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Abstract

In this paper, we investigate the capability
of Large Language Models (LLMs) to repre-
sent texts in multilingual contexts. Our find-
ings show that sentence representations de-
rived from LLMs exhibit a high degree of
isomorphism across languages. This exist-
ing isomorphism can facilitate representational
alignments in zero-shot and few-shot settings.
Specifically, by applying a contrastive objective
at the representation level with only a few trans-
lation pairs (e.g., 100), we substantially im-
prove models’ performance on Semantic Tex-
tual Similarity (STS) tasks across languages.
This representation-level approach proves to be
more efficient and effective for semantic align-
ment than continued pretraining or instruction
tuning. Interestingly, we also observe substan-
tial STS improvements within individual lan-
guages, even without a monolingual objective
specifically designed for this purpose.1

1 Introduction

Large Language Models (LLMs) demonstrate sig-
nificant potential in solving multilingual tasks, such
as machine translation (Kocmi et al., 2023) and
multilingual QA (Agrawal et al., 2023). Notably,
they exhibit strong few-show capabilities (Xu et al.,
2023; Lai et al., 2024), where a small number of
samples can lead to substantial performance im-
provements.

Representational isomorphism has been identi-
fied as one key source of few-shot capabilities in
the context of word translation (Lample et al., 2017;
Søgaard et al., 2018). In this paper, we analyze the
multilingual sentence representation of LLMs from
the perspective of isomorphism. We start by exam-
ining the geometric properties of representations
derived from pairs of translation sentences. Using

*These authors contributed equally to this work.
1https://github.com/moore3930/

Representational_Isomorphism_and_Alignment.

several widely used methods to extract embeddings
from LLMs, we show that although the resulting
embeddings are not well clustered in a common
space for different languages, they exhibit high iso-
morphism — projecting them through an orthog-
onal matrix allows the sentence representations to
be effectively aligned across languages. Moreover,
it also explains the previous success of combining
non-English inputs with English prompts (Etxaniz
et al., 2024; Huang et al., 2023) for LLMs in multi-
lingual tasks, where we argue that this spatial trans-
formation occurs when using English prompts.

Building on this observation, we further inves-
tigate the potential of multilingual semantic align-
ment upon LLMs. We show that using a small
number of English-centric translation samples (e.g.,
100) with a contrastive loss (Gao et al., 2021) across
language pairs effectively aligns the representation
spaces. This alignment consistently improves per-
formance on cross-lingual Semantic Textual Sim-
ilarity (STS, Cer et al., 2017) tasks, proving to
be more efficient and effective than continued lan-
guage model training with multilingual samples.
Interestingly, such progress also yields clear STS
gains within each language, even in the absence of
a monolingual objective specifically designed for
this purpose. Given its high efficiency and effec-
tiveness, we advocate for exploring representation-
level alignment in future research.

2 Representational Analysis

2.1 Representation Extraction

Using prompts to extract sentence embeddings
has been shown by Jiang et al. (2022a) to yield
strong performance on masked language models
like BERT (Devlin et al., 2019). PromptEOL (Jiang
et al., 2023) extends this method to causal lan-
guage models, e.g., OPT (Zhang et al., 2023) or
LLaMA (Touvron et al., 2023), by employing a
prompting template as follows:
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Precision@5 EN AR ZH JA RU DE ES Into X
EN - / - 0.33 / 0.67 0.61 / 0.97 0.03 / 0.82 0.36 / 0.96 0.82 / 0.96 0.76 / 0.99 0.49 / 0.90
AR 0.12 / 0.23 - / - 0.18 / 0.44 0.01 / 0.37 0.07 / 0.45 0.08 / 0.34 0.14 / 0.53 0.10 / 0.39
ZH 0.22 / 0.73 0.08 / 0.55 - / - 0.14 / 0.71 0.31 / 0.88 0.18 / 0.74 0.40 / 0.93 0.22 / 0.76
JA 0.04 / 0.33 0.02 / 0.34 0.21 / 0.59 - / - 0.17 / 0.56 0.03 / 0.56 0.06 / 0.62 0.09 / 0.50
RU 0.20 / 0.73 0.19 / 0.61 0.56 / 0.86 0.05 / 0.71 - / - 0.24 / 0.85 0.60 / 0.95 0.31 / 0.79
DE 0.67 / 0.88 0.09 / 0.62 0.37 / 0.89 0.01 / 0.80 0.36 / 0.92 - / - 0.83 / 0.96 0.39 / 0.85
ES 0.12 / 0.75 0.08 / 0.60 0.18 / 0.87 0.00 / 0.67 0.20 / 0.92 0.48 / 0.85 - / - 0.18 / 0.78

From X 0.23 / 0.61 0.13 / 0.57 0.35 / 0.77 0.04 / 0.68 0.24 / 0.78 0.30 / 0.72 0.47 / 0.83 0.25 / 0.71

Table 1: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
on high-resource languages. The embeddings in each language are derived from the LLaMA2-7B model using
the prompting method as described in §2.1. “From X” and “Into X” denote the average results for each column
and row, respectively. The Procurstes projection W for each translation direction is trained on NTREX, while the
Precision@5 is tested based on the translation sentences from Flores. We report results derived from LLaMA2-13B,
LLaMA3-8B, and BLOOM-7.1B in Appendix A.4.

