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Abstract

Target-driven recommendation dialogues
present unique challenges in dialogue man-
agement due to the necessity of anticipating
user interactions for successful conversations.
Current methods face significant limitations:
(I) inadequate capabilities for conversation
anticipation, (II) computational inefficiencies
due to costly simulations, and (III) neglect
of valuable past dialogue experiences. To
address these limitations, we propose a new
framework, Experiential Policy Learning
(EPL), to enhance such dialogues. Specifically,
EPL embodies the principle of Learning From
Experience, facilitating anticipation with an
experiential scoring function that estimates
dialogue state potential using similar past
interactions stored in long-term memory.
Moreover, to demonstrate its flexibility, we
introduce Tree-structured EPL (T-EPL) as one
possible training-free realization with Large
Language Models (LLMs) and Monte-Carlo
Tree Search (MCTS). In particular, T-EPL
assesses past dialogue states with LLMs while
utilizing MCTS to achieve hierarchical and
multi-level reasoning. Extensive experiments
on two published datasets demonstrate the
superiority and efficacy of T-EPL. Code and
data are available here 1.

1 Introduction

Conversational recommender systems (CRSs) (Li
et al., 2018; Zhou et al., 2020; Ma et al., 2021; Li
et al., 2022; Wu et al., 2022; Liao et al., 2023; Dao
et al., 2024) aim to provide suitable recommen-
dations through interactive multi-turn dialogues.
Traditional CRSs typically employ a reactive ap-
proach, identifying user interests during the con-
versation and mapping these preferences to a set
of candidate items. While effective in certain con-
texts, these passive systems fall short in their ability
to proactively guide users towards specific items,

1https://github.com/huyquangdao/EPL

          :  Hi. How can I help you ?

          : How about The Conjuring ?
It's a scary movie with good plot.

          : No. I don't want to
watch horror movie now.

          : Then I recommend you to
watch KungFu Panda 3, its
songs are produced by Jay

chou.

          : It sounds interesting.
Thank you for the
recommendation.

          : Leehom Wang stars
Forever Young, which is a movie

with good plots.

          : Hope you enjoy it.
          : Sorry. But I'm looking for
a movie with good songs.

Goal:  Chat About Stars
Topic:  James Wan

Goal:  Q/A
Topic:  Jay Chou

Goal:  Chat About Stars
Topic:  Leehom Wang

Future Interactions

Strategies

: Hello. I'm looking for movies with good
music. Is there any recommendation ?

: Sure. Do you like Jay Chou ?

Target:  KungFu Panda 3

Future Interactions Future Interactions

Current Conversation

Figure 1: In target-driven recommendation dialogues,
foresight interactions are key to guiding conversations
toward the desired item.

a capability crucial for promoting new products
and increasing sales revenue (Dao et al., 2023).
Recently, target-driven CRS models (Wang et al.,
2022, 2023b,a) have emerged as a more dynamic al-
ternative. These models leverage various dialogue
strategies (e.g., chit-chat, question-answering, etc.)
to engage users and foster their interest in target
items, aiming to recommend them when the timing
and context are most appropriate.

Despite their effectiveness, existing target-driven
CRS models exhibit a notable shortcoming: the in-
ability to anticipate future user-system interactions,
as they focus solely on individual next-turn evalua-
tions. In target-driven recommendation dialogues,
anticipating conversational trajectories toward spe-
cific target items is essential for successful inter-
actions. Hence, the integration of foresight user-
system interactions has the potential to enhance di-
alogue planning capabilities (He et al., 2024). For
instance, as illustrated in Figure 1, by considering
potential future interactions, the dialogue strategy
(Q/A, Jaychou) is apparently the optimal choice
since it effectively steers the conversation toward
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the desired target KungFu Panda 3. Previous works
attempt to leverage simulated user interactions gen-
erated by LLMs and employ either Reinforcement
Learning (RL) (Deng et al., 2023a) or open-loop
Monte-Carlo Tree Search (MCTS) (Yu et al., 2023)
to enhance their dialogue policies. However, these
approaches encounter two main challenges. First,
fixed pre-trained policies generated during training
may not adapt well to new user interactions during
deployment. Second, constant access to LLMs for
state evaluations can lead to computational inef-
ficiencies. Notably, almost all prior work fails to
leverage newly obtained interactions during infer-
ence to further enhance their performance.

