third, our approach
focuses primarily on utilizing internal skills with-
out extensive reliance on external tools or resources.
While this reduces inference latency and leverages
the internal knowledge of LLMs, it may limit the
applicability of SKiC in scenarios where external
tools could provide significant advantages, such as
in real-time data retrieval or complex calculations
that exceed the capabilities of the model’s internal
knowledge base. Future work could also utilize
external tools to further improve the performance.
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A Comparison to Existing In-Context
Learning Strategies

Figure 8 visualizes the differences between our
proposed SKiC prompting and the previous re-
lated prompting methods. Different from Chain-
of-Thoughts prompting, our SKiC prompting pro-
vides explicit grounding on the basic skills for rea-
soning steps towards final answers. Compared to
recent prompting methods for handling composi-
tional problems such as Least-to-Most prompting
(LtM) (Zhou et al., 2022a) and Decomp (Khot et al.,
2022), our SKiC is superior in several dimensions:
(i) Our SKiC prompting is more general to solve
extended sets of problems. Previous decomposing-
based approaches like LtM and Decomp usually
solve complex problems in a two-stage fashion
by first decomposing the problem into a linear se-
quence of subproblems and then solving them se-
quentially. However, many of the tasks that have
complex computation graphs such as multiplica-
tion and dynamic programming problems (Dziri
et al., 2023) cannot be easily and fully decom-
posed in one stage, which makes it hard to apply
these decomposition-based approaches. (ii) The
decomposition operation can also be viewed as one
basic skill in our SKiC prompt (for example, we
view the decomposition operation as one of the
skills in the question-answer task in Figure 16).
(iii) SKiC solves the complex problems in a single
stage, which could alleviate the error propagation
compared to decomposition-based approaches that
require multiple distinct stages.

Due to the one-stage nature, our SKiC prompt-
ing can replace other one-stage strategies such
as the CoT promptings in a plug-and-play man-
ner. And it can also be easily combined with
other ensemble techniques such as self-consistency
(Wang et al., 2022) and Progressive-Hint Prompt-
ing (Zheng et al., 2023a) to further boost the per-
formance.

B Details about the Construction of Skills

One important step in constructing SKiC is to distill
the (basic) skills that might be needed for solving
problems associated with a task. We introduce two
approaches (shown in Figure 9):

Distill Skills via Human Similar to previous
prompting techniques, this is a fully manual ap-
proach, where the basic skills are manually sum-
marized from a few (less than 10) problems. For

example, given several samples from the last-
letter-concatenation task, we manually identify that
“words_to_list” and “last_letter” are common skills
to be used. Based on the discovered skills, we add
a few (1 ∼ 2) simple examples to illustrate these
basic skills alone. Once the in-context skills are
constructed, we add the compositional examples
to demonstrate the composition of these skills to
solve a problem (Figure 1). This approach puts all
the essential skills in the context and is generally
applicable to narrow domain problems that require
the composition of limited skills for solving harder
problems. It is also beneficial for semi-parametric
LLMs, which can dynamically access the most rel-
evant skills from external memories based on each
input instance and integrate them into the problem
context (Borgeaud et al., 2022; Pan et al., 2022).

Distill Skills via Prompting LLMs More effi-
ciently, we could automatically construct the basic
skills by prompting the LLMs to directly generate
the fundamental skills or summarize the necessary
skills from given examples. For instance, when
identifying the skills to address the MATH task
(Hendrycks et al., 2021), we prompt LLMs with
phrases like “basic skills in Algebra”. This leads
the model to generate basic skills such as “Factor-
ing” (see Figure 22). Next, we construct the com-
positional examples by grounding the reasoning
steps on the skills. It is worth noting that an ex-
emplar might require skills not explicitly presented
in the context. In these instances, we anchor the
reasoning to inherent skills within the LLMs. For
example, in the compositional exemplar showcased
in Figure 23, aside from leveraging in-context skills
like“Sub”, it also employs skills like “Pascal’s Tri-
angle” — a capability not present in the context
but inherently known to the LLM. Such a construc-
tion of the exemplars will encourage the model to
generalize beyond the in-context skills and com-
pose solutions from the internal capabilities as well
— see Figure 2 for an example of the generated
solution that activates the internal skills <Angle
Bisector Theorem> and <Heron’s Formula>. To
be more specific, for every problem in the MATH
task, around 24% of the skills, as shown in Table 1,
applied in the reasoning steps stem from the LLM’s
internal pre-trained knowledge (see Table 25 for the
most frequently used internal skills). The ability
to harness both in-context skills and inherent capa-
bilities is crucial for addressing complex reasoning
problems, which typically require varied composi-
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Figure 8: The building blocks of different prompting strategies. Blue cells stand for different intermediate steps,
green cells denote the answers to the asked question, and red cells refer to the provided skills in our Skills-in-Context
prompting. A block of several cells represents one distinct stage in a two-stage prompting strategy (e.g., problem
decomposition stage in the Least-to-Most prompting). Standard prompting provides only labeled exemplars in the
context. Chain-of-Thoughts prompting further provides a step-by-step rationale preceding the answer. Decomposed
prompting is a two-stage prompting method, which first breaks the questions into sub-problems, and then utilizes
standard or Chain-of-Thoughts prompting to solve each sub-problem sequentially to derive the final answer. Least-
to-Most prompting adopts a two-stage strategy: it first generates multiple questions in an easy-to-hard manner,
and then sequentially answers each of them until solving the original question. In contrast, our Skills-in-Context
prompting is a simple one-stage prompting, which places both the (basic) skills and the demonstrations of how to
compose them into solutions within the same prompt context. This teaches the LLM how to explicitly and adeptly
ground each reasoning step onto the skills (illustrated in dashed lines), which unleashes strong synergies between
skills and composition capabilities in LLMs, leading to strong compositionality over unseen harder problems.

tions across a broad spectrum of skills. Manually
enumerating every required skill within a prompt
context is often impractical. Meanwhile, LLMs
have accumulated a vast reservoir of knowledge
and skills during their pre-training. Leveraging
these internal competencies can unlock significant
potential, allowing LLMs to tackle even more com-
plex challenges.

C Comparison to Tool-Using Works

The major contribution of our work is to under-
stand and unlock the inherent composition abilities
(easy-to-hard generalization) in LLMs themselves.
The line of tool-using work is complementary with
our work and can be easily integrated to substitute
several basic skills to further improve the perfor-
mances; that is, the external tools can also be in-
terpreted as basic skills that the model can tap into.
However, we focus only on how to tap into the in-
ternal basic skills for compositional generalization.
With the abundance of work on tool utilization with
LLMs, there are still great merits in studying the
composition of internal skills for several reasons.

First, external tools like programs might bring

in extra latency during inferences as LLMs need
to call multiple external functions when dealing
with complex problems. As a result, if some of the
foundational skills are available and reliable from
internal knowledge of LLM, we should consider
how to exploit them directly with one-stage through
our SKiC. In addition, the external tools are gen-
erally pre-defined and implemented ahead of time
with a clear boundary about what it can do and it
cannot do. However, in the real open world set-
ting, the abundant ambiguity of problem may make
it hard to identify a clear boundary about which
tool to call, leading to errors that may cascade to
later stages. LLMs are strong and flexible in com-
posing the internal knowledge and skills to solve
complex problems. In such situations, it may have
advantage to let LLMs flexibly use its own internal
knowledge to solve such ambiguous problems.

Second, it is hard/impossible to enumerate all the
needed external skills (external calls) in the context
for complex tasks, which would lower down the
generalization abilities if the models are taught to
rely on provided external calls. So, our SKiC also
encourages models to utilize their internal skills
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Figure 9: Two approaches to creating SKiC prompts, depending on how we distill the skills. (a) We manually
summarize the skills from the sample problems, and then construct the compositional exemplars on how to compose
these skills. (b) We prompt the LLMs to automatically generate the necessary skills, followed by human review.
Then we craft the compositionl exemplars by grounding their reasoning steps onto either the provided in-context
skills or the inherent skills within the LLMs.

Table 8: Accuracy on different evaluation subsets of the last-letter-concatenation task. The testing problems
with 1 and 2 words are in-distribution evaluation, while the ones with 4 ∼ 12, 50 and 100 words are (harder)
out-of-distribution evaluations.

Model Prompting #-shots 1 2 4 6 8 10 12 50 100

LLAMA-65B

zero-shot 0 0 0 0 0 0 0 0 - -
4-shots 4 72.0 66.0 50.0 26.0 10.0 6.0 0 - -

CoT 4 76.0 70.0 58.0 42.0 30.0 26.0 20.0 - -
LtM 4 76.0 72.0 66.0 50.0 46.0 36.0 25.0 - -
SKiC 2 81.0 97.0 77.0 59.0 56.0 48.0 36.0 - -

text-davinci-003

zero-shot 0 0 0 0 0 0 0 0 - -
4-shots 4 99.0 97.0 89.0 68.0 45.0 27.0 10.0 - -

CoT 4 100.0 99.0 90.0 75.0 52.0 39.0 31.0 - -
LtM 4 100.0 99.0 94.0 90.0 87.0 84.0 80.0 - -
SKiC 2 100.0 100.0 100.0 100.0 100.0 99.0 98.0 - -

ChatGPT

zero-shot 0 99.0 98.0 93.0 88.0 84.0 80.0 77.0 38.0 16.0
4-shots 4 100.0 100.0 95.0 92.0 90.0 86.0 85.0 46.0 28.0

CoT 4 100.0 100.0 97.0 95.0 92.0 88.0 85.0 62.0 56.0
LtM 4 100.0 100.0 99.0 95.0 92.0 92.0 88.0 80.0 76.0
SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

not provided in the context to solve complex tasks.
What is more, tool-using cases are more focused

on math-related reasonings or problems that can be
converted into programming problems. However,
not all the tasks can be improved by external tools
(e.g., QA in our Table 10). Therefore, SKiC is more
general to different types of tasks. Indeed, tool-use
can actually be viewed as one basic skill that could
be integrated into SKiC, so that LLMs can flexibly
compose both internal skills and external tools in a
hybrid manner for solving even more complex real
problems, which we leave as a future work.

D Experimental Setup

In this section, we explain our experimental set-
tings in details. We show the superior composi-
tional capabilities of our SKiC prompting by evalu-
ating it in two settings:

• Systematic Generalization: Composition
over in-context skills, where all the essential
skills needed to solve the problems are pro-
vided in the context. The tasks we evaluate
in this setting include symbolic manipulation
(Wei et al., 2022b; Zhou et al., 2022a; Khot
et al., 2022), arithmetic operation (Dziri et al.,
2023), question answering (Khot et al., 2022),
and dynamic programming (Dziri et al., 2023).
In this setting, we mainly examine the ability
to generalize from easy demonstration exem-
plars to more difficult testing problems (i.e.,
easy-to-hard generalization).

• Enhanced Complex Reasoning: Generaliza-
tion beyond in-context skills, where mod-
els also need to harness skills beyond what
have been provided in the context and tap
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Table 9: Accuracy on the task of adding and multiplying two numbers with different digits. For the addition or
multiplication task, the exemplars include how to add or multiply two numbers with 2 or 3 digits. Therefore, the
results for adding numbers with 4 ∼ 7 digits and multiplying numbers with 4 and 5 digits measure the compositional
generalization capabilities over harder problems. We also compare GPT3 finetuned with scratchpad method (Dziri
et al., 2023) on the multiplication task.