Precision@5 EN AR ZH JA RU DE ES Into X
EN - / - 0.78 / 0.73 0.93 / 0.94 0.95 / 0.93 0.76 / 0.94 0.96 / 0.96 0.97 / 0.97 0.89 / 0.91
AR 0.67 / 0.67 - / - 0.83 / 0.76 0.84 / 0.74 0.59 / 0.76 0.82 / 0.78 0.83 / 0.79 0.76 / 0.75
ZH 0.85 / 0.93 0.86 / 0.79 - / - 0.99 / 0.98 0.84 / 0.95 0.97 / 0.95 0.96 / 0.96 0.91 / 0.93
JA 0.88 / 0.92 0.86 / 0.78 1.00 / 0.97 - / - 0.83 / 0.95 0.96 / 0.95 0.95 / 0.95 0.91 / 0.92
RU 0.75 / 0.96 0.83 / 0.81 0.97 / 0.96 0.97 / 0.96 - / - 0.97 / 0.97 0.96 / 0.97 0.91 / 0.94
DE 0.90 / 0.96 0.68 / 0.79 0.91 / 0.94 0.89 / 0.94 0.75 / 0.96 - / - 0.99 / 0.97 0.85 / 0.93
ES 0.89 / 0.96 0.65 / 0.77 0.87 / 0.94 0.85 / 0.94 0.65 / 0.95 0.98 / 0.96 - / - 0.82 / 0.92

From X 0.82 / 0.90 0.78 / 0.78 0.92 / 0.92 0.91 / 0.92 0.74 / 0.92 0.94 / 0.93 0.94 / 0.93 0.86 / 0.90

Table 2: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection on
high-resource languages. Note that all embeddings are derived from the prompting template in English, instead
of the same language with input sentences. We report results derived from LLaMA2-13B, LLaMA3-8B, and
BLOOM-7.1B in Appendix A.4.

This sentence : “[TEXT]” means in one word:“

where [TEXT] is the placeholder for the sentence to
be investigated and the last layer’s hidden vector for
the last token ““” is extracted as the sentence rep-
resentation. This method performs competently on
semantic representation tasks (Agirre et al., 2015,
2016). Moreover, it provides an effective way to
investigate the representations of LLMs.

Although some studies (Springer et al., 2024;
Lei et al., 2024) have achieved more advanced per-
formance using prompting, we adopt PromptEOL
in this paper for its simplicity and generalizability.
To adapt PromptEOL to a multilingual setting, we
translate the English template mentioned above into
other corresponding languages, e.g., a template,

Dieser Satz: “ [TEXT] ” bedeutet in einem Wort:“

is used for German. In the following sections, we
derive representations of LLMs across languages
by applying this method.

2.2 Cross-lingual Structural Analysis
We leverage Procrustes analysis (Schönemann,
1966) to measure the structural similarity of rep-
resentations across languages. This method finds

the optimal rotation and/or reflection (i.e., orthogo-
nal linear transformation) to match points in a set
of shapes, which ensures that the shape remains
unchanged. Therefore, the precision in matching
reflects the degree of isomorphism across spaces.

Formally, let’s assume there are two sets of em-
beddings, A and B, derived from LLMs using sen-
tence pairs in two different languages. Procrustes
analysis learns an orthogonal linear projection W
to map A into a shared space with B, by solv-
ing min ∥WA−B∥F subject to W TW = I . A
closed-form solution W = UV T can be easily
obtained from the singular value decomposition
(SVD) of BAT .

In this paper, we mainly conduct experiments
on seven high-resource languages, namely English
(EN), Arabic (AR), Chinese (ZH), Japanese (JA),
Russian (RU), German (DE), and Spanish (ES),
which encompass both similar and different lan-
guage families and writing scripts. We investigate
the structural similarity across all possible transla-
tion directions by training W on the corresponding
translation samples built from NTREX (Federmann
et al., 2022) and then testing on Flores (Goyal et al.,
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2022)2. Note that NTREX mainly focuses on the
News domain while Flores is built from Wikipedia.
Such out-of-domain testing (Wu and Monz, 2023;
Wu et al., 2024) helps to assess the robustness and
generalization capabilities, which provides a more
realistic measure of how LLMs can handle diverse
and unexpected inputs.

Specifically, we calculate Precision@k by using
embeddings in WA to retrieve those in B and de-
termine whether their counterparts are within the
k-nearest neighbors based on cosine similarity. We
use the precision after rotation to indicate the struc-
tural similarity within each translation direction.

2.3 Representation Discrepancy and
Isomorphism

We begin our investigation by using sentence em-
beddings derived from prompting methods as men-
tioned in §2.1. Table 1 shows the success rate of
the resulting embeddings in cross-lingual retrieval
before/after applying Procrustes projection (§2.2).
It is clear that 1) the initial representation discrep-
ancies are generally substantial across languages,
such as EN�JA (0.03), except for a few language
pairs that are closer or use the same scripts, e.g.,
EN�DE (0.82). 2) However, after properly rotating
(applying W ), representations in most of the direc-
tions are well aligned, leading to clear gains from
an average of 0.25 to 0.71. The results obtained
from LLaMA2-13B, LLaMA3-8B, and BLOOM-
7.1B models are provided in Appendix A.4, where
a similar phenomenon can be observed.

In addition to these high-resource languages, we
also conduct experiments on English (EN) and
four low-resource languages: Lao (LAO), Czech
(CES), Maltese (MLT), and Catalan (CAT). Ta-
ble 16 shows the results. It is easy to see that
although a relatively low success rate for cross-
lingual retrieval in this setting, which is natural
due to a lack of representation capability for low-
resource languages, clear gains can still be ob-
served after applying Procrustes projection.

To demonstrate the generalizability of our find-
ings, we also apply another representation extrac-
tion method that takes the last token’s output em-
bedding without prompting as representations (last
token pooling). The results shown in Appendix A.3
demonstrate that although it performs worse than

2NTREX and Flores are both multi-parallel. So it is easy
to build translation data in each involved direction. Here, we
merge all bitext in dev and test set for NTREX and Flores,
resulting in 1,997 and 2,009 samples, respectively.

the prompting method, the phenomenon still holds.
Overall, we argue that although representations

from LLMs vary significantly across languages,
they exhibit a high degree of isomorphism — prop-
erly rotating and/or reflecting the representation
space can effectively align them.