Recent advancements have demonstrated the
benefits of experience reflection in various do-
mains, including multimodal response generation
(Ye et al., 2022), decision-making (Shinn et al.,
2023), and recommendation (Lin et al., 2023).
These approaches often utilize analogous examples
or historical trials to deepen understanding of cur-
rent inputs. For example, in recommender systems,
similar users tend to exhibit similar preferences and
behaviors (Lin et al., 2023), suggesting that past
interactions with such users could provide valuable
insights for ongoing conversations. Furthermore,
these similar interactions can reduce the need for
expensive simulations to estimate future interac-
tions. Inspired by these observations, we lever-
age similar past dialogue states from previous ses-
sions to enhance target-driven recommendations,
addressing key research questions: (1) How can
we integrate experienced interactions into future
anticipation? (2) How can we establish adaptable
policies for new interactions on the fly?

To address these challenges, we introduce Ex-
periential Policy Learning (EPL), a novel dialogue
policy framework for target-driven CRSs. Our pro-
posed EPL approximates a target-driven scoring
function for future anticipation by utilizing similar
past interactions and their associated values rather
than relying on expensive online trials, such as
rollout simulations. Specifically, given a dialogue
state, EPL retrieves the k most similar past inter-
actions and their corresponding potential values
from a dedicated memory structure. These values
are then aggregated to approximate the potential
value for the given state. To demonstrate the flex-
ibility of the EPL framework, we introduce Tree-
structured EPL (T-EPL) as one possible realization.
T-EPL is a training-free implementation that lever-
ages LLMs to assess dialogue states’ potentials

while integrating our target-driven scoring function
into an MCTS algorithm for state value estima-
tion, thus reducing the need for costly LLM-based
evaluations. Extensive evaluations demonstrate the
superiority of our method over existing approaches.
To sum up, our contributions are threefold:

• We propose a novel dialogue policy learning
framework, named EPL, which incorporates past
interactions for future anticipation in planning.

• We introduce T-EPL, a training-free realization
of EPL, utilizing LLMs and MCTS, which can
quickly adapt to newly encountered interactions.

• We conduct interactive evaluations on two pub-
lished datasets. Extensive experiments demon-
strate the superiority of our T-EPL against SOTA
approaches in both performance and efficiency.

2 Related Work

Target-driven Proactive Dialogue Systems. Re-
cent efforts (Liu et al., 2020; Zhang et al., 2021; Liu
et al., 2021; Wang et al., 2022; Deng et al., 2023b;
Wang et al., 2023a; Dao et al., 2023) have increas-
ingly focused on developing proactive dialogue
systems designed to guide conversations toward
predefined targets, such as negotiation (Deng et al.,
2023a) and recommendation (Dao et al., 2023).
Within this target-driven paradigm, establishing
effective dialogue policies to achieve specific out-
comes has become a crucial area of research. Sev-
eral approaches have been proposed, including
Brownian-motion dialogue planning (Wang et al.,
2023b) and long-short term strategic balancing
(Dao et al., 2023). Despite their contributions, these
methods lack the ability to incorporate foresight
user-system interactions, which are essential for
conversation anticipation.

To address this limitation, Deng et al. (2023a)
utilized LLM-generated interactions to fine-tune
a pre-trained policy with Reinforcement Learning
(RL). However, the static nature of their pre-trained
policy limits its adaptability to newly encountered
situations. Alternatively, Yu et al. (2023) proposed
using open-loop Monte-Carlo Tree Search (MCTS)
for future interaction estimation, but this approach
suffers from computational inefficiencies due to
costly LLM-based evaluations. Furthermore, the
aforementioned methods do not leverage valuable
interactions during inference, which could signif-
icantly enhance their performance. In contrast to
existing methods, we introduce Experiential Policy
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Learning (EPL), a novel dialogue policy method
that integrates past interactions into the planning
process. By utilizing past user-system interac-
tions, EPL anticipates conversational trajectories
and plans more effectively.