Model Prompting #-shots Addition Multiplication

2 3 4 5 6 7 2 3 4 5

LLAMA-65B

zero-shot 0 58.0 40.5 22.5 8.0 0 0 28.0 17.0 0 0
4-shots 4 64.5 46.5 28.0 10.0 0 0 24.0 18.0 0 0

CoT 4 60.0 52.5 24.0 12.0 1.0 0 22.0 21.0 0 0
SKiC 2 82.5 74.5 66.5 52.0 38.0 22.0 50.0 42.0 12.0 8.0

text-davinci-003

zero-shot 0 100.0 100.0 98.0 87.5 74.5 54.0 76.0 14.5 0 0
4-shots 4 100.0 100.0 98.0 92.0 80.5 58.5 82.0 18.0 0 0

CoT 4 100.0 100.0 92.0 68.5 42.0 38.0 86.0 20.5 2.0 0
finetuned 0 - - - - - - 99.0 55.0 1.0 0.0

SKiC 2 100.0 100.0 99.0 98.0 99.0 98.5 100.0 58.0 42.5 36.0

ChatGPT

zero-shot 0 100.0 100.0 100.0 92.0 86.5 78.0 99.0 55.0 1.0 0
4-shots 4 100.0 100.0 100.0 94.0 90.5 83.5 99.0 58.0 1.0 0

CoT 4 100.0 100.0 98.5 90.0 87.5 80.0 99.0 54.5 13.0 2.0
Algorithm 2 100,0 100,0 98.0 94.5 91.5 90.0 100.0 68.0 20.0 0

SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 82.0 72.0 48.5

Table 10: Exact Match on Commaqa-E.
The “Comp. Gen” column reports the
results on the unseen questions from the
compositional split.

Model Prompting #-shots Test Comp. Gen

LLAMA-65B

zero-shot 0 12.0 16.3
4-shots 4 15.0 24.6

CoT 4 27.0 30.8
Decomp 12 32.0 40.4
SKiC† 2 44.0 52.0

text-davinci-003

zero-shot 0 34.0 26.8
4-shots 4 42.0 33.5

CoT 4 44.0 38.2
Decomp 12 58.0 66.6
SKiC† 2 66.0 74.8

ChatGPT

zero-shot 0 42.0 30.6
4-shots 4 47.0 40.3

CoT 4 55.0 46.4
Decomp 12 64.0 73.5
SKiC† 2 70.0 80.8

Table 11: Accuracy on the dynamic programming task. The in-context
exemplars are with sequence lengths of 4, 5. So the results for 6,7,8
measures the out-of-distribution generalization to harder problems. We
also compare the finetuned text-davinci-003 with scratchpad.

Model Prompting #-shots 4 5 6 7 8

text-davinci-003

zero-shot 0 10.5 4.0 4.0 0.0 0.0
4-shots 4 32.5 18.0 10.0 4.0 0.0

CoT 4 58.0 22.0 15.0 8.0 2.0
finetuned 0 100.0 100.0 22.0 14.0 8.0

SKiC 2 78.0 62.5 54.5 48.0 42.5

ChatGPT

zero-shot 0 18.0 10.0 6.0 4.0 0.0
4-shot 4 44.5 18.0 10.0 4.0 0.0
CoT 4 82.5 76.0 72.0 64.0 55.5
SKiC 2 98.0 96.0 95.0 94.0 92.0

GPT4

zero-shot 0 58.0 42.5 35.5 28.0 12.0
4-shots 4 76.5 70.5 58.0 55.0 42.0

CoT 4 94.0 91.0 88.0 83.5 72.0
SKiC 2 100.0 100.0 100.0 99.0 98.0

into the internal skills for math reasoning like
GSM8K (Wei et al., 2022b; Zhou et al., 2022a)
and MATH (Hendrycks et al., 2021) problems.
In this context, the challenge lies in achieving
diverse compositions across a wide range of
foundational skills for complex reasoning.

D.1 Systematic Generalization: Composition
over In-Context Skills

We begin by evaluating SKiC on tasks that require
only a limited skill set, yet pose challenges in terms
of easy-to-hard generalization capabilities. Un-
der these circumstances, we construct our SKiC
prompts manually, adhering to the first methodol-
ogy outlined in Appendix B. We mainly consider
foundation models including LLAMA-65B (Tou-
vron et al., 2023a), text-davinvi-003 (Brown et al.,

2020), ChatGPT and GPT4 (OpenAI, 2023). Ad-
ditional experiments on LLAMA2 (Touvron et al.,
2023b) can be found in Appendix F.

D.1.1 Symbolic Manipulation: Last Letters

Following Zhou et al., we first assess the com-
positionality in LLMs through the last-letter-
concatenation task. For a given list of words, the
LLM needs to generate an output that is the con-
catenation of the last letter from each word in the
list. We compare our SKiC with zero/few-shot
standard prompting (4-shot) (Brown et al., 2020),
CoT (Wei et al., 2022b) and Least-to-Most prompt-
ing (LtM) (Zhou et al., 2022a) on different large
language models, including LLAMA-65B (Tou-
vron et al., 2023a), text-davinvi-003 (Brown et al.,
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Table 12: Accuracy of different models with our SKiC prompts on different evaluation subsets of the last-letter-
concatenation task. The testing problems with 1 and 2 words are in-distribution evaluation, while the ones with
4 ∼ 12 words are (harder) out-of-distribution evaluations.

Model Prompting #-shots 1 2 4 6 8 10 12

text-davinci-003 SKiC 2 100.0 100.0 100.0 100.0 100.0 99.0 98.0
ChatGPT SKiC 2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

LLAMA-65B SKiC 2 81.0 97.0 77.0 59.0 56.0 48.0 36.0
LLAMA2-70B SKiC 2 100.0 99.0 100.0 99.0 98.0 97.0 95.0

Table 13: Accuracy of different models with our SKiC prompts on the task of adding two numbers with different
digits (2,3,4,5,6,7). The prompting exemplars are constructed to demonstrate the addition between two numbers
with 2 or 3 digits. Therefore, the results for adding numbers with 4 ∼ 7 digits measure the desirable compositional
generalization capabilities over harder problems. † denotes our method.

Model Prompting #-shots 2 3 4 5 6 7

text-davinci-003 SKiC† 2 100.0 100.0 99.0 98.0 99.0 98.5
ChatGPT SKiC† 2 100.0 100.0 100.0 100.0 100.0 100.0

LLAMA-65B SKiC† 2 82.5 74.5 66.5 52.0 38.0 22.0
LLAMA2-70B SKiC† 2 83.0 78.0 68.0 55.0 40.0 25.0

2020; Ouyang et al., 2022), and ChatGPT. And
we evaluate them on different subsets of testing
problems that include 1, 2, 4, 6, 8, 10, 12, 50,
100 words2, respectively. The exemplars in all the
prompts are constructed from the cases with 1 or
2 words. Therefore, the evaluations on the test
subsets with 1, 2 words are in-distribution, and the
ones on 4, 6, 8, 10, 12 words are out-of-distribution.
A SKiC prompt contains the skills and two exam-
ples of how to compose these skills as shown in
Figure 10 and Figure 11. The model is given the
needed skills such as putting the given words to a
list and getting the last letter of one word, and then
two examples of how to compose these skills to
take the last letters of two given words.

D.1.2 Arithmetic Operation
Following Dziri et al., we evaluate the compo-
sitional capabilities on two arithmetic operation
tasks: addition and multiplication. These two tasks
involves complicated composition over skills such
as one-digit addition or multiplication, carry over,
concatenation and etc.(Dziri et al., 2023), making
it difficult especially for long form addition or mul-
tiplication. We compare SKiC with zero/few-shot
standard prompting (Brown et al., 2020), Chain-
of-Thoughts prompting (CoT) (Wei et al., 2022b)
and Algorithmic prompting (Zhou et al., 2022b)

2From https://github.com/first20hours/
google-10000-english/tree/master.

on different foundation models including LLAMA-
65B, text-davinvi-003, and ChatGPT. We exclude
the Least-to-Most prompting (Zhou et al., 2022a)
as it is difficult to design linear problem decompo-
sition for addition or multiplication task. We also
include text-davinci-003 finetuned with scratchpad
method (Nye et al., 2021; Dziri et al., 2023) on the
multiplication task for comparison.

Addition We construct different subsets of test-
ing problems, which ask to output the sum of two
numbers with 2,3,4,5,6,7 digits, respectively. The
given in-context exemplars are only constructed to
demonstrate the addition of two numbers with 2-
digits or 3-digits. Consequently, the results for
4,5,6,7-digits summation are out-of-distribution
evaluation. We show SKiC prompting for the ad-
dition task in Figures 12-13, which show the skills
and one compositional exemplar, respectively. We
first present the basic skills (e.g., extracting digits
from a number) and then show how to use these
skills to add two numbers with two examples.

Multiplication Next, we evaluate the composi-
tional generalization performance on the multipli-
cation task. Specifically, we construct different sub-
sets of evaluation problems that ask for the product
of two numbers with 2,3,4,5 digits, respectively.
The given in-context exemplars in all the prompts
are constructed to demonstrate 2-digit and 3-digit
multiplications. Therefore, the results for 4,5-digits
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Table 14: Accuracy of different models with our SKiC prompts on the task of multiplying two numbers with
different digits (2,3,4,5). The prompting exemplars are constructed to demonstrate how to multiply two numbers
with 2 or 3 digits. Therefore, the results for multiplying numbers with 4 and 5 digits measure the compositional
generalization capability over harder problems. † stands for our method.

Models Prompting #-shots 2 3 4 5

text-davinci-003 SKiC† 2 100.0 58.0 42.5 36.0
ChatGPT SKiC† 2 100.0 82.0 72.0 48.5

LLAMA-65B SKiC† 2 50.0 42.0 12.0 8.0
LLAMA2-70B SKiC† 2 99.0 51.0 15.0 6.0

Table 15: Performance of different models with our SKiC prompts on Commaqa-E datasets (measured in Exact
Match). The column of “Comp. Gen” reports the results on the new (unseen) compositional questions from the
compositional generalization split. † denotes our method.

Model Prompting #-shots Test Comp. Gen

text-davinci-003 SKiC† 2 66.0 74.8
ChatGPT SKiC† 2 70.0 80.8

LLAMA-65B SKiC† 2 44.0 52.0
LLAMA2-70B SKiC† 2 46.7 55.9

multiplications measure the compositional general-
ization to unseen harder problems. The construc-
tion of our Skills-in-Context prompting is shown in
Figure 14 and Figure 15, which illustrate the skills
and the compositional exemplar, respectively.

D.1.3 Long-Context Question Answering:
CommaQA-E

To evaluate the compositional generalization in
the reading comprehension setting, following Khot
et al., we evaluate different prompting strategies on
CommaQA-E (Khot et al., 2021). For given facts of
a set of synthetically generated entities, the models
need to answer the multi-hop questions which are
composed of multiple reasoning steps, e.g., What
movies have people from the country Stridery acted
in?. Besides the standard zero/few-shot prompting
(Brown et al., 2020) and the Chain-of-Thoughts
prompting (CoT) (Wei et al., 2022b), we also com-
pare our SKiC prompting to Decomp prompting3

(Khot et al., 2022). We evaluate the results on
different foundation models: LLAMA-65B, text-
davinvi-003, and ChatGPT. The construction of the
SKiC prompting for CommaQA-E is described in
Figures 16-17, which show the skills and the ex-
emplars of how to compose the skills, respectively.
Notably, both the ability to break down complex

3Reproduced using the original code from: https://
github.com/allenai/DecomP/tree/main

questions into simple ones and the operation to
answer each simple questions are also treated as
(basic) skills — see Figure 16.