2.4 Multilingual Representation via English
Prompts

Previous studies show decent improvements can be
achieved by simply adjusting or filling non-English
instructions into English-centric prompting tem-
plates in the inference stage (Etxaniz et al., 2024;
Huang et al., 2023). To explain this technique’s
success, we investigate how the representations of
LLMs change with prompt language. For instance,
using English, which is the predominant language
during training, versus using the same languages
§2.1 is written in.

Table 2 shows the success rate within the same
data setting as §2.3 when using English prompts.
Notably, the initial representations’ degree of align-
ment is much higher than that in Table 1 (0.86 v.s.,
0.25), resulting in similar alignment levels with
the latter after rotation. Also, the gain from apply-
ing Procrustes projection is marginal in this setting.
We interpret the degeneration of the rotation gain
when using English prompts. Here, we argue that
the corresponding spatial transformation, i.e., map-
ping representations into a shared English space
has already taken place due to the use of an English
prompt. In Table 17, we also show the results for
low-resource languages, where the conclusions are
also aligned.

In the following sections, we refer to using these
English prompts (en-prompts) with non-English
sentences as zero-shot representation alignment
and conduct experiments based on this setting.

3 Semantic Analysis

Isomorphism is considered the foundation of few-
or zero-shot capabilities in the context of word
translation (Lample et al., 2017; Søgaard et al.,
2018), where word-level semantics can be easily
aligned across languages using a few word pairs.
We hypothesize the existing isomorphism can also
facilitate semantic alignments for LLMs across lan-
guages in a few-shot setting. Inspired by Mikolov
et al. (2013), who applied a contrastive loss with
a small dictionary to enable word-level seman-
tic transfer, we explore the cross-lingual semantic
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Model Settings EN AR ES AR-EN ES-EN TR-EN Avg
LLaMA2-7B self -prompts 0.72 0.50 0.70 0.26 0.24 0.11 0.42
LLaMA2-7B en-prompts 0.72 0.46 0.69 0.36 0.28 0.12 0.44
LLaMA2-7B en-prompts (+100) 0.76 0.62 0.73 0.52 0.64 0.42 0.62
LLaMA2-7B en-prompts (+1000) 0.82 0.62 0.80 0.54 0.75 0.55 0.68
Tower-7B self -prompts 0.69 0.43 0.60 0.09 0.16 -0.07 0.32
Tower-7B en-prompts 0.69 0.45 0.70 0.26 0.35 0.11 0.43
Tower-7B en-prompts (+100) 0.73 0.57 0.67 0.50 0.60 0.41 0.58
Tower-7B en-prompts (+1000) 0.76 0.60 0.65 0.54 0.62 0.47 0.61

Table 3: The multilingual and cross-lingual STS results in different settings. self -prompts and en-prompts denote
using prompting methods in §2.1 and §2.4, respectively. Tower continues to pre-train LLaMA2 with large amounts
of multilingual data but fails to align semantics. However, aligning LLaMA2 at the representation level using a few
translation samples from NTREX (e.g., 100), results in clear improvements from 0.40 to 0.68. We provide results
derived from other sizes of LLMs in Appendix A.5.

alignment of LLMs at the sentence level through
contrastive learning in this section.

In Section 3.1, we describe the setting of evaluat-
ing cross-lingual semantic alignment, i.e., Seman-
tic Textual Similarity (STS) tasks. In Section 3.2,
we describe using contrastive learning with a few
sentence pairs to align cross-lingual semantics.

3.1 Semantic Textual Similarity

In this section, we examine the multilingualism of
LLM representations through the lens of Seman-
tic Textual Similarity (STS) (Agirre et al., 2015,
2016). Each sentence pair in STS datasets is an-
notated from 0 to 5 indicating the pairwise seman-
tic similarity. The Pearson correlation between
the model-predicted and human-annotated simi-
larity scores is used as the metric. The STS-17
shared task (Camacho-Collados et al., 2017) ex-
tends English-centric STS evaluation to multilin-
gual settings. In this paper, we conduct experiments
based on STS-17, which encompasses 3 monolin-
gual STS (EN, AR, and ES) and 3 cross-lingual
STS (AR-EN, ES-EN, and TR-EN) tasks.

Given the structure similarity of representations
across languages, we test the few-shot capacity of
aligning cross-lingual semantics within LLMs in
the following sections.

3.2 Cross-lingual Contrastive Learning

Contrastive learning (Hadsell et al., 2006) learns
effective representation by pulling semantically
close neighbors together and pushing apart non-
neighbors. Formally, given a set of paired examples
D = {(xi, x+i )}mi=1, where xi and x+i are seman-
tically related, following Chen et al. (2020), a
cross-entropy loss ℓi with in-batch negatives can
be defined as follows:

ℓi = − log
esim(hi,h

+
i )/τ

∑N
j=1 e

sim(hi,h
+
j )/τ

, (1)

where hi is the representation of xi, τ is a tempera-
ture hyperparameter, and sim(hi, hj) is the cosine
similarity. In this paper, we directly extend the ob-
jective (Eq. 1) into a cross-lingual setting, where
xi and x+i refer to the i-th possible translation pair.

Training Setting. We select 1,000 multi-parallel
samples from NTREX as the training set and
construct pair-wise samples covering EN�AR,
AR�EN, EN�ES, and ES�EN3. Meanwhile, we
leave TR-involved data empty to investigate the
potential impact on unseen languages. We apply
the in-batch cross-entropy loss as the objective and
fine-tune LLMs with LoRA (Hu et al., 2021). De-
tailed hyperparameters are in Appendix A.1.