Reflecting on Experience. Recent research has
demonstrated the application of Reflecting on Ex-
perience in various tasks. For example, Ye et al.
(2022) proposed a method to retrieve similar dia-
logues from training data to enhance the quality of
generated responses in multimodal dialogue sys-
tems (Liao et al., 2018). Similarly, Lin et al. (2023)
focused on extracting information from dialogues
with similar users to gain a better understanding of
the current user’s preferences. From a different per-
spective, Shinn et al. (2023) introduced a reflection
framework that improved performance in various
tasks, such as decision-making, programming, and
reasoning. Such a framework utilizes results from
past trials to enhance predictions in current ones.
Inspired by these, we propose a novel dialogue pol-
icy method that utilizes similar past interactions to
improve future anticipation, hence boosting perfor-
mance in target-driven recommendation dialogues.

3 Preliminaries

3.1 Markov Decision Process Formalization

In this work, we utilize Markov Decision Pro-
cess (MDP) defined by a tuple of 5 elements,
namely M = (S,A, R, T, γ), including a state
space S, an action space A, and a reward func-
tion R : S × A × S −→ R, a transition function
T : S × A −→ S and a discounted factor γ. Ad-
ditionally, we denote by a ∈ A, s ∈ S an action
and a state, respectively. We instance the state at
the t-th conversation turn as st = (h≤t, a≤t) where
h≤t, a≤t are the dialogue context, the sequence of
previous actions, respectively.

3.2 Target-driven Recommendation Dialogues

In target-driven recommendation dialogues (Dao
et al., 2023), we aim to recommend a pre-specified
item v ∈ V (V is the set of all targeted items) to
the user via multi-turn conversations. Following
existing works, we decompose this task into two
sub-tasks, described as follows:
Dialogue Strategy Planning: Given the current
state st, we aim to produce the next action at+1 so
that we can engage the user interest while steering
the conversation towards the targeted item v.

Response Generation: Given the state st, the tar-
get item v and the predicted action at+1, the system
generate response yt+1 to the user.

3.3 Interactive Conversations with LLMs.
Following (Deng et al., 2023a), we conduct an in-
teractive evaluation with a user simulator based on
LLMs. Specifically, we prompt an LLM to adopt
a user’s role seeking a recommendation. Given
a target item denoted by v, the system interacts
with the simulator for a predefined number of turns.
Upon conversation termination, a separate LLM
is employed to assess whether the generated di-
alogue resulted in a successful recommendation.
The prompting schemes used for the user simu-
lator and LLM-based assessment are detailed in
Appendix Sections A.12 and 10, respectively.

4 Methodology

First, we describe our proposed Experiential Policy
Learning (EPL) in sections 4.1. Subsequently, we
introduce Tree-structured EPL (T-EPL), a training-
free realization of the EPL framework in Section
4.2. Figure 2 illustrates our proposed T-EPL.

4.1 Experiential Policy Learning
Target-driven Scoring Function. Since the out-
come of a conversation can be either success or
fail. Hence, we model the outcome r of a conversa-
tion using a binary random variable, accepting two
possible values L = {success, fail}. Given a state
s and a target item v, one could estimate F (s, v),
which is the potential value of s and v, as follows:

F (s, v) = Er∼P(r|s,v) [f(r)] ,

=
∑

r∈L
P(r|s, v)f(r),

where f(r) : L −→ R is a scalar-valued function
that maps an outcome to its corresponding scalar
value and P(r|s, v) is the probability of the out-
come r given the state s and the target item v.
Estimating P(r|s, v) can be challenging since the
state s might capture limited information to predict
conversation outcomes. A potential solution is to
re-formalize the function F (s, v) as follows:

F (s, v) =
∑

r∈L
f(r)

∑

c∼P(c|s,v)
P(r|c, s, v)P(c|s, v),

where c can be interpreted as a dialogue continua-
tion, encompassing subsequent user-system inter-
actions. Given a continuation c, the outcome might
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       : Yes. I like her a lot.