D.1.4 Dynamic Programming
We then further evaluate the compositional gen-
eralization capabilities of SKiC in solving a clas-
sic dynamic programming problem (Dziri et al.,
2023): Given a sequence of integers, find a sub-
sequence with the highest sum, such that no two
numbers in the subsequence are adjacent in the
original sequence. We compare our SKiC prompt-
ing with standard zero/few-shot prompting (Brown
et al., 2020), and Chain-of-Thoughts prompting
(CoT)4 (Wei et al., 2022b) on different LLMs (text-
davinvi-003, ChatGPT and GPT4). In addition,
we also compare with the baseline of finetuned
text-davinci-003 with scratchpad from (Dziri et al.,
2023). Likewise, we evaluate them on different
subsets of testing instances with sequence length
of 4, 5, 6, 7, 8, respectively.5 The in-context ex-
emplars are constructed with sequence length of 4
and 5. Therefore, the testing subsets with sequence
length of 4 and 5 are in-distribution evaluation and
the ones with length 6, 7, and 8 are for out-of-
distribution evaluation. The construction of SKiC

4The reasoning steps are constructed based on the scratch-
pad prompts used in Dziri et al. (2023).

5The numbers are within the range [-5,5]
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Table 16: Accuracy of different models with our SKiC prompts on the dynamic programming task with input
sequence lengths being 4,5,6,7,8, respectively. The in-context exemplars for all the prompts are constructed with
sequence lengths of 4 and 5. Therefore, the results for sequence lengths of 6,7,8 measures the out-of-distribution
generalization to increasingly harder problems. † denotes our method.

DP Prompting #-shots 4 5 6 7 8

text-davinci-003 SKiC† 2 78.0 62.5 54.5 48.0 42.5
ChatGPT SKiC† 2 98.0 96.0 95.0 94.0 92.0

GPT4 SKiC† 2 100.0 100.0 100.0 99.0 98.0

LLAMA2-70B SKiC† 2 79.0 78.0 70.0 68.0 56.0

is characterized in Figures 18-19, which show the
skills and their compositions exemplars, respec-
tively. Specifically, in the SKiC prompt, the models
are presented with the skills to get the length of a
list, find the max number for a given list and add
two single digit numbers, followed by two com-
positional exemplars about how to compose these
skills to solve the dynamic programming problems
with sequence lengths being 4 and 5.

D.2 Enhanced Complex Reasoning:
Generalization Beyond In-Context Skills

We further evaluate whether our SKiC prompting
could allow LLMs to generalize beyond the skills
provided in the prompt context and invoke the mas-
sive set of internal skills and knowledge that are
acquired during pre-training. Such capability is
vital in solving complex reasoning problems (e.g.,
math), which require varied compositions over a
vast amount of foundational skills. And it is im-
practical to enumerate all the skills in context.

D.2.1 GSM8K

We first apply our SKiC prompting to GSM8K
(Cobbe et al., 2021), which requires multiple math-
related skills to solve complex math world prob-
lems. We construct our SKiC prompt by using the
first approach in Appendix B, which includes a
limited skill set together with eight compositional
exemplars to teach the LLMs how to use them.
Figures 20-21 show the constructed skill set and
one compositional exemplar, respectively. We com-
pare our SKiC with Chain-of-Thoughts prompting
(CoT) (Wei et al., 2022b), Least-to-Most prompt-
ing (LtM) (Zhou et al., 2022a), ComplexCot (Fu
et al., 2022) and PHP (Zheng et al., 2023a) on
different foundation models (i.e., text-davinvi-003,
ChatGPT and GPT-4).

D.2.2 MATH

We then apply SKiC to MATH (Hendrycks et al.,
2021), which is a significantly more challenging
benchmark on mathematical reasoning. It encom-
passes problems in Algebra, Counting and Prob-
ability, Geometry, Intermediate Algebra, Number
Theory, PreAlgebra, and PreCalculus. Due to the
large variety of foundational capabilities needed
for solving these math problems, it is infeasible
to distill and enumerate the needed skills manu-
ally. Therefore, we adopt the second approach as
described in Appendix B, where we prompt the
LLM to generate the skills and then craft the com-
positional examples manually. Specifically, we
first prompt the LLM (i.e., the same LLM that we
will use to solve the problems) to generate a list
of skills for each subject category in the MATH
dataset (e.g., “Counting and Probability”) with the
instruction “Basic skills in [subject]”. Then we
further ask the model to generate the description
of each skill, and the resulting skill set is listed in
Figure 22. In Figure 23, we show a compositional
exemplar that demonstrates how to utilize the skills
to solve a problem in MATH dataset. Note from
this example that we ground a part of the reason-
ing steps to in-context skills such as “Combination”
and “Sub” and anchor others to internal skills (e.g.,
“Pascal’s Triangle”). In our experiment, we pro-
vide the model with seven exemplars (one exam-
ple per category in the MATH dataset). We com-
pare our SKiC prompting with different prompting
strategies: CoT (Wei et al., 2022b), Scratchpad
(Nye et al., 2021), Learning-to-Program(LtP) (Guo
et al., 2023), and ComplexCoT (Fu et al., 2022)
on two representative foundation models: Chat-
GPT and GPT-4 6. In addition, we also include

6We use the same model to construct the SKiC skills and
to do the inference. That is, we prompt ChatGPT to construct
the SKiC when testing with ChatGPT and we prompt GPT-4
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Table 17: Accuracy of different sets of examples in CoT
and our SKiC prompts on the last-letter-concatenation
task with ChatGPT models.

Examples in Prompts COT SKiC

’apple, banana’; ’apple, pie’ 91.4 100.0
’math, code’; ’science, computer’ 92.5 100.0

’ashc, edhoh’; ’shbod, wojois’ 90.8 100.0

Table 18: Accuracy of different orders of examples in
CoT and our SKiC prompts GSM8K task with ChatGPT
models.

Order of Examples COT SKiC

Order 1 74.4 87.2
Order 2 73.8 86.9
Order 3 73.0 87.8

different ensemble strategies that are commonly
combined together with these baselines: major-
ity voting (maj1@k) (Lewkowycz et al., 2022),
Self-Consistency (SC) (Wang et al., 2022), and
Progressive-Hint Prompting (PHP) (Zheng et al.,
2023a).

E Detailed Results for Systematic
Generalization (Last Leter, Addition,
Multiplication, Commaqa-E and DP)

We report the results for last letter concatenation,
addition&multiplication, Commaqa-E and DP in
Tables 8, 9, 16, and 11.

Standard zero/few-shot prompting generalizes
poorly on the problems that are harder than the
exemplars in the prompting context. For example,
on last letter concatenation tasks, 4-shot standard
prompting only achieves 10% accuracy with text-
davinci-003 when solving testing problems that
involve 12 words. CoT, LtM and Decomp improve
the overall performance but still degrade quickly
over harder inputs (e.g., CoT slightly improves the
accuracy on arithmetic tasks, LtM outperform CoT
on last letter concatenation and Decomp prompting
boosts the exact match on Commaqa-E dataset.).
SKiC significantly boosts the performance with
less demonstration examplesespecially in harder
cases (e.g., gaining over 68.9% improvements on 7-
digits summation with text-davinci-003 compared
to baselines). Notably, SKiC achieves nearly per-
fect generalization on tasks like last letter concate-
nation, addition, and dynamic programming with

to construct the SKiC when testing with GPT-4.

Table 19: Accuracy of MATH and FOLIO when using
prompts designed for GSM8K with ChatGPT models.

TASK COT for GSM8K SKiC for GSM8K

MATH 28.2 31.34
FOLIO 68.8 72.5

text-davinci-003, ChatGPT or GPT4. Compared
to fine-tuneded baselines such as finetuning text-
davinci-003 with scratchpad, SKiC is also signifi-
cantly better in the out-of-distribution regime, al-
though its performance at the in-distribution regime
is worse. 7 These significant improvements demon-
strate that by jointly presenting the models with
skills and how to use these skills within the con-
text, the models are instructed to resolve problems
grounded to these basic skills. Consequently, it
performs the reasoning steps more accurately and
could generalize better to harder examples by fol-
lowing similar patterns to compose the basic skills.
Examples of the generated answer with SKiC on
these tasks when the inputs are harder can be found
in Figures 26–30.

Results on Commaqa-E also illustrate the superi-
ority of our 1-stage SKiC compared to multi-stage
prompts. Unlike Decomp, both the ability to break
down questions and answer simple questions are
treated as skills in SKiC, and they are presented
with the exemplars to demonstrate how to com-
pose the skills (Figure 17) in the same context.
Consequently, the LLM is able to flexibly apply
these skills to reach the final answer within 1-stage,
which could make different simple question answer-
ing help each other. For an example in Figure 39,
errors made in early stages in Decomp result in
wrong prediction while our SKiC accurately an-
swer different questions in one context. This is a
further manifestation of the advantage of concur-
rently demonstrating the skills and compositions.

F The Performance of SKiC on LLAMA2

We further evaluate the performance of SKiC
prompting by using the LLAMA2 models (Touvron
et al., 2023b) on the following tasks: last latter con-
catenation, addition, multiplication, CommaQA-E,
and dynamic programming tasks. The results are
reported in the Tables 12 and 16.

We observe that LLAMA2-70B generally out-

7This is expected as the it is finetuned directly on input se-
quences with length 4 and 5, while our method is not finetuned
at all.
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Table 20: Accuracy and internal skill activation rate on the MATH with two different versions of SKiC on ChatGPT:
the prompt with the skills generated from (i) ChatGPT and (ii) GPT-4. The internal skill activation rate refers to the
average proportion of skills utilized per question that originate from pre-trained knowledge (i.e., internal skills)
rather than from the SKiC prompt context (i.e., the in-context skills).

Metric Source of SKiC Pre-Algebra Geometry Inter-Algebra Algebra Probability Pre-Calculus NumTheory Overall

Accuracy
GPT4 60.7 27.8 16.8 58.2 33.3 19.0 34.2 38.9

ChatGPT 62.0 30.1 17.8 57.9 38.2 23.0 35.5 40.6

Internal Skill
Activation Rate

GPT4 5.9 18.5 11.2 6.6 7.0 43.8 6.2 12.5
ChatGPT 6.5 19.0 13.2 5.7 9.1 45.2 7.8 14.9

Table 21: Accuracy on Dynamic Programming task
(8 numbers) of SKiC with ChatGPT after removing
different components.

Methods Dynamic Programming

COT 72.0

SKiC 98.0
- in-context skill 94.0
- skill grounding 82.0

Table 22: Accuracy on SCAN with ChatGPT models.

Methods SCAN

COT 72.5
SKiC 100.0

performs LLAMA-65B and demonstrate stronger
capabilities in following the exemplars for com-
posing the in-context skills to solve the problems.
There are still performance gaps between the open
source LLAMA models and the proprietery LLMs
such as text-davinci-003, ChatGPT and GPT4.

G Different Sources of In-context Skills

One important question we want to understand is
whether it is beneficial to generate the in-context
skills from the same foundation model used for
prediction. Our hypothesis is that in-context skills
generated from the same foundation model can
initiate stronger synergize with the internal knowl-
edge, due to their higher alignment. To test this hy-
pothesis, we prompt the ChatGPT using the SKiC
constructed from GPT-4 (i.e., the in-context skills
are generated by GPT-4). The accuracy and the
internal skill activation rate on MATH are reported
in Table 20. With the skills prompted from itself,
we observe both improved accuracy and higher in-
ternal skill activation rate, even though the skills
prompted from GPT-4 generally have higher qual-

ity. This suggests that (i) aligning the model that is
used to prompt the in-context skills and the model
for generating answers helps the models’ capability
to exploit internal skills, and (ii) activating more in-
ternal skills generally leads to higher performance,
especially when solving problems that require com-
positions over wider range of skills.