We compare cross-lingual STS under varying
settings, including 1) Zero-shot prompting using
self-language for the template, see §2.1, 2) Zero-
shot prompting using English templates, see §2.4,
3) Using Tower (Alves et al., 2024) as the backbone,
a multilingual LLM extensively trained on multi-
lingual data based on LLaMA2, and 4) Applying
cross-lingual contrastive objective. The summa-
rized results can be found in Table 3.

3.3 Results and Discussion

Semantic Alignment across Languages. In Ta-
ble 3, we show that the initial semantic represen-
tation (self -prompts) performs poorly in cross-
lingual settings while applying en-prompts leads to
relatively higher performance, which is in line with

3We cover both directions for each language pair to ensure
all involved languages have a chance to be treated as negative
samples in a batch.
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the representational analysis in §2.4. Applying con-
trastive objectives at the representation level, even
with just 100 samples, results in strong overall STS
improvements from 0.44 to 0.62. Further gain can
be achieved by extending the training size from
100 to 1,000 samples.

Interestingly, although the training objective is
designed from a cross-lingual perspective (§3.2) —
aligning representations from other languages to
English — the monolingual STS performance (EN,
AR, ES) also shows clear improvements. Notably,
even the performance of English, the dominant lan-
guage, improves significantly, rising from 0.72 to
0.82. We preliminarily interpret this phenomenon
as indicating that representation alignment leads
to better grounding across languages; however, we
leave in-depth exploration for the future.

Sample- and Representation-Level Alignments.
We observe that current studies (Xu et al., 2023;
Alves et al., 2024; Lai et al., 2024; Gao et al., 2024)
about the multilingualism of LLMs are mainly fo-
cusing on sample-level alignments, i.e., extending
training or fine-tuning samples beyond English. For
example, Tower (Alves et al., 2024) was further pre-
trained on a multilingual dataset encompassing 20
billion tokens based on LLaMA2. In Table 2, we
clearly show that despite extensive sample-level
alignments, Tower’s semantic representation still
fails to generalize effectively across languages,
yielding only marginal gains over the base model,
LLaMA2. Also, Gao et al. (2024) demonstrate
that neither multilingual pretraining nor instruc-
tion tuning can substantially improve cross-lingual
knowledge conductivity. To this end, we advocate
for exploring representation-level alignment in the
future given its high efficiency and effectiveness in
semantic alignments for LLMs.

4 Related Work

4.1 Text Representation Using Large
Language Models

Recent research has focused on extracting text
representations directly from LLMs. Jiang et al.
(2022b) use a meaning compression prompt, This
sentence : “[TEXT]” means in one word:“, and
utilize the output hidden state of the last token
as the sentence embedding. Additionally, they
leverage in-context learning (Dong et al., 2023)
as an efficient way to enhance the performance
of the extracted representations. Although effec-
tive, this approach highlights that the resulting em-

beddings tend to be task-specific, showing lim-
ited generalization across different downstream
tasks, and are highly sensitive to the selection of
demonstrations. To mitigate the absence of back-
ward dependencies in LLMs, other studies explore
enhancing LLMs by either duplicating the input
texts (Springer et al., 2024) or incorporating bidi-
rectional attention (BehnamGhader et al., 2024).
Alternatively, Lei et al. (2024) generate broad em-
beddings that capture semantics from multiple dis-
tinct perspectives through the use of meta-task
prompting for a single sentence.

However, these studies are limited to monolin-
gual (English) scenarios. In this paper, we focus
on the underexplored area of text representation in
multilingual settings using LLMs.

4.2 Representational Analysis of LLMs

Pires et al. (2019) analyze the multilinguality of
mBERT (Devlin, 2018) from both representational
and downstream-tasks perspectives. They conclude
that mBERT does create multilingual representa-
tions, but these representations exhibit systematic
deficiencies affecting certain language pairs. In the
context of decoder-only language models, Yuan
et al. (2024) endeavors to examine the multilin-
gual capability of LLaMA (Touvron et al., 2023)
from the vocabulary sharing perspective by ana-
lyzing 101 languages. However, the multilingual
representational analysis of LLMs remains under-
explored. To the best of our knowledge, this paper
is the first study investigating the representation of
LLMs across languages and their relationship with
downstream tasks.

5 Conclusion

In this paper, we investigate LLMs’ representa-
tions from both geometric and semantic similar-
ity perspectives. Our findings demonstrate that
LLMs’ representations exhibit a high degree of iso-
morphism across languages, which facilitates their
cross-lingual zero-shot or few-shot capabilities in
a multilingual context. For example, we show that
the semantics representation of LLMs can easily
be enhanced across languages by alignment at the
representation level using as few as 100 translation
samples, which is much more efficient and effective
than sample-level pretraining or instruction tuning.
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Limitations

We conduct experiments exclusively on four fami-
lies of LLMs, namely LLaMA2, LLaMA3, Tower,
and BLOOM. Therefore, the generalizability of our
findings to other LLMs remains uncertain. Addi-
tionally, due to the limited language coverage in
the STS17 task, our semantic analysis is restricted
to a few languages.
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A Appendix

A.1 Fine-tuning Hyperparameters
We set the same hyperparameters for all experi-
ments. The LoRA is applied to all q_proj and
v_proj modules. The LoRA rank is 64, alpha is 16,
and dropout is 0.05. The batch size is set to 32 and
the gradient is accumulated for 4 steps, resulting
in an actual batch size of 128. The learning rate
is set to 5e-4. For experiments of fine-tuning with
100 and 1,000 samples, we trained with 10 and 3
epochs.

A.2 Representation Isomorphism with
Additional Metrics

We present the results of Precision@1 and Pre-
cision@10 on representation isomorphism with
LLaMA-7B in Table 4, 5, 6, and 7.