          : Hi. How do I help you?

Conversation History Root

Tree Search (1)

S

Dialogue State Retrieval (2)

Assessment (3)Estimation (4)

Retrieval Model R Memory M

Target v

Target v 

Target v

Experience 1

Experience 2

Experience 3

FM(s,v)

State Value
FM(s,v)

          : Hi. How can
I help you?

          : Good
Evening.

          : Good Bye

          : How do I
help you ?

          : See you.

          : Hello.

          : Thank you
for the

recoommendaion

          : Hi. How
can I help you?

          : Hello.

Experience 2Experience 1 Experience 3

V(s)

V(s)

F(s',v)

: Hello. I'm looking for
some movies to watch

: Hsu Chi is a popular movie
star. Do you like her ?

: Do you like Bo Huang? He
won the Golden Horse
Award for Best Actor.

: Yes, I think Bo Huang is a
talented actor!

Target:  Forever Young

Large Language Model

PM(s'|s,v)

Figure 2: The illustration of our proposed T-EPL algorithm for target-driven recommendation dialogues. Specifically,
T-EPL employs MCTS to construct a Search Tree and evaluate node’s potential value using an experiential target-
driven scoring function (Section 4.1). In particular, the Retrieval phase refers to E.q. 3. The Assessment and
Estimation phases are mathematically described by E.q. 2 and E.q. 1, respectively.

be directly determined (e.g., P(r = 1|c, s, v) =
1 ⇔ v ∈ c). However, this reformulation also
introduces a new challenge, which is probability
P(c|s, v). While explicitly computing or modeling
this probability is computationally intractable, one
can approximately draw samples from this distri-
bution by using online rollout simulations (Zhang
et al., 2023; Zhou et al., 2023). Nonetheless, this ap-
proach still suffers from computational inefficiency
due to simulating numerous completed dialogues
at inference time.

An Experiential Approximation. Since similar
users tend to exhibit similar preferences and behav-
iors (Lin et al., 2023), leveraging analogous experi-
enced interactions can provide valuable guidance
for the current conversation. Hence, we propose
an approximated scoring function FM(s, v), using
similar past interactions, as follows:

FM(s, v) =
∑

r∈L
f(r)

·
∑

c′∼PM(c′|s,v)
P(r|c′, s, v)P(c′|s, v),

where M = {(s′, c′, v′, F (s′, v′)} is a memory,
storing tuples of experienced state s′, correspond-
ing continuation c′, target item v′ and a target-
driven assessment score F (s′, v′). Since (s′, c′)
forms a completed conversation, we could regard
s′ as a proxy for c′. Re-arranging the order of the

summation, we obtain the following formulation:

FM(s, v) =
∑

(s′,c′)∼PM(s′|s,v)
P(s′|s, v)

·
∑

r∈L
f(r)P(r|c′, s, v),

By only considering k most similar states s′ ∈Mk

for a given state s, we assume that P(r|c′, s, v) ≈
P(r|c′, s′, v). This avoids computing multiples
P(r|c′, s, v), which might be costly during infer-
ence. Hence, we obtain the following formulation:

FM(s, v) ≈
∑

s′∈Mk

P(s′|s, v)F (s′, v),

= Es′∼Pk
M(s′|s,v)[F (s′, v)],

(1)

where we assume that transitions are deterministic
under a policy π(a|s). That means P(r|c′, s′, v′) =
P(r|s′, v′) for a completed conversation (s′, c′) and
F (s′, v) = 0,∀(s′, c′, v) /∈ M. This formulation
bypasses the need for rollout simulations while
facilitating a fast approximation of the target-driven
function using similar past interactions.