H Robustness of Exemplars in SKiC

Different Choices of Exemplars We randomly
selected exemplars in our SKiC prompts. The per-
formance improvements are consistent even if we
perturb the examples in the prompts. The results on
last-letter tasks with ChatGPT with the use of dif-
ferent choices of few-shot exemplars in the prompts
are shown in Table 17. It shows the robustness of
our proposed SKiC prompt to the selection of the
few-shot exemplars.

Different Orders of Exemplars We also explore
the order of different exemplars in the prompts.
Through experiments, we find that the order of the
examples also does not matter a lot because we
randomly sample a limited number of examples (2
examples in most of the cases) to design SKiC. We
shuffle the order in our prompts (consisting of 4
examples) for GSM8K and the performances are
shown in Table 18.

I Generalization to New Tasks

We further show that our SKiC which teach the
model how to compose skills can also help the
performances even if the provided prompts are de-
signed for different tasks: We use the skills and
prompts designed for GSM8K and directly apply
them on MATH (competition-level math reasoning)
(Hendrycks et al., 2021) and FOLIO (logical infer-
ence) (Han et al., 2022) which are unseen tasks
with ChatGPT as shown in Table 19.
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Table 23: Accuracy on RTE and Last Letter with ChatGPT models.

Methods RTE Last Letter (12 words)

COT 85.2 72.5

SKiC - 100.0
SKiC(Skills discoverd by LLM) 89.8 100.0

Table 24: Accuracy on MATH for models fine-tuned with GSM8K data labeled with CoT reasoning steps and with
SKiC reasoning steps. The one fine-tuned with SKiC reasoning steps show better weak-to-strong generalization.

Model Train Set Source Reasoning Step MATH

LLAMA2-7B
- - 2.5

GSM8K CoT 5.2
GSM8K SKiC 7.6

LLAMA2-13B
- - 3.9

GSM8K CoT 5.1
GSM8K SKiC 8.1

LLAMA2-70B
- - 13.5

GSM8K CoT 14.1
GSM8K SKiC 18.5

J Ablation of Different SKiC Components

Previous work (Khot et al., 2022; Zhou et al.,
2022a) introduced step-by-step reasoning and
breaking down hard problems to simple problems
to improve the easy-to-hard generalization. How-
ever, in our work, we make another important dis-
covery that, in order to teach models how to com-
pose skills, it is also crucial to demonstrate the
foundational skills and how to ground each of its
reasoning steps onto the foundation skills. That
is, besides step-by-step reasoning, explicit ground-
ing is another key factor to elicit compositionality
and easy-to-hard generalization. Our SKiC prompt
structure constructed in this manner shows signifi-
cantly better performances compared to previous
work in all the experiments. Additionally, we per-
from ablation study to highlight our finding (the
importance of skill grounding in reasoning steps).
We compare SKiC with the setting where (i) we
remove the skills but keep the skill grounding in
reasoning steps and (ii) we remove the skill ground-
ing in reasoning steps but keep the basic skill intro-
duction in the front. The performance on Dynamic
Programming is shown in Table 21. Removing
either part would bring in the performance drop,
which further indicates the importance of skills and
skill grounding in reasoning steps to improve the

compositional generalization.

K Applying SKiC to Semantic Parsing

We further design SKiC prompts and perform ex-
periments on SCAN dataset (Chen et al., 2020)
that evaluates the ability to do semantic parsing.
Specifically, our skills and examples of composing
these skills are shown in Figures 24-25. The perfor-
mance with ChatGPT is shown in Table 22, which
achieves perfect (100%) performance.

L LLMs can automatically discover skills

We further provide experiments to show that the
skills in our SKiC prompts can actually be dis-
covered or summarized from examples by LLMs,
which makes our SKiC more applicable to a wider
range of tasks. Specifically, we provide ChatGPT
with 2 examples of NLI tasks from RTE (Wang
et al., 2018) and instruct ChatGPT to discover the
skills from the given examples to perform the NLI
tasks, which results in the skills including Context
Understanding and Inference Evaluation. Based
on the summarized skills from LLMs, we then con-
struct our SKiC prompts and the results on RTE
are shown in Table 23. Similarly, we utilize Chat-
GPT to discover skills for the last letter tasks which
leading to the skill set including Identify Words,

13859



Determine Last Letters, Concatenate Last Let-
ters, Form New Sequence. These are actually
similar to what we have shown in Figure 10. With
such skills, we could further construct the SKiC
prompts by adding these basic skills in the con-
text and grounding reasoning steps onto these basic
skills. This gives the similar performance com-
pared to what we constructed manually as shown
in Table 23. The results show the effectiveness of
automatically discovering skills from LLMs and
then using them to construct the SKiC prompts.

M SKiC Helps Instruction Tuning

In this section, we show that instruction data which
is constructed with SKiC can further be utilized
to fine-tune LLMs to improve their capabilities of
easy-to-hard generalization. Specifically, we gen-
erate training data by utilizing GPT4 to generate
answers for GSM8K problems with SKiC prompts.
That is, the generated reasoning steps for each
GSM8K problem would be explicitly grounded
to basic skills as shown in Figures 33-34. With
the GSM8K data annotated with SKiC-format rea-
soning steps, we then finetune LLAMA2 models
and evaluate their performances on MATH (which
consists of significantly harder evaluation problems
compared to the training problems from GSM8K)
in zero-shot standard prompting settings. The re-
sults are shown in Table 24. Compared to training
data annotated with CoT reasoning steps, SKiC
significantly improve the performances on MATH,
which demonstrates that models that are fine-tuned
with SKiC reasoning steps could achieve better
generalization abilities to more complex and chal-
lenging testing cases. The results imply that SKiC
data could potentially be used to replace CoT data
in instruction tuning for eliciting stronger weak-to-
strong generalization for LLMs.

N Generation Examples

We further share some example generation from
ChatGPT with our Skills-in-Context prompts on all
the tasks in Figure 26,27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 2.

O The Most Frequently Used Skills by
GPT-4 for Solving MATH Benchmark

In Table 25, we report the most frequently used
skills by GPT-4 to solve the MATH problems.
There are two sources of the skills: (i) the ones
provided in the context of SKiC prompts, and (ii)

the ones originating from GPT-4’s internal knowl-
edge (acquired through pretraining).
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Table 25: The most frequently used skills by GPT-4 for solving MATH benchmark with SKiC prompting. The skills
can be from the context of the SKiC prompts (denoted as “in-context” in the table) or from the internal knowledge
acquired during the pretraining stage (denoted as “internal”).

Category Source Top Used Skills

Pre-Algebra
In-context Div, Mul, Add, Sub, Solve Equation, Area, Exp, Counting Principle, Radicals, Prime Numbers

Internal
Pythagorean Theorem, Rounding, Divisibility Rules, Percentage, Angles, Simply Fraction,
Mean, Ratio, Triangle Angle Sum, Order of Operations

Geometry
In-context Area, Mul, Div, Add, Sub, Solve Equation, Volume, Radicals, Exp, Perimeter

Internal
Pythagorean Theorem, Trigonometry, Triangle, Triangle Inequality, Similar Triangles,
Circle, Geometry, Triangle Angle Sum, Angle Bisector Theorem, Trigonometric Ratios

Inter-Algebra
In-context Factoring, Solve Equation, Add, Mul, Sub, Complex Number, Inequality, Quadratic Formula, Div, Exp

Internal
Substitution, Completing the Square, Polynomial, Logarithm, AM-GM Inequality,
Polynomial Division, Absolute Value, Summation, Sequences, Simplify

Algebra
In-context Add, Mul, Solve Equation, Sub, Div, Exp, Factoring, Quadratic Formula, Radicals, Distance Formula

Internal
Absolute Value, Slope, Logarithm, Arithmetic Sequence, Completing the Square, Interval Notation,
Inverse Function, Substitution, Midpoint Formula, Ceiling Function

Probability
In-context Factorial, Combination, Counting Principle, Probability, Add, Sub, Permutations, Mul, Div, Exp

Internal
Simplify Fraction, Binomial Theorem, Expected Value, Arithmetic Sequence, Sum of Arithmetic Series,
Counting, Stars and Bars, Divisibility Rules, Binomial Probability, Perfect Squares

Pre-Calculus
In-context Solve Equation, Add, Mul, Sub, Complex Number, Div, Factoring, Radicals, Area, Distance Formula

Internal
Trigonometric Identities, Trigonometry, Dot Product, Matrix Multiplication, Pythagorean Theorem,
Cross Product, Inverse Trigonometric Functions, Determinant, Vector Projection, Vectors

NumTheory
In-context Add, Mod, Base Conversion, Mul, Congruences, Div, Sub, Factoring, Prime Number, GCD

Internal
Divisors, Divisibility Rules, Units Digit, Prime Fraction, Chinese Remainder Theorem, Arithmetic
Sequence, Exponents, Cyclic Patterns, Perfect Squares, Modular Arithmetic
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Skills for Last Letter Concatenation

Skill <words_to_list>: Put the asked words to a list. For example, put the words in ’apple’ to
D=[’apple’]; put the words in ’apple, banana’ to D=[’apple’,’banana’].

Skill <last_letter>: Get the last letter of one word. For example, the last letter of ’apple’ is ’e’;
the last letter of ’banana’ is ’a’.

Figure 10: The skills in Skills-in-Context prompt for last-letter-concatenation task.
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An Example of Skill Composition for Last Letter Concatenation

Example: Take the last letters of the words in ’apple, banana’ and concatenate them.

Answer:
1. Using the Skill <words_to_list>, put the asked words, ’apple, banana’, to a list.
D=[’apple’,’banana’]

2. Get the last letter of each word in the list D=[’apple’,’banana’] to a new list R=[]:
i. Using the Skill <last_letter>, the last letter of D[0]=’apple’ is ’e’. R=[e]

ii. Using the Skill <last_letter>, the last letter of D[1]=’banana’ is ’a’. R=[e,a]

3. R=[e,a]. The answer is ’ea’.

Figure 11: An exemplar of skill composition in Skills-in-Context prompt for last-letter-concatenation task.
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Skills for Addition

Skill <extract_digits>: Extract the digits in a number to a list.
For example, Extract digits in 123 to D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4].