A.3 Representation Isomorphism with Last
Token Pooling-Derived Representations

Table 8 shows the results on representation isomor-
phism with last token pooling-derived representa-
tions of the LLaMA2-7B model.

A.4 Representation Isomorphism with Other
LLMs

Table 9 and 10 show the results on representa-
tion isomorphism with the LLaMA2-13B model.
The results of LLaMA3-8B and BLOOM-7.1B are
shown in Table 11, 12, 13, and 14.

A.5 Semantic Alignment across Languages
Table 15 shows the multilingual cross-lingual STS
results in different settings upon 13B LLMs.
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Precision@1 EN AR ZH JA RU DE ES Into X
EN - / - 0.20 / 0.47 0.44 / 0.88 0.01 / 0.63 0.19 / 0.87 0.65 / 0.88 0.54 / 0.93 0.34 / 0.78
AR 0.06 / 0.09 - / - 0.10 / 0.26 0.00 / 0.2 0.03 / 0.26 0.02 / 0.21 0.06 / 0.33 0.05 / 0.23
ZH 0.07 / 0.52 0.02 / 0.36 - / - 0.07 / 0.50 0.12 / 0.71 0.07 / 0.57 0.11 / 0.79 0.08 / 0.57
JA 0.01 / 0.15 0.00 / 0.19 0.10 / 0.38 - / - 0.08 / 0.35 0.01 / 0.38 0.02 / 0.40 0.04 / 0.31
RU 0.01 / 0.52 0.01 / 0.43 0.38 / 0.72 0.02 / 0.54 - / - 0.09 / 0.73 0.36 / 0.86 0.14 / 0.63
DE 0.40 / 0.72 0.01 / 0.42 0.02 / 0.73 0.00 / 0.63 0.21 / 0.83 - / - 0.62 / 0.88 0.21 / 0.70
ES 0.02 / 0.55 0.04 / 0.41 0.09 / 0.72 0.00 / 0.49 0.11 / 0.80 0.26 / 0.73 - / - 0.09 / 0.62

From X 0.10 / 0.42 0.05 / 0.38 0.19 / 0.62 0.02 / 0.50 0.12 / 0.64 0.18 / 0.58 0.28 / 0.70 0.14 / 0.55

Table 4: The success rate (Precision@1) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. The embeddings in each language are derived from the LLaMA2-7B model using the
prompting method as described in §2.1.

Precision@10 EN AR ZH JA RU DE ES Into X
EN - / - 0.40 / 0.73 0.67 / 0.98 0.05 / 0.88 0.44 / 0.98 0.86 / 0.97 0.82 / 0.99 0.54 / 0.92
AR 0.16 / 0.31 - / - 0.24 / 0.51 0.02 / 0.45 0.12 / 0.54 0.12 / 0.41 0.19 / 0.62 0.14 / 0.47
ZH 0.30 / 0.80 0.16 / 0.62 - / - 0.20 / 0.77 0.40 / 0.91 0.28 / 0.80 0.53 / 0.95 0.31 / 0.81
JA 0.06 / 0.41 0.06 / 0.42 0.28 / 0.69 - / - 0.23 / 0.64 0.06 / 0.65 0.13 / 0.70 0.14 / 0.58
RU 0.27 / 0.80 0.27 / 0.68 0.63 / 0.90 0.08 / 0.76 - / - 0.34 / 0.89 0.69 / 0.97 0.38 / 0.83
DE 0.78 / 0.92 0.16 / 0.69 0.46 / 0.92 0.04 / 0.84 0.43 / 0.95 - / - 0.88 / 0.97 0.46 / 0.88
ES 0.24 / 0.82 0.10 / 0.67 0.24 / 0.90 0.02 / 0.73 0.27 / 0.94 0.56 / 0.89 - / - 0.24 / 0.83

From X 0.30 / 0.68 0.19 / 0.64 0.42 / 0.82 0.07 / 0.74 0.32 / 0.83 0.37 / 0.77 0.54 / 0.87 0.32 / 0.76

Table 5: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-7B model. The embeddings in each language are derived from the LLaMA2-7B model using the
prompting method as described in §2.1.

Precision@1 EN AR ZH JA RU DE ES Into X
EN - / - 0.59 / 0.52 0.83 / 0.81 0.83 / 0.80 0.57 / 0.82 0.87 / 0.88 0.87 / 0.90 0.76 / 0.79
AR 0.50 / 0.44 - / - 0.68 / 0.56 0.69 / 0.56 0.41 / 0.58 0.63 / 0.61 0.65 / 0.63 0.59 / 0.56
ZH 0.70 / 0.79 0.67 / 0.60 - / - 0.96 / 0.92 0.68 / 0.86 0.89 / 0.87 0.80 / 0.88 0.78 / 0.82
JA 0.74 / 0.77 0.69 / 0.59 0.97 / 0.91 - / - 0.67 / 0.85 0.87 / 0.85 0.81 / 0.86 0.79 / 0.81
RU 0.51 / 0.84 0.63 / 0.64 0.91 / 0.88 0.88 / 0.87 - / - 0.88 / 0.93 0.86 / 0.91 0.78 / 0.85
DE 0.80 / 0.87 0.51 / 0.61 0.80 / 0.85 0.78 / 0.85 0.57 / 0.89 - / - 0.95 / 0.92 0.73 / 0.83
ES 0.76 / 0.87 0.45 / 0.58 0.73 / 0.83 0.69 / 0.82 0.46 / 0.87 0.94 / 0.91 - / - 0.67 / 0.81

From X 0.67 / 0.76 0.59 / 0.59 0.82 / 0.81 0.81 / 0.80 0.56 / 0.81 0.85 / 0.84 0.82 / 0.85 0.73 / 0.78

Table 6: The success rate (Precision@1) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. Note that all embeddings are derived from the prompting template in English as described
in §2.4, instead of the same language with input sentences.