4.2 Tree-structured EPL (T-EPL)

To adapt EPL with newly encountered interactions
on the fly, it necessitates a training-free implemen-
tation of E.q 1. Moreover, planning is often formal-
ized as a hierarchical, multi-level process. Hence,
in this section, we introduce a training-free real-
ization of EPL using LLMs, a dense document
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Algorithm 1 Tree-structured EPL (T-EPL)
Input: The current state st, UCT parameter c, Number of sim-
ulations n, Prior policy πprior(.|.; θ), MemoryM, Number
of retrieved experiences k, Target v
Output: Next action at+1

1: root←− st;
2: for i← 1 to n do
3: s← root;
4: while s is not a leaf node do ▷ Selection;
5: s← UCT(children(s), πprior, c);
6: end while
7: Ât+1 ∼ πprior(a|s; θ);
8: for ât+1 ∈ Ât+1 do ▷ Expansion
9: ŝt+1 ← T (s, ât+1);

10: if ŝt+1 not in tree then
11: children(s)←− children(s) ∪ŝt+1;
12: s← ŝt+1;
13: Break;
14: end if
15: end for
16: Mk ← Retrieval(M, s, k)); ▷ Estimation
17: FM(s, v)← fscore(s,Mk, v);
18: Vs ←− V

Mk
s ; ▷ BackPropagation;

19: while s is not the root do
20: p←− parent(s);
21: Vp ←− max(Vp, Vs);
22: N(s)←− N(s) + 1;
23: s←− Parent(s);
24: end while
25: end for
26: Return: The action ât+1 of the root state st that has the

highest value R(st, ât+1, ŝt+1) + Vŝt+1 ;

retrieval model, and the MCTS algorithm, as de-
scribed as follows:
MCTS-guided Tree Search: We leverage MCTS’s
procedure to establish a tree search for facilitating
hierarchical and multi-step reasoning. Existing
MCTS-based algorithms rely on either expensive
rollout simulations (Zhang et al., 2023) or seamless
LLM evaluations (Yu et al., 2023). In this work, we
propose to equip FM(s, v), estimated from similar
past interactions, as the state value function for
MCTS to enhance both its planning capability and
efficiency. The detailed procedure is described in
Algorithm 1 and Appendix A.1.
LLM-based Target-driven Assessment: To estab-
lish a training-free realization of EPL, we leverage
Llama 2 to assess how successful a conversation
(s′, c′) regarding a target item v′. Moreover, we
also add a small term to penalize lengthy trajecto-
ries. Specifically, the assessment score F (s′, v′) is
computed as:

1

T

T∑

i=1

Vr(LLM(P(s′, e′, v′))) + λ · e
−lc′
α , (2)

where λ, α are hyper parameters and lc′ is the
length of the continuation c′, measured in the num-

ber of turns. Vr(.) maps a textual output to a scalar
value r ∈ RwhileP(.) maps the tuple of (s′, c′, v′)
into the input prompt for the LLM. We prompt the
LLM for T times with the temperature ρ = 1.1.
Furthermore, we leverage GPT-3.5-Turbo to in-
stance the LLM component.
Dense Retrieval of Dialogue States: In this work,
we model the probability distribution PM(s′|s, v)
with a retrieval model frev(s′|s; θrev). Specifically,
we compute the similarity score between the cur-
rent state s and an experienced state s′ in the mem-
oryM by using the following formulation:

PM(s′|s) = exp (ϕ(s′)Tϕ(s, v))∑
s′′∈M exp(ϕ(s′′)Tϕ(s, v))

, (3)

where ϕ is an encoder function that maps dialogue
states to their corresponding high-dimensional rep-
resentations. In this work, we establish our retrieval
model with the pre-trained encoder all-MiniLM-L6-
v2 from the Sentence Transformers package 2.
Memory Construction. In real-world applica-
tions, a recommender system might need to inter-
act with users seamlessly and dynamically update
its database with new interactions for future uses.
Hence, we adopt a similar scenario where a prior
policy πprior(a|s; θ) interacts with the simulator
multiple times and updates the memory with new
conversations. For each generated dialogue, we
utilize E.q 2 to compute its assessment score. Later,
we break it down into dialogue states and continua-
tions and store them in the memory. In this work,
we leverage Faiss 3 to instance the memoryM.

5 Experiments

5.1 Experimental Setup
Datasets For experiments, we leverage two pub-
lished datasets. The first dataset, DuRecDial
2.0 (Liu et al., 2021), encompasses conversations
across multiple domains. The second dataset, IN-
SPIRED (Hayati et al., 2020), focuses on movie
recommendation scenarios. We provide detailed
statistics on these datasets in Table 1 and Appendix
A.3. Following previous approaches (Dao et al.,
2023), we regard the targeted item as the one the
user accepts at the end of each conversation.