Skill <list_length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <add_two_single_digit_number>: Add two single-digit numbers.
0+0=0 0+1=1 0+2=2 0+3=3 0+4=4 0+5=5 0+6=6 0+7=7 0+8=8 0+9=9
1+0=1 1+1=2 1+2=3 1+3=4 1+4=5 1+5=6 1+6=7 1+7=8 1+8=9 1+9=10
2+0=2 2+1=3 2+2=4 2+3=5 2+4=6 2+5=7 2+6=8 2+7=9 2+8=10 2+9=11
3+0=3 3+1=4 3+2=5 3+3=6 3+4=7 3+5=8 3+6=9 3+7=10 3+8=11 3+9=12
4+0=4 4+1=5 4+2=6 4+3=7 4+4=8 4+5=9 4+6=10 4+7=11 4+8=12 4+9=13
5+0=5 5+1=6 5+2=7 5+3=8 5+4=9 5+5=10 5+6=11 5+7=12 5+8=13 5+9=14
6+0=6 6+1=7 6+2=8 6+3=9 6+4=10 6+5=11 6+6=12 6+7=13 6+8=14 6+9=15
7+0=7 7+1=8 7+2=9 7+3=10 7+4=11 7+5=12 7+6=13 7+7=14 7+8=15 7+9=16
8+0=8 8+1=9 8+2=10 8+3=11 8+4=12 8+5=13 8+6=14 8+7=15 8+8=16 8+9=17
9+0=9 9+1=10 9+2=11 9+3=12 9+4=13 9+5=14 9+6=15 9+7=16 9+8=17 9+9=18

Skill <sub_10>: Subtract 10 from a given number.
10-10=0 11-10=1 12-10=2 13-10=3 14-10=4 15-10=5 16-10=6 17-10=7 18-10=8 19-10=9

Skill <compare_10>: Compare a number with 10.
0<10 1<10 2<10 3<10 4<10 5<10 6<10 7<10 8<10 9<10 10=10
11>10 12>10 13>10 14>10 15>10 16>10 17>10 18>10 19>10

Figure 12: The skills in Skills-in-Context prompt for the task of adding two numbers.
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An Example of Skill Composition for Addition

Example: Calculate 86+964:

Answer:
1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 86 to DM=[8,6].
len(DM)=2. Extract the digits in 964 to DN=[9,6,4]. len(DN)=3.

2. len(DM)=2<len(DN)=3. Align the two lists by adding len(DN)-len(DM)=1 zeros to
the shorter list (DM): DM=[0,8,6].

3. Using Skill <add_two_single_digit_number>, add every number in DM=[0,8,6] to
the corresponding number in DN =[9,6,4] to form a list, DS=[0+9,8+6,6+4]=[9,14,10].

4. Append a 0 to the beginning of DS: DS=[0,9,14,10].Construct a list R=[0,0,0,0] with
len(DS)=4 zeros.

5. DS=[0,9,14,10] (DS[0]=0, DS[1]=9, DS[2]=14, DS[3]=10), starting from DS[3] to
DS[1] (DS[3]=10, DS[2]=14, DS[1]=9):

i. DS[3]=10, R[3]=0, R[3]=R[3]+DS[3]=0+10=10. Based on Skill
<compare_10>, R[3]=10=10, so R[2]=1 and R[3]=10-10=0 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3]]=[0,0,1,0].

ii. DS[2]=14, R[2]=1, R[2]=R[2]+DS[2]=1+14=15. Based on Skill
<compare_10>, R[2]=15>10, so R[1]=1 and R[2]=15-10=5 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3]]=[0,1,5,0].

iii. DS[1]=9, R[1]=1, R[1]=R[1]+DS[1]=1+9=10. Based on Skill
<compare_10>, R[1]=10=10, so R[0]=1 and R[1]=10-10=0 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3]]=[1,0,5,0].

6. R=[1,0,5,0]. The answer is 1050.

Figure 13: An exemplar of skill composition in Skills-in-Context prompting for the task of adding two numbers.
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Skills for Multiplication

Skill <extract_digits>: Extract the digits in a number to a list.
For example, Extract digits in 123 to D=[1,2,3]. Extract digits in 7654 to D=[7,6,5,4].

Skill <list_length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <mul_two_single_digit_number>: Multiply two single-digit numbers.
0*1=0 0*2=0 0*3=0 0*4=0 0*5=0 0*6=0 0*7=0 0*8=0 0*9=0
1*1=1 1*2=2 1*3=3 1*4=4 1*5=5 1*6=6 1*7=7 1*8=8 1*9=9
2*1=2 2*2=4 2*3=6 2*4=8 2*5=10 2*6=12 2*7=14 2*8=16 2*9=18
3*1=3 3*2=6 3*3=9 3*4=12 3*5=15 3*6=18 3*7=21 3*8=24 3*9=27
4*1=4 4*2=8 4*3=12 4*4=16 4*5=20 4*6=24 4*7=28 4*8=32 4*9=36
5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 5*6=30 5*7=35 5*8=40 5*9=45
6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 6*7=42 6*8=48 6*9=54
7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 7*8=56 7*9=63
8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 8*9=72
9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

Skill <add_multiple_numbers>: Add multiple numbers such as m+n+p:
1. Add the first two numbers m+n and get the result r1=m+n.
2. Add the third number p to r1 and get the result r2=r1+p.

For example, calculate 128+64+79:
1. Add the first two numbers 128+64 and get the result r1=128+64=192.
2. Add the third number 79 to r1 and get the result r2=192+79=271.
So 128+64+79=271

Figure 14: The skills in Skills-in-Context prompt for the task of multiplying two numbers.

13866



An Example of Skill Composition for Multiplication

Example: Calculate 184*67:

Answer:
1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 184 to DM=[1,8,4].
len(DM)=3. Extract the digits in 67 to DN=[6,7]. len(DN)=2.

2. Add 0,1,len(DM)-1=2 zeros to the end of every number in DM=[1,8,4] according to
the position of the number in DM: DMO=[1*100,8*10,4*1]=[100,80,4].

3. Add 0,len(DN)-1=1 zeros to the end of every number in DN=[6,7] according to the
position of the number in DN: DNO=[6*10,7*1]=[60,7].

4. Using Skill <mul_two_single_digit_number>, multiple every number in DMO=[100,80,4]
with every number in DNO=[60,7] and get R=[100*60,100*7,80*60,80*7,4*60,4*7]=
[6000,700,4800,560,240,28].

5. Using Skill <add_multiple_numbers>, add all the numbers in R=[6000,700,4800,560,240,28],
6000+700+4800+560+240+28:

i. Add the first two numbers: r1=6000+700=6700.
ii. Add the third number 4800 to r1=6700: r2=6700+4800=11500.
iii. Add the fourth number 560 to r2=11500: r3=11500+560=12060.
iv. Add the fifth number 240 to r3=12060: r4=12060+240=12300.
v. Add the sixth number 28 to r4=12300: r5=12300+28=12328.

6. So the answer is 12328

Figure 15: An exemplar of skill composition in Skills-in-Context prompting for the task of multiplying two numbers.
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Skills for CommaQA-E task

Skill <decompose_qa>: Decompose a complex question into a set of sub-questions.
For example: Decompose the question "What awards have movies produced by people born
in 1910 won?" into the following sub-questions:
Q1: Who were born in the year 1910?
Q2: Which movies did [A1] produce?
Q3: Which awards were given to [A2]?
Decompose the question "What movies have people from the country Stridery acted in?" into
the following sub-questions: Q1: Who is from the country Stridery?
Q2: Which movies did [A1] act in?

Skill <answer_simple_question>: Answer simple questions about the passage.
For example:
[A Passage]

Q: Which awards were given to Zalate?
A: movie: Zalate ; awarded: Hallowcock. ["Hallowcock”]
Q: Which movies were given the Hallowcock award?
A: movie: Zalate ; awarded: Hallowcock. movie: SkirtSiCine ; award: Hallowcock. ["Zalate",
"SkirtSiCine"]
Q: Which movies did Muntaril direct?
A: movie: Premercy ; directed by: Muntaril. ["Premercy]
Q: Which movies did Muntrail produce?
A: Muntaril produced the movie Premercy with others. Muntaril produced the movie SkirtSiCine
with others. ["Premercy", "SkirtSiCine"]
Q: Which movies did Muntrail write?
A: Muntaril was one of the writers for the movie Zalate. Muntaril wrote for the movie
Featsaw. ["Zalate", "Featsaw"]
Q: Who are the actors in the movie Premercy?
A: Monsterscar was an actor in the movie Premercy. ["Monsterscar"]
Q: When was the moive Featsaw released?
A: Monsterscar was an actor in the movie Premercy. ["1973"]

Figure 16: The skills in Skills-in-Context prompt for the CommaQA-E task.

13868



An Example of Skill Composition for the CommaQA-E Task

Example: [A Passage]
Q: What movies have people from the country Stridery acted in?

Answer:
1. Using Skill <decompose_qa>, decompose the question "What movies have people from the
country Stridery acted in?" into the following sub-questions:

Q1: Who is from the country Stridery?
Q2: Which movies did [A1] act in?

2. Using Skill <answer_simple_question>, answer Q1: Who is from the country Stridery?

Gastrat grew up in the nation of Stridery. A1=["Gastrat"]

3. A1=["Gastrat"], answer Q2: Which movies did [A1] act in?

i. A1[0]="Gastrat", Using Skill <answer_simple_question>, answer Q2.1: Which movies
did Gastrat act in?

A2.1: Gastrat was an actor in the movie Partnershipmaker. Gastrat was an actor in the
movie Partnershipmaker. Gastrat acted in the movie Warpstone. A2.1=["Partnershipmaker",
"Nilitude", "Warpstone"]

ii.So A2=[A2.1]=["Partnershipmaker", "Nilitude", "Warpstone"]

4. The answer is ["Partnershipmaker", "Nilitude", "Warpstone"]

Figure 17: An exemplar of skill composition in Skills-in-Context prompting for the CommaQA-E task.
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Skills for Dynamic Programming

Skill <list_length>: Get the number of elements in a list.
For example, D=[1,2,3], len(D)=3. A=[1,2,3,4,5,6], len(A)=6.

Skill <find_max>: Find the max number in a list.
For example, max(2,0,-1)=2. max(-3,-2,-1)=-1. max(5,-2,0)=5. max(0,-2,4)=4. max(0,0,0)=0.
max(-2,-1,0)=0.

Skill <add>: Add two numbers.
For example, 1+2=3. -2+1=-1. 0+(-3)=-3. 1+(-1)=0.

Figure 18: The skills in Skills-in-Context prompt for the task of dynamic programming.
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An Example of Skill Composition for the Dynamic Programming Task

Example: Compose these skills to do the task: Given a sequence of integers, find a subsequence
with the highest sum, such that no two numbers in the subsequence are adjacent in the original
sequence.
A=[3,2,1,5].

Answer:
1. A=[3,2,1,5] (A[0]=3,A[1]=2,A[2]=1,A[3]=5). Using Skill <list_length>, len(A)=4. Construct
a list D=[0,0,0,0] with the len(A)=4 zeros.

2. Update the last element in D. A[3]=5. Using Skill <find_max>, max(5,0)=5. D[3]=5 and
D=[0,0,0,5].

3. Update the second last element in D. A[3] = 5, A[2] = 1. Using Skill <find_max>,
max(5,1,0) = 5. D[2] = 5 and D=[0,0,5,5].

4. Starting from the third last (len(A)-2=2) element in D, update each element in D
based on A=[3,2,1,5] (A[0]=3,A[1]=2,A[2]=1,A[3]=5):

i. D[3]=5, D[2]=5, A[1]=2. Using Skill <add>, A[1]+D[3]=2+5=7. Using Skill
<find_max>, max(D[2],A[1]+D[3],0)=max(5,7,0)=7. D[1]=7 and D=[0,7,5,5].

ii. D[2]=5, D[1]=7, A[0]=3. Using Skill <add>, A[0]+D[2]=3+5=8. Using Skill
<find_max>, max(D[1],A[0]+D[2],0)=max(7,8,0)=8. D[0]=8 and D=[8,7,5,5].

5. D=[8,7,5,5]. The highest sum is D[0]=8.

Figure 19: An exemplar of skill composition in Skills-in-Context prompting for the dynamic programming task to
find the highest sum of the subsequence.
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Skills for GSM8K

Skill <extract_digits>: Extract the digits in a number to a list. For example, extract digits in 123 to D=[1,2,3]. Extract
digits in 7654 to D=[7,6,5,4]

Skill <list_length>: Get the number of elements in a list. For example, D=[1,2,3], len(D)=3. A=[1,2,4,5,6], len(A)=5.