Precision@10 EN AR ZH JA RU DE ES Into X
EN - / - 0.83 / 0.80 0.95 / 0.96 0.97 / 0.95 0.80 / 0.96 0.98 / 0.97 0.98 / 0.98 0.92 / 0.94
AR 0.73 / 0.75 - / - 0.88 / 0.81 0.89 / 0.80 0.66 / 0.82 0.87 / 0.84 0.87 / 0.84 0.82 / 0.81
ZH 0.89 / 0.95 0.90 / 0.84 - / - 1.00 / 0.98 0.89 / 0.97 0.98 / 0.97 0.98 / 0.97 0.94 / 0.95
JA 0.91 / 0.94 0.90 / 0.83 1.00 / 0.98 - / - 0.88 / 0.97 0.98 / 0.97 0.98 / 0.97 0.94 / 0.94
RU 0.80 / 0.97 0.88 / 0.86 0.98 / 0.97 0.98 / 0.97 - / - 0.98 / 0.98 0.98 / 0.98 0.93 / 0.96
DE 0.93 / 0.97 0.74 / 0.84 0.94 / 0.96 0.92 / 0.96 0.79 / 0.97 - / - 0.99 / 0.98 0.89 / 0.95
ES 0.92 / 0.97 0.71 / 0.82 0.90 / 0.96 0.88 / 0.96 0.72 / 0.96 0.99 / 0.97 - / - 0.85 / 0.94

From X 0.86 / 0.92 0.83 / 0.83 0.94 / 0.94 0.94 / 0.94 0.79 / 0.94 0.96 / 0.95 0.96 / 0.95 0.90 / 0.93

Table 7: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-7B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.
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Precision@5 EN AR ZH JA RU DE ES Into X
EN - / - 0.05 / 0.23 0.04 / 0.51 0.08 / 0.41 0.13 / 0.54 0.09 / 0.57 0.08 / 0.70 0.08 / 0.49
AR 0.03 / 0.07 - / - 0.02 / 0.13 0.02 / 0.08 0.03 / 0.13 0.01 / 0.12 0.02 / 0.16 0.02 / 0.12
ZH 0.19 / 0.24 0.08 / 0.18 - / - 0.46 / 0.34 0.15 / 0.37 0.19 / 0.40 0.11 / 0.44 0.20 / 0.33
JA 0.11 / 0.12 0.06 / 0.09 0.35 / 0.25 - / - 0.05 / 0.17 0.08 / 0.13 0.06 / 0.17 0.12 / 0.15
RU 0.15 / 0.23 0.05 / 0.12 0.08 / 0.30 0.06 / 0.15 - / - 0.19 / 0.36 0.18 / 0.45 0.12 / 0.27
DE 0.06 / 0.20 0.02 / 0.10 0.03 / 0.28 0.04 / 0.11 0.09 / 0.38 - / - 0.18 / 0.45 0.07 / 0.25
ES 0.07 / 0.28 0.02 / 0.14 0.02 / 0.33 0.02 / 0.15 0.08 / 0.45 0.13 / 0.43 - / - 0.06 / 0.30

From X 0.10 / 0.19 0.05 / 0.14 0.09 / 0.30 0.11 / 0.21 0.09 / 0.34 0.12 / 0.33 0.10 / 0.40 0.10 / 0.27

Table 8: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-7B model. The embeddings are derived by taking the output hidden vector of the last token without
prompting (last token pooling).

Precision@5 EN AR ZH JA RU DE ES Into X
EN - / - 0.26 / 0.72 0.66 / 0.90 0.66 / 0.88 0.22 / 0.96 0.56 / 0.85 0.30 / 0.83 0.44 / 0.86
AR 0.02 / 0.37 - / - 0.09 / 0.28 0.11 / 0.34 0.10 / 0.64 0.03 / 0.33 0.03 / 0.41 0.06 / 0.40
ZH 0.02 / 0.68 0.04 / 0.29 - / - 0.42 / 0.50 0.02 / 0.68 0.00 / 0.32 0.00 / 0.38 0.08 / 0.47
JA 0.02 / 0.62 0.05 / 0.40 0.74 / 0.54 - / - 0.05 / 0.86 0.01 / 0.57 0.01 / 0.53 0.15 / 0.59
RU 0.01 / 0.43 0.07 / 0.30 0.07 / 0.28 0.12 / 0.43 - / - 0.02 / 0.47 0.02 / 0.48 0.05 / 0.40
DE 0.47 / 0.84 0.24 / 0.61 0.19 / 0.57 0.52 / 0.79 0.20 / 0.95 - / - 0.41 / 0.80 0.34 / 0.76
ES 0.25 / 0.71 0.29 / 0.52 0.09 / 0.46 0.46 / 0.57 0.14 / 0.83 0.52 / 0.70 - / - 0.29 / 0.63

From X 0.13 / 0.61 0.16 / 0.47 0.31 / 0.51 0.38 / 0.58 0.12 / 0.82 0.19 / 0.54 0.13 / 0.57 0.20 / 0.59

Table 9: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection with
the LLaMA2-13B model. The embeddings in each language are derived from the LLaMA2-13B model using the
prompting method as described in §2.1.