Baselines In this work, we compare our proposed
T-EPL with various dialogue policy methods, in-
cluding BERT (Devlin et al., 2019), TCP (Wang

2https://www.sbert.net/
3https://github.com/facebookresearch/faiss
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DuRecDial 2.0 INSPIRED
# convs 16.5K 1001
# utterances 255K 35,811
# goals 13 14
# topics 646 1169
# target items 471/285/376 368/42/55
domains Movie/Music/Food/POI Movie

Table 1: The detailed statistics of datasets.

et al., 2022), UNIMIND (Deng et al., 2023b)),
COLOR (Wang et al., 2023b), RTCP (Dao et al.,
2023), GDP-Zero (Yu et al., 2023) and PPDPP
(Deng et al., 2023a). Moreover, we also report the
performance of vanilla Monte-Carlo Tree Search
with rollouts (i.e., MCTS). For MCTS-based ap-
proaches such as MCTS, GDP-Zero, and T-EPL,
we utilize RTCP as their prior policies for a fair
comparison. The implementation details of T-EPL
and additional information about baselines can be
found in Appendix A.9 and A.10, respectively.

Evaluation Metrics We employ both automatic
and human evaluations to assess model perfor-
mance. For automatic evaluation, we utilize two
primary evaluation metrics: objective success rate
ObjSR and subjective success rate SubjSR. While
ObjSR measures whether the generated response
contains the target item, SubjSR determines if
the LLM-based assessment score of a generated
conversation surpasses a pre-defined threshold ϵ.
Moreover, we also report the average number of
turns (Avg. T) required for recommending the tar-
get item. For efficiency comparison, we report
the approximated number of API calls (#APIC)
(in terms of Big-O notation) consumed by each
model at inference time. For human evaluation, we
randomly sample 20 dialogues generated by each
model and present them to two annotators. Follow-
ing (Dao et al., 2023), we leverage Satisfaction
and Coherency as evaluation metrics. We report
T-EPL’s win and loss rates against baselines for
these metrics. Instructions provided to human anno-
tators for evaluation are included in the Appendix
(Section A.15). We also report the inter-annotator
agreement using Fleiss’ Kappa (McHugh, 2012).

5.2 Main Findings
We present the main empirical results of the auto-
matic evaluation in Table 2.

Objective versus Subjective Metrics. First, the
results reveal a consistent and substantial differ-
ence between the objective and subjective success
rates (i.e. Objsr and Subjsr) across all methods.

This observation is reasonable as the user might
reject the recommended target item. Consequently,
relying solely on ObjSR, as in prior studies (Wang
et al., 2023b; Dao et al., 2023), may lead to an over-
estimation of the effectiveness of target-driven rec-
ommendation systems in real-world applications.

Generative versus Predictive Policies. Sec-
ondly, we experience that predictive policies (e.g.,
BERT, RTCP) achieve superior performance on
the DuRecDial 2.0, whereas generative counter-
parts (e.g., TCP and COLOR) are more effective on
the INSPIRED. This is expected since INSPIRED
has a significantly larger action space compared
to DuRecDial 2.0. Predictive policies often strug-
gle to handle large action spaces, whereas genera-
tive policies are less susceptible to this limitation.
Further analyses regarding these two categories of
dialogue policies are presented in Appendix A.4.

Performance Comparison against Baseline
Methods. Our proposed T-EPL algorithm con-
sistently outperforms all existing target-driven di-
alogue policies (denoted by ∗) across various
datasets and evaluation metrics. This superiority
can be attributed to T-EPL’s capability to effectively
utilize similar past interactions stored within the
memory M, leading to enhanced dialogue plan-
ning abilities. Interestingly, PPDPP exhibits rela-
tively lower performance compared to other base-
line methods. We posit that this might be due to
PPDPP’s limitation in fine-tuning its pre-trained
policy on a limited number of interactions, hinder