Skill <add_two_single_digit_number>: Add two single-digit numbers. For example, 0+0=0 0+1=1 0+2=2 0+3=3
0+4=4 0+5=5 0+6=6 0+7=7 0+8=8 0+9=9

Skill <sub_two_single_digit_number>: Subtract two single-digit numbers. For example, 0-0=0 0-1=-1 0-2=-2 0-3=-3
0-4=-4 0-5=-5 0-6=-6 0-7=-7 0-8=-8 0-9=-9

Skill <sub_10>: Subtract 10 from a given number. 10-10=0 11-10=1 12-10=2 13-10=3 14-10=4 15-10=5 16-10=6
17-10=7 18-10=8 19-10=9

Skill <add_10>: Add 10 to a given number. -10+10=0 -9+10=1 -8+10=2 -7+10=3 -6+10=4 -5+10=5 -4+10=6 -3+10=7
-2+10=8 -1+10=9

Skill <compare_0>: Compare a number with 0. 10>0 9>0 8>0 7>0 6>0 5>0 4>0 3>0 2>0 1>0 0=0 -1>0 -2>0
-3>0 -4>0 -5>0 -6>0 -7>0 -8>0 -9>0

Skill <compare_10>: Compare a number with 10. 0<10 1<10 2<10 3<10 4<10 5<10 6<10 7<10 8<10 9<10
10=10 11>10 12>10 13>10 14>10 15>10 16>10 17>10 18>10 19>10

Skill <mul_two_single_digit_number>: Multiply two single-digit numbers. For example, 4*1=4 4*2=8 4*3=12
4*4=16 4*5=20 4*6=24 4*7=28 4*8=32 4*9=36

Skill <add_multiple_numbers>: Add multiple numbers such as m+n+p:
1. Add the first two numbers m+n and get the result r1=m+n.
2. Add the third number p to r1 and get the result r2=r1+p.

Skill <add>: Use the skills to add two numbers. For example, calculate 86+964 [The steps to perform the add]

Skill <mul>: Use the skills to multiply two numbers. For example, calculate 86*964 [The steps to perform the
multiplication]

Skill <sub>: Use the skills to subtract a number from another number. For example, calculate 964-86 [The steps to
perform the subtractraction]

Skill <age>: Describe the age of a person. If a person is P years old, Q years ago, the person was P-Q years old. If a
person is P years old, in Q years, the person will be P+Q years old. If person A is P years old, person B is Q years old,
and person A is R years older than person B, then P=Q+R. If person A is P years old, person B is Q years old, and
person A is R years younger than person B, then P=Q-R.

Skill <solve_equation>: Solve an equation. When subtracting or adding the same number from both sides of the
equation, the equation is still true. When moving a number from one side of the equation to the other side, the sign of
the number changes. When moving a multiplication from one side of the equation to the other side, the sign of the
multiplication changes. When moving a division from one side of the equation to the other side, the sign of the division
changes.
For example, if the equation is 3x+5=7, move +5 to the other side, then 3x=7-5. Using the Skill <sub>, 3x=7-5=2.
Move 3 to the other side, then x=2/3.

Figure 20: The skills in Skills-in-Context prompt for GSM8K.
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An Example of Skill Composition for GSM8K

Example: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice
30 years old, how old is Kody?

Answer:
1. Mohamed is currently twice 30 years old. Using the Skill <mul>, Mohamed is currently 30*2
= 60 years old.

2. Using Skill <age>, four years ago, Mohamed was 4 years younger than now. Using
the Skill <sub>, Mohamed was 60-4 = 56 years old.

3. Four years ago, Kody was only half as old as Mohamed. Using the Skill <div>,
Kody was 56/2 = 28 years old.

4. Using Skill <age>, currently, Kody is 4 years older than four years ago. Using the
Skill <add>, Kody is currently 28+4 = 32 years old.

5. The answer is 32.

Figure 21: An exemplar of skill composition in Skills-in-Context prompting for GSM8K math problems.
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Skills for MATH

You have the knowledge of many skills, the following are some examples:
Skill <Add>: Add two numbers. For example, 128+987=1115.

Skill <Sub>: Subtract a number from another number. For example, 128-67=61.

Skill <Mul>: Multiply two numbers. For example, 128*76=9728.

Skill <Div>: Divide a number from another number. For example 12/3=4.

Skill <Mod>: Modulus or modulo, it finds the remainder of a division operation. For example, 10 mod 3 = 1, because 10 divided by 3 leaves a
remainder of 1.

Skill <Exp>: An exponent refers to the number of times a number is multiplied by itself. [More Details]

Skill <Base Conversion>: Base conversion is a way to change numbers from one base to another. [More Details]

Skill <Radicals>: A radical represents the root of a number. The square root (represented by sqrt) is the most common radical. [More Details]

Skill <Factoring>: In the context of integers, factorization involves expressing a number as the product of prime numbers. [More Details]

Skill <Solve Equation>: Solve an equation. [More Details]

Skill <Quadratic Formula>: The quadratic formula is used to solve quadratic equations. [More Details]

Skill <Complex Number>: The quadratic formula is used to solve quadratic equations. [More Details]

Skill <Piecewise Function: Continuous>: A piecewise function is continuous if it is continuous at every point in its domain. [More Details]

Skill <Factorial>: Factorial is a function that multiplies a given number by every number below it until 1. [More Details]

Skill <Probability>: Probability is the measure of the likelihood that an event will occur. [More Details]

Skill <Conditional Probability>: The probability of an event occurring given that another event has already occurred. [More Details]

Skill <Probability Addition Rule>: The Addition Rule in probability is used to calculate the probability of either of two events happening.
[More Details]

Skill <Probability Multiplication Rule>: A way to determine the probability of two events occurring at the same time (conjointly). [More
Details]

Skill <Counting Principle>: If there are m ways to do one thing, and n ways to do another, then there are m*n ways of doing both. [More
Details]

Skill <Permutations>: Permutations refer to the arrangement of items in a specific order. [More Details]

Skill <Combination>: Combinations refer to the selection of items without regard to the order. [More Details]

Skill <Perimeter>: The perimeter of a shape is the distance around its boundary. [More Details]

Skill <Area>: The area of a shape is the amount of space that it covers. [More Details]

Skill <Volume>: Volume is the measure of the amount of space that a three-dimensional object occupies. [More Details]

Skill <Prime Numbers>: A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. [More Details]

Skill <Composite Numbers>: Composite numbers are positive integers that have at least one positive divisor other than one or the number
itself. [More Details]

Skill <GCD>:The Greatest Common Divisor (GCD), also known as the Greatest Common Factor (GCF), [More Details]

Skill <LCM>:The Least Common Multiple (LCM) of two integers is the smallest positive integer that is divisible by both numbers without
leaving a remainder. [More Details]

Skill <Congruences>: Two integers a and b are said to be congruent modulo n if they have the same remainder when divided by n. [More Details]

Figure 22: The skills in Skills-in-Context prompt for MATH.
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An Example of Skill Composition for MATH

Example: Shown below are rows 1, 2, and 3 of Pascal’s triangle.[Pascal’s triangle]. Let (ai),
(bi), (ci) be the sequence, from left to right, of elements in the 2005th, 2006th, and 2007th rows,
respectively, with the leftmost element occurring at i = 0. Compute [

∑2006
i=0

bi
ci
−∑2005

i=0
ai
bi
.]

Answer:
1. Using the Skill <Pascal’s Triangle>, the number in the n-th row and k-th column of the Pascal’s
triangle is C(n,k).

2. Suppose (ai), (bi), (ci) represent the entries in rows n - 1, n, n + 1 of Pascal’s trian-
gle. ai = C(n− 1, i), bi = C(n, i), ci = C(n+ 1, i)

3. Using the Skill <Combination>,
∑2006

i=0
bi
ci

=
∑2006

i=0
(2006i )
(2007i )

=
∑2006

i=0
2007−i
2007 =

2007− 2006·2007
2·2007 = 2007− (2006 ∗ 2007)/(2 ∗ 2007) = 2007− 1003 = 1004

4. Using the Skill <Combination>,
∑2005

i=0
ai
bi

=
∑2005

i=0
(2005i )
(2006i )

=
∑2005

i=0
2006−i
2006 =

2006− 2005·2006
2·2006 = 2006− (2005 ∗ 2006)/(2 ∗ 2006) = 2006− 1002.5 = 1003.5

5. Using the Skill <Sub>, [
∑2006

i=0
bi
ci
−∑2005

i=0
ai
bi
] = 1004− 1003.5 = 0.5

6. The answer is 0.5.

Figure 23: An exemplar of skill composition in Skills-in-Context prompting for MATH problems.
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Skills for SACN

Skill <command_parse>: Parse a simple command into structured output.
For example, ‘Walk’ is parsed to ‘WALK’,‘Look’ is parsed to ‘LOOK’,‘Run’ is parsed to
‘RUN’,‘Jump’ is parsed to ‘JUMP” ‘turn left’ is parsed to ‘LTURN”,‘turn right’ is parsed to
‘RTURN”, ‘Turn opposite left’ is parsed to ‘LTURN LTURN’, ‘Turn opposite right’ is parsed to
’RTURN RTURN’

Skill <decompose_commands>: Find the max number in a list.
For example, ‘Look right’ can be decomposed to ‘look’ and ‘turn right’,‘Look twice’ can be
decomposed to ‘look’ and ‘look’,‘Look right after look twice’ can be decompose to ‘look right’
and ‘look twice’,‘Jump opposite right thrice and walk’ can be decomposed to ‘jump opposite right
thrice’, ‘walk’

Figure 24: The skills in Skills-in-Context prompt for the task of SACN.
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An Example of Skill Composition for SCAN

Example: run and look twice.

Answer:
1. Using the Skill <decompose_commands>, ‘run and look twice’ can be decomposed to ‘run’,
and ‘look twice’.

2. For ‘run’, using the Skill <command_parse>, ‘run’ is parsed to ‘RUN’

3. For ‘look twice’, using the Skill <decompose_commands>, ‘look twice’ can be de-
composed to ‘look’ and ‘look’:

i. For ‘look’, using the Skill <command_parse>, ‘look’ is parsed to ‘LOOK’
ii. For ‘look’, using the Skill <command_parse>, ‘look’ is parsed to ‘LOOK’

4. The output is ‘RUN’+’LOOK’+’LOOK’ = ‘RUN’ + ‘LOOK’*2

Figure 25: An exemplar of skill composition in Skills-in-Context prompting for SCAN.
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Last Letter Concatenation

Question: Take the last letters of the words in ’than, appropriate, sees, daisy, disturbed, espn,
stable, double, luther, shut’ and concatenate them.

Model Output:

1. Using the Skill <words_to_list>, put the asked words, ’than, appropriate, sees, daisy, disturbed,
espn, stable, double, luther, shut’, to a list. D=[’than’, ’appropriate’, ’sees’, ’daisy’, ’disturbed’,
’espn’, ’stable’, ’double’, ’luther’, ’shut’]

2. Get the last letter of each word in the list D=[’than’, ’appropriate’, ’sees’, ’daisy’,
’disturbed’, ’espn’, ’stable’, ’double’, ’luther’, ’shut’] to a new list R=[]:

i. Using the Skill <last_letter>, the last letter of D[0]=’than’ is ’n’. R=[n]
ii. Using the Skill <last_letter>, the last letter of D[1]=’appropriate’ is ’e’. R=[n, e] iii.