Precision@5 EN AR ZH JA RU DE ES Into X
EN - / - 0.89 / 0.82 0.90 / 0.94 0.89 / 0.93 0.77 / 0.94 0.99 / 0.98 0.98 / 0.98 0.90 / 0.93
AR 0.81 / 0.80 - / - 0.82 / 0.86 0.86 / 0.85 0.78 / 0.85 0.94 / 0.88 0.94 / 0.88 0.86 / 0.85
ZH 0.59 / 0.95 0.89 / 0.88 - / - 1.00 / 0.98 0.88 / 0.97 0.97 / 0.97 0.99 / 0.98 0.89 / 0.96
JA 0.69 / 0.94 0.91 / 0.87 1.00 / 0.99 - / - 0.91 / 0.96 0.98 / 0.98 0.99 / 0.97 0.91 / 0.95
RU 0.44 / 0.95 0.94 / 0.89 0.94 / 0.98 0.95 / 0.97 - / - 0.98 / 0.99 0.98 / 0.98 0.87 / 0.96
DE 0.98 / 0.98 0.94 / 0.90 0.94 / 0.98 0.94 / 0.97 0.91 / 0.98 - / - 1.00 / 1.00 0.95 / 0.97
ES 0.95 / 0.97 0.93 / 0.88 0.90 / 0.97 0.91 / 0.96 0.86 / 0.97 0.99 / 0.98 - / - 0.92 / 0.96

From X 0.74 / 0.93 0.92 / 0.87 0.92 / 0.95 0.93 / 0.94 0.85 / 0.94 0.97 / 0.96 0.98 / 0.96 0.90 / 0.94

Table 10: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA2-13B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.

Precision@5 EN AR ZH JA RU DE ES Into X
EN - / - 0.87 / 0.97 0.98 / 0.99 0.89 / 0.98 0.93 / 0.99 0.97 / 0.98 0.99 / 1.00 0.94 / 0.98
AR 0.02 / 0.80 - / - 0.87 / 0.81 0.93 / 0.78 0.89 / 0.87 0.16 / 0.78 0.65 / 0.88 0.59 / 0.82
ZH 0.57 / 0.97 0.83 / 0.91 - / - 0.87 / 0.93 0.77 / 0.97 0.07 / 0.92 0.10 / 0.94 0.54 / 0.94
JA 0.13 / 0.90 0.85 / 0.89 0.93 / 0.92 - / - 0.60 / 0.94 0.06 / 0.94 0.20 / 0.97 0.46 / 0.93
RU 0.80 / 0.96 0.91 / 0.93 0.96 / 0.95 0.96 / 0.93 - / - 0.76 / 0.92 0.80 / 0.97 0.86 / 0.94
DE 0.98 / 0.98 0.84 / 0.94 0.93 / 0.96 0.92 / 0.98 0.85 / 0.98 - / - 0.98 / 0.98 0.92 / 0.97
ES 0.76 / 0.96 0.80 / 0.94 0.80 / 0.92 0.88 / 0.96 0.71 / 0.96 0.95 / 0.95 - / - 0.82 / 0.95

From X 0.54 / 0.93 0.85 / 0.93 0.91 / 0.92 0.91 / 0.93 0.79 / 0.95 0.49 / 0.92 0.62 / 0.96 0.73 / 0.93

Table 11: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA3-8B model. The embeddings in each language are derived from the LLaMA3-8B model using the
prompting method as described in §2.1.
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Precision@5 EN AR ZH JA RU DE ES Into X
en - / - 0.83 / 0.95 0.96 / 0.98 0.94 / 0.96 0.97 / 0.98 0.99 / 0.98 0.99 / 0.98 0.95 / 0.97
ar 0.71 / 0.96 - / - 0.99 / 0.98 0.99 / 0.98 1.00 / 0.99 0.99 / 0.98 0.99 / 0.98 0.94 / 0.98
zh 0.79 / 0.98 0.98 / 0.98 - / - 1.00 / 0.99 1.00 / 0.99 0.99 / 0.99 0.99 / 0.99 0.96 / 0.99
ja 0.70 / 0.97 0.98 / 0.97 1.00 / 0.99 - / - 1.00 / 0.99 0.99 / 0.99 0.98 / 0.98 0.94 / 0.98
ru 0.91 / 0.98 0.98 / 0.99 0.99 / 0.99 0.99 / 0.99 - / - 1.00 / 0.99 0.99 / 0.99 0.98 / 0.99
de 0.98 / 0.98 0.93 / 0.98 0.99 / 0.99 0.98 / 0.99 1.00 / 0.99 - / - 1.00 / 0.99 0.98 / 0.99
es 0.97 / 0.98 0.90 / 0.97 0.96 / 0.98 0.95 / 0.97 0.98 / 0.98 0.99 / 0.98 - / - 0.96 / 0.98

From X 0.84 / 0.97 0.93 / 0.97 0.98 / 0.98 0.98 / 0.98 0.99 / 0.99 0.99 / 0.98 0.99 / 0.98 0.96 / 0.98

Table 12: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the LLaMA3-8B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.

Precision@5 EN AR ZH JA RU DE ES Into X
en - / - 0.02 / 0.90 0.01 / 0.81 0.01 / 0.66 0.02 / 0.55 0.09 / 0.71 0.07 / 0.92 0.04 / 0.76
ar 0.01 / 0.37 - / - 0.01 / 0.50 0.01 / 0.29 0.01 / 0.17 0.01 / 0.19 0.02 / 0.48 0.01 / 0.33
zh 0.00 / 0.36 0.02 / 0.66 - / - 0.01 / 0.29 0.00 / 0.09 0.00 / 0.13 0.00 / 0.39 0.01 / 0.32
ja 0.00 / 0.23 0.01 / 0.40 0.01 / 0.30 - / - 0.01 / 0.18 0.00 / 0.23 0.00 / 0.24 0.01 / 0.26
ru 0.07 / 0.24 0.01 / 0.38 0.00 / 0.15 0.01 / 0.29 - / - 0.05 / 0.53 0.02 / 0.27 0.03 / 0.31
de 0.06 / 0.41 0.01 / 0.45 0.01 / 0.21 0.01 / 0.36 0.02 / 0.53 - / - 0.02 / 0.38 0.02 / 0.39
es 0.01 / 0.79 0.02 / 0.86 0.01 / 0.67 0.01 / 0.46 0.01 / 0.34 0.01 / 0.49 - / - 0.01 / 0.60

From X 0.03 / 0.40 0.02 / 0.61 0.01 / 0.44 0.01 / 0.39 0.01 / 0.31 0.03 / 0.38 0.02 / 0.45 0.02 / 0.43

Table 13: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the BLOOM-7.1B model. The embeddings in each language are derived from the BLOOM-7.1B model using
the prompting method as described in §2.1.