Using the Skill <last_letter>, the last letter of D[2]=’sees’ is ’s’. R=[n, e, s]
iv. Using the Skill <last_letter>, the last letter of D[3]=’daisy’ is ’y’. R=[n, e, s, y]
v. Using the Skill <last_letter>, the last letter of D[4]=’disturbed’ is ’d’. R=[n, e, s, y, d]
vi. Using the Skill <last_letter>, the last letter of D[5]=’espn’ is ’n’. R=[n, e, s, y, d, n]
vii. Using the Skill <last_letter>, the last letter of D[6]=’stable’ is ’e’. R=[n, e, s, y, d, n, e]
viii. Using the Skill <last_letter>, the last letter of D[7]=’double’ is ’e’. R=[n, e, s, y, d, n, e,

e]
ix. Using the Skill <last_letter>, the last letter of D[8]=’luther’ is ’r’. R=[n, e, s, y, d, n, e, e,

r]
x. Using the Skill <last_letter>, the last letter of D[9]=’shut’ is ’t’. R=[n, e, s, y, d, n, e, e, r,

t]

3. R=[n, e, s, y, d, n, e, e, r, t]. The answer is ’n e s y d n e e r t’.

Figure 26: An example of the generated answer on last-letter-concatenation task using ChatGPT with our Skills-in-
Context prompting.
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Addition

Question: Calculate 165789+876534

Model Output:

1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 165789 to
DM=[1,6,5,7,8,9]. len(DM)=6. Extract the digits in 876534 to DN=[8,7,6,5,3,4]. len(DN)=6.

2. len(DM)=6=len(DN)=6. Align the two lists: DM=[1,6,5,7,8,9], DN=[8,7,6,5,3,4].

3. Using Skill <add_two_single_digit_number>, add every number in
DM=[1,6,5,7,8,9] to the corresponding number in DN =[8,7,6,5,3,4] to form a list,
DS=[1+8,6+7,5+6,7+5,8+3,9+4]=[9,13,11,12,11,13].

4. Append a 0 to the beginning of DS: DS=[0,9,13,11,12,11,13]. Construct a list R=[0,0,0,0,0,0,0]
with len(DS)=7 zeros.

5. DS=[0,9,13,11,12,11,13] (DS[0]=0, DS[1]=9, DS[2]=13, DS[3]=11, DS[4]=12, DS[5]=11,
DS[6]=13), starting from DS[6] to DS[1] (DS[6]=13, DS[5]=11, DS[4]=12, DS[3]=11, DS[2]=13,
DS[1]=9):

i. DS[6]=13, R[6]=0, R[6]=R[6]+DS[6]=0+13=13. Based on Skill
<compare_10>, 13>10, R[6]=13>10, so R[5]=1 and R[6]=13-10=3 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,0,0,1,3].

ii. DS[5]=11, R[5]=1, R[5]=R[5]+DS[5]=1+11=12. Based on Skill
<compare_10>, 12>10, R[5]=12>10, so R[4]=1 and R[5]=12-10=2 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,0,1,2,3].

iii. DS[4]=12, R[4]=1, R[4]=R[4]+DS[4]=1+12=13. Based on Skill
<compare_10>, 13>10, R[4]=13>10, so R[3]=1 and R[4]=13-10=3 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,0,1,3,2,3].

iv. DS[3]=11, R[3]=1, R[3]=R[3]+DS[3]=1+11=12. Based on Skill
<compare_10>, 12>10, R[3]=12>10, so R[2]=1 and R[3]=12-10=2 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,0,1,2,3,2,3].

v. DS[2]=13, R[2]=1, R[2]=R[2]+DS[2]=1+13=14. Based on Skill
<compare_10>, 14>10, R[2]=14>10, so R[1]=1 and R[2]=14-10=4 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[0,1,4,2,3,2,3].

vi. DS[1]=9, R[1]=1, R[1]=R[1]+DS[1]=1+9=10. Based on Skill
<compare_10>, 10=10, R[1]=10=10, so R[0]=1 and R[1]=10-10=0 by Skill <sub_10>.
R=[R[0],R[1],R[2],R[3],R[4],R[5],R[6]]=[1,0,4,2,3,2,3].
6. R=[1,0,4,2,3,2,3]. The answer is 1042323.

Figure 27: An example of the generated answer on the addition task using ChatGPT with Skills-in-Context
prompting.
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Multiplication

Question: Calculate 1467*7651

Model Output:

1. Using Skill <extract_digits> and Skill <list_length>, extract the digits in 1467 to
DM=[1,4,6,7]. len(DM)=4. Extract the digits in 7651 to DN=[7,6,5,1]. len(DN)=4.

2. Add 0,1,len(DM)-1=3 zeros to the end of every number in DM=[1,4,6,7] according to
the position of the number in DM: DMO=[1*1000,4*100,6*10,7*1]=[1000,400,60,7].

3. Add 0,len(DN)-1=3 zeros to the end of every number in DN=[7,6,5,1] according to
the position of the number in DN: DNO=[7*1000,6*100,5*10,1*1]=[7000,600,50,1].

4. Using Skill <mul_two_single_digit_number>, multiple every number in DMO=[1000,400,60,7]
with every number in DNO=[7000,600,50,1] and get R=[1000*7000,1000*600,1000*50,1000*1,
400*7000,400*600,400*50,400*1,60*7000,60*600,60*50,60*1,7*7000,7*600,7*50,7*1]=
[7000000,600000,50000,1000,2800000,240000,20000,400,420000,36000,3000,60,
49000,4200,350,7].

5. Using Skill <add_multiple_numbers>, add all the numbers in R=[7000000,600000,50000,1000,
2800000,240000,20000,400,420000,36000,3000,60,
49000,4200,350,7], 7000000+600000+50000+1000+2800000+240000+20000+400+420000
+36000+3000+60+49000+4200+350+7:

i. Add the first two numbers: r1=7000000+600000=7600000.
ii. Add the third number 50000 to r1=7600000: r2=7600000+50000=7650000.
iii. Add the fourth number 1000 to r2=7650000: r3=7650000+1000=7651000.
iv. Add the fifth number 2800000 to r3=7651000: r4=7651000+2800000=10451000.
v. Add the sixth number 240000 to r4=10451000: r5=10451000+240000=10691000.
vi. Add the seventh number 20000 to r5=10691000: r6=10691000+20000=10711000.
vii. Add the eighth number 400 to r6=10711000: r7=10711000+400=10711400.
viii. Add the ninth number 420000 to r7=10711400: r8=10711400+420000=11131400.
ix. Add the tenth number 36000 to r8=11131400: r9=11131400+36000=11167400.
x. Add the eleventh number 3000 to r9=11167400: r10=11167400+3000=11170400.
xi. Add the twelfth number 60 to r10=11170400: r11=11170400+60=11170460.
xii. Add the thirteenth number 49000 to r11=11170460: r12=11170460+49000=11219460.
xiii. Add the fourteenth number 4200 to r12=11219460: r13=11219460+4200=11223660.
xiv. Add the fifteenth number 350 to r13=11223660: r14=11223660+350=11224010.
xv. Add the sixteenth number 7 to r14=11224010: r15=11224010+7=11224017.

6. So the answer is 11224017

Figure 28: An example of the generated answer on the multiplication task using ChatGPT with Skills-in-Context
prompting.
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CommaQA-E

Question:

movie: Skob ; directed by: Haldron. movie: Riften ; directed by: Conanopeia. movie: Tetroxidine
; directed by: Conanopeia. movie: Sheepcrest ; directed by: Flumph. movie: Sheepcrest ; award:
Mariskenna. movie: Skob ; award: Jubeus. movie: Tetroxidine ; award: Handt. movie: Riften
; awarded: Handt. movie: Tetroxidine ; written by: Conanopeia. movie: Riften ; written by:
Conanopeia. movie: Riften ; writer: Flumph. movie: Tetroxidine ; written by: Haldron. movie:
Skob ; written by: Haldron. movie: Sheepcrest ; writer: Flumph. movie: Skob ; year: 1962. movie:
Tetroxidine ; release year: 1997. movie: Riften ; release year: 1972. movie: Sheepcrest ; release
year: 1997. Flumph was an actor in the movie Riften. Flumph acted in the movie Sheepcrest.
Conanopeia was an actor in the movie Riften. Conanopeia acted in the movie Tetroxidine.
Conanopeia acted in the movie Sheepcrest. Haldron acted in the movie Tetroxidine. Haldron
acted in the movie Skob. Haldron was born in the year 1939. Flumph was born in the year 1938.
Conanopeia was born in 1938. Haldron is from the country of Poquet. Conanopeia grew up in the
nation of Poquet. Flumph grew up in the nation of Stridery. Diaqum was awarded to Flumph.
Lidus was awarded to Conanopeia. Haldron won the Lidus award. Conanopeia was one of the
producers of the movie Tetroxidine. Flumph was one of the producers of the movie Sheepcrest.
Flumph produced the movie Skob with others. Haldron was one of the producers of the movie
Sheepcrest. Haldron was one of the producers of the movie Riften. Haldron produced the movie
Skob with others. Conanopeia was one of the producers of the movie Riften.

Q: What movies have the people from Poquet written?

Model Output:

1. Using Skill <decompose_qa>, decompose the question "What movies have the people from
Poquet written?" into the following sub-questions:

Q1: Who is from the country Poquet?
Q2: Which movies did [A1] write?

2. Using Skill <answer_simple_question>, answer Q1: Who is from the country Poquet?
Conanopeia grew up in the nation of Poquet. Haldron is from the country of Poquet.
A1=["Conanopeia", "Haldron"]
3. A1=["Conanopeia", "Haldron"]. Using Skill <answer_simple_question>, answer Q2: Which
movies did [A1] write?

i. A1[0]="Conanopeia", answer Q2.1: Which movies did Conanopeia write?
A2.1: movie: Tetroxidine ; written by: Conanopeia. movie: Riften ; written by:

Conanopeia. A2.1=["Tetroxidine", "Riften"]
ii. A1[1]="Haldron", answer Q2.2: Which movies did Haldron write?

A2.2: movie: Skob ; written by: Haldron. A2.2=["Skob"]
iii. So A2=A2.1+A2.2=["Tetroxidine", "Riften", "Skob"]

4. The answer is ["Tetroxidine", "Riften", "Skob"]

Figure 29: An example of the generated answer on the CommaQA-E task using ChatGPT with our Skills-in-Context
prompting.
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DP

Question: Given a sequence of integers, find a subsequence with the highest sum, such that no
two numbers in the subsequence are adjacent in the original sequence.
A=[1, -5, 3, -4, -1, -1, 2, 2].

Model Output:

1. A=[1, -5, 3, -4, -1, -1, 2, 2] (A[0]=1,A[1]=-5,A[2]=3,A[3]=-4,A[4]=-1,A[5]=-1,A[6]=2,A[7]=2).
Using Skill <list_length>, len(A)=8. Construct a list D=[0,0,0,0,0,0,0,0] with the len(A)=8 zeros.

2. Update the last element in D. A[7]=2. Using Skill <find_max>, max(2,0)=2. D[7]=2 and
D=[0,0,0,0,0,0,0,2].

3. Update the second last element in D. A[7]=2, A[6]=2. Using Skill <find_max>,
max(2,2,0)=2. D[6]=2 and D=[0,0,0,0,0,0,2,2].

4. Starting from the third last (len(A)-2=6) element in D, update each element in D based on A=[1,
-5, 3, -4, -1, -1, 2, 2] (A[0]=1,A[1]=-5,A[2]=3,A[3]=-4, A[4]=-1,A[5]=-1,A[6]=2,A[7]=2):

i. D[7]=2, D[6]=2, A[5]=-1. Using Skill <add>, A[5]+D[7]=-1+2=1. Using Skill
<find_max>, max(D[6],A[5]+D[7],0)=max(2,1,0)=2. D[5]=2 and D=[0,0,0,0,0,2,2,2].

ii. D[6]=2, D[5]=2, A[4]=-1. Using Skill <add>, A[4]+D[6]=-1+2=1. Using Skill
<find_max>, max(D[5],A[4]+D[6],0)=max(2,1,0)=2. D[4]=2 and D=[0,0,0,0,2,2,2,2].

iii. D[5]=2, D[4]=2, A[3]=-4. Using Skill <add>, A[3]+D[5]=-4+2=-2. Using Skill
<find_max>, max(D[4],A[3]+D[5],0)=max(2,-2,0)=2. D[3]=2 and D=[0,0,0,2,2,2,2,2].

iv. D[4]=2, D[3]=2, A[2]=3. Using Skill <add>, A[2]+D[4]=3+2=5. Using Skill
<find_max>, max(D[3],A[2]+D[4],0)=max(2,5,0)=5. D[2]=5 and D=[0,0,5,2,2,2,2,2].

v. D[3]=2, D[2]=5, A[1]=-5. Using Skill <add>, A[1]+D[3]=-5+2=-3. Using Skill
<find_max>, max(D[2],A[1]+D[3],0)=max(5,-3,0)=5. D[1]=5 and D=[0,5,5,2,2,2,2,2].

vi. D[2]=5, D[1]=5, A[0]=1. Using Skill <add>, A[0]+D[2]=1+5=6. Using Skill
<find_max>, max(D[1],A[0]+D[2],0)=max(5,6,0)=6. D[0]=6 and D=[6,5,5,2,2,2,2,2].

5. D=[6,5,5,2,2,2,2,2]. The highest sum is D[0]=6.

Figure 30: An example of the generated answer on the dynamic programming task using ChatGPT with our
Skills-in-Context prompting.
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GSM8K

Question: The girls are trying to raise money for a carnival. Kim raises $320 more than Alexandra,
who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money,
in dollars, did they all raise in total?

Model Output:

1. Alexandra raises $430.

2. Kim raises $320 more than Alexandra. Using the Skill <add>, Kim raises $430+$320=$750.

3. Sarah raises $300.

4. Maryam raises $400 more than Sarah. Using the Skill <add>, Maryam raises $300+$400=$700.

5. Using the Skill <add>, they all raise $430+$750+$300+$700=$2180 in total.

6. The answer is 2180.

Figure 31: An example of the generated answer on the GSM8K task using ChatGPT with Skills-in-Context
prompting.
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GSM8K

Question: It’s strawberry-picking time on Grandma Concetta’s farm. Tony can pick 6 quarts of
strawberries per hour, while Bobby picks one less quart of strawberries per hour than Tony. Kathy
can pick twice as many strawberries per hour as Bobby, and Ricky picks two fewer quarts of
strawberries per hour than does Kathy. In total, how many quarts of strawberries can Tony, Bobby,
Ricky, and Kathy pick per hour on Grandma Concetta’s farm?

Model Output:
1. Tony can pick 6 quarts of strawberries per hour.

2. Bobby picks one less quart of strawberries per hour than Tony. Using the Skill <sub>, Bobby
picks 6-1=5 quarts of strawberries per hour.

3. Kathy can pick twice as many strawberries per hour as Bobby. Using the Skill <mul>, Kathy
picks 5*2=10 quarts of strawberries per hour.

4. Ricky picks two fewer quarts of strawberries per hour than does Kathy. Using the
Skill <sub>, Ricky picks 10-2=8 quarts of strawberries per hour.

5. In total, Tony, Bobby, Ricky, and Kathy can pick 6+5+10+8 quarts of strawberries
per hour. Using the Skill <add_multiple_numbers> :

i. Add the first two numbers using Skill <add>: r1=6+5=11.
ii. Add the third number 10 to r1=11 using Skill <add>: r2=11+10=21.
iii. Add the fourth number 8 to r2=21 using Skill <add>: r3=21+8=29.

6. So the answer is 29.

Figure 32: An example of the generated answer on the GSM8K task with our Skills-in-Context prompting, where
<add_multiple_numbers> is included as a basic skill in the SKiC prompting context (see Table 20) but is not
demonstrated in any given exemplar to show how to use it. LLMs automatically figure out how to use such skills in
an innovative composition to solve an unseen complex problem.
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GSM8K

Question: A merchant wants to make a choice of purchase between 2 purchase plans: jewelry
worth $5,000 or electronic gadgets worth $8,000. His financial advisor speculates that the jewelry
market will go up 2.5% while the electronic gadgets market will rise 1.2% within the same month.
If the merchant is looking to maximize profit at the end of this month by making a choice, how
much profit would this be?

Model Output:

1. If the merchant buys jewelry worth $5,000 and the jewelry market goes up 2.5%, using the Skill
<mul>, the value of the jewelry will increase by $5,000*2.5%= $125. Using Skill <add>, the
value of the jewelry will be $5,000+$125=$5125.

2. If the merchant buys electronic gadgets worth $8,000 and the electronic gadgets mar-
ket goes up 1.2%, using the Skill <mul>, the value of the electronic gadgets will increase
by $8,000*1.2%= $96. Using Skill <add>, the value of the electronic gadgets will be
$8,000+$96=$8096.

3. The merchant wants to maximize profit. Using the Skill <sub>, the profit from buy-
ing jewelry will be $5125-$5000=$125. The profit from buying electronic gadgets will be
$8096-$8000=$96.

4. Using the Skill <compare> , $125>$96, so the merchant should buy jewelry to maxi-
mize profit. The profit will be $125.

5. The answer is 125.

Figure 33: An example of the generated answer on the GSM8K task with our Skills-in-Context prompting, where
the skill <compare> are neither included in the SKiC prompting context (see Table 20) nor used in any given
exemplars. LLMs utilize the skills pre-existing in their pre-trained knowledge to solve the problem.
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GSM8K

Question: Mr. Jackson’s fourth-grade class has 27 students. He wants to give each student 2 glue
sticks. The glue sticks come in packs of 8. How many packs will Mr. Jackson need to buy so every
student can have 2 glue sticks, assuming he can only buy whole packs and he expects to have some
extra glue sticks left over?

Model Output:

1. Mr. Jackson’s fourth-grade class has 27 students and he wants to give each student 2 glue sticks.
Using the Skill <mul>, Mr. Jackson needs 27*2=54 glue sticks.

2. The glue sticks come in packs of 8. Using the Skill <div>, Mr. Jackson needs
54/8=6.75 packs of glue sticks.

3. Mr. Jackson can only buy whole packs. Using the Skill <round> , Mr. Jackson
needs to buy 7 packs of glue sticks.

4. The answer is 7.

Figure 34: An example of the generated answer on the GSM8K task with our Skills-in-Context prompting, where
the skill <round> are neither included in the original SKiC prompting context (see Table 20) nor used in any given
exemplars. LLMs utilize the skills pre-existing in their pre-trained knowledge to solve the problem.
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MATH

Question: What is the smallest possible average of four distinct positive even integers?

Model Output:

1. The smallest possible average of four distinct positive even integers is achieved when the four
integers are the smallest possible.

2. The smallest four distinct positive even integers are 2, 4, 6, and 8.

3. Using the Skill <Average> , the average of these four numbers is (2+4+6+8)/4=20/4=5.

4. The answer is 5.

Figure 35: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where the
skill <Average> are neither included in the original SKiC prompting context (see Table 22) nor used in any given
exemplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge to solve the problem.
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MATH

Question: How many numbers are in the list 2008, 2003, 1998, . . . , 8, 3?

Model Output:

1. The list starts at 2008 and ends at 3, and the difference between consecutive terms is 5.

2. Using the Skill <Arithmetic Sequence> , the n-th term of an arithmetic sequence can
be found using the formula an = a1 + (n− 1)d, where an is the nth term, a1 is the first term, n is
the term number, and d is the common difference.

3. Substitute an with 3, a1 with 2008, and d with −5 into the formula, 3 = 2008 + (n− 1)(−5).

4. Using the Skill <Solve Equation>, move 2008 to the other side, (n − 1)(−5) = 3 − 2008.
Using the Skill <Sub>, (n− 1)(−5) = −2005.

5. Using the Skill <Solve Equation>, move ∗(−5) to the other side, n− 1 = −2005/− 5. Using
the Skill <Div>, n− 1 = 401.

6. Using the Skill <Solve Equation>, move −1 to the other side, n = 401 + 1. Using
the Skill <Add>, n = 402.

7. The answer is 402.

Figure 36: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where
the skill <Arithmetic Sequence> are neither included in the original SKiC prompting context (see Table 22) nor
used in any given exemplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge to solve the
problem.
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MATH

Question: Suppose P is the point (5, 3) and Q is the point (−3, 6). What is the midpoint of PQ?

Model Output:

1. Using the Skill <Midpoint Formula> , the midpoint of two points (x1, y1) and (x2, y2) is given
by

(
x1+x2

2 , y1+y2
2

)
.

2. For points P (5, 3) and Q(−3, 6), the midpoint is
(
5+(−3)

2 , 3+6
2

)
.

3. Using the Skill <Add> and <Div>, the midpoint is
(
2
2 ,

9
2

)
= (1, 4.5).

4. The answer is (1, 4.5).

Figure 37: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where the
skill <Midpoint Formula> are neither included in the original SKiC prompting context (see Table 22) nor used
in any given exemplars. LLMs(GPT4) utilize the skills pre-existing in their pre-trained knowledge to solve the
problem.

MATH

Question: If a and b are vectors such that ∥a∥ = 2, ∥b∥ = 7, and a× b =



3
2
6


, then find the

smallest possible angle between a and b.

Model Output:

1. Using the Skill <Cross Product> , the magnitude of the cross product of two vectors is equal to
the product of the magnitudes of the vectors and the sine of the angle between them. So, we have
∥a× b∥ = ∥a∥∥b∥ sin θ, where θ is the angle between a and b.

2. Using the Skill <Vector Magnitude> , the magnitude of the cross product ∥a × b∥ is√
32 + 22 + 62 =

√
49 = 7.

3. Substituting the given values, we get 7 = 2 ∗ 7 ∗ sin θ. Using the Skill <Div> and
<Mul>, we get sin θ = 7/(2 ∗ 7) = 1/2.

4. Using the Skill <Inverse Trigonometric Functions> , the angle whose sine is 1/2 is 30
degrees or 150 degrees. But we want the smallest possible angle, so θ = 30 degrees.

5. The answer is 30.

Figure 38: An example of the generated answer on the MATH task with our Skills-in-Context prompting, where
the skill <Cross Product>, <Vector Magnitude>,<Inverse Trigonometric Functions> are neither included in the
original SKiC prompting context (see Table 22) nor used in any given exemplars. LLMs(GPT4) utilize the skills
pre-existing in their pre-trained knowledge to solve the problem.
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Figure 39: Examples of the generated answers from Decomp prompting and our SKiC prompting, respectively. The
correct answer should be “Myristorrhoid, Chimpwurst, Geissant, Riften”. Errors (highlighted in red) in early stages
in Decomp propagate to final incorrect answers while our SKiC avoids such errors (highlighted in green).
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