Precision@5 EN AR ZH JA RU DE ES Into X
en - / - 0.01 / 0.91 0.01 / 0.87 0.03 / 0.64 0.35 / 0.63 0.69 / 0.83 0.26 / 0.97 0.22 / 0.81
ar 0.16 / 0.83 - / - 0.02 / 0.68 0.06 / 0.43 0.13 / 0.44 0.17 / 0.54 0.14 / 0.78 0.11 / 0.62
zh 0.01 / 0.91 0.02 / 0.81 - / - 0.18 / 0.62 0.04 / 0.47 0.04 / 0.63 0.02 / 0.82 0.05 / 0.71
ja 0.05 / 0.73 0.02 / 0.66 0.25 / 0.70 - / - 0.11 / 0.58 0.12 / 0.68 0.06 / 0.66 0.10 / 0.67
ru 0.57 / 0.61 0.01 / 0.60 0.01 / 0.51 0.04 / 0.51 - / - 0.73 / 0.70 0.10 / 0.65 0.24 / 0.60
de 0.63 / 0.82 0.01 / 0.68 0.01 / 0.62 0.04 / 0.58 0.42 / 0.70 - / - 0.12 / 0.78 0.20 / 0.70
es 0.11 / 0.96 0.01 / 0.85 0.01 / 0.80 0.04 / 0.56 0.24 / 0.62 0.22 / 0.77 - / - 0.10 / 0.76

From X 0.26 / 0.81 0.01 / 0.75 0.05 / 0.70 0.06 / 0.56 0.21 / 0.57 0.33 / 0.69 0.12 / 0.78 0.15 / 0.69

Table 14: The success rate (Precision@5) for cross-lingual retrieval before/after applying Procrustes projection
with the BLOOM-7.1B model. Note that all embeddings are derived from the prompting template in English as
described in §2.4, instead of the same language with input sentences.

Model Settings EN AR ES AR-EN ES-EN TR-EN Avg
LLaMA2-13B en-prompts 0.72 0.55 0.60 0.45 0.31 0.28 0.49
LLaMA2-13B en-prompts (+100) 0.74 0.57 0.63 0.57 0.66 0.52 0.62
LLaMA2-13B en-prompts (+1000) 0.77 0.62 0.71 0.61 0.63 0.55 0.65
Tower-13B en-prompts 0.73 0.59 0.64 0.37 0.42 0.49 0.54
Tower-13B en-prompts (+100) 0.66 0.60 0.67 0.51 0.53 0.45 0.57
Tower-13B en-prompts (+1000) 0.69 0.63 0.68 0.57 0.61 0.51 0.62

Table 15: The multilingual and cross-lingual STS results derived from LLaMA2-13B and Tower-13B in different
settings. self -prompts and en-prompts denote using prompting methods in §2.1 and §2.4, respectively.
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Precision@10 EN LAO CES MLT CAT Into X
EN - / - 0.04 / 0.16 0.45 / 0.93 0.05 / 0.50 0.64 / 0.93 0.30 / 0.63

LAO 0.02 / 0.04 - / - 0.02 / 0.06 0.03 / 0.11 0.03 / 0.06 0.03 / 0.07
CES 0.35 / 0.72 0.02 / 0.17 - / - 0.04 / 0.54 0.68 / 0.90 0.27 / 0.58
MLT 0.06 / 0.08 0.02 / 0.12 0.05 / 0.15 - / - 0.06 / 0.19 0.05 / 0.14
CAT 0.24 / 0.61 0.02 / 0.14 0.40 / 0.87 0.03 / 0.52 - / - 0.17 / 0.54

FROM X 0.17 / 0.36 0.03 / 0.15 0.23 / 0.50 0.04 / 0.42 0.35 / 0.52 0.16 / 0.39

Table 16: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
on low-resource languages. The embeddings in each language are derived from the LLaMA2-7B model using
the prompting method as described in §2.1. “From X” and “Into X” denote the average results for each column
and row, respectively. The Procurstes projection W for each translation direction is trained on NTREX, while the
Precision@10 is tested based on the translation sentences from Flores.

Precision@10 EN LAO CES MLT CAT Into X
EN - / - 0.22 / 0.17 0.96 / 0.92 0.63 / 0.56 0.98 / 0.97 0.70 / 0.66

LAO 0.14 / 0.12 - / - 0.16 / 0.14 0.16 / 0.19 0.16 / 0.15 0.16 / 0.15
CES 0.91 / 0.96 0.17 / 0.20 - / - 0.72 / 0.68 0.99 / 0.98 0.70 / 0.70
MLT 0.50 / 0.46 0.19 / 0.25 0.61 / 0.57 - / - 0.68 / 0.61 0.49 / 0.47
CAT 0.92 / 0.97 0.14 / 0.17 0.97 / 0.95 0.69 / 0.65 - / - 0.68 / 0.68

From X 0.62 / 0.63 0.18 / 0.20 0.68 / 0.65 0.55 / 0.52 0.70 / 0.68 0.55 / 0.53

Table 17: The success rate (Precision@10) for cross-lingual retrieval before/after applying Procrustes projection
on low-resource languages. Note that all embeddings are derived from the prompting template in English, instead of
the same language with input sentences.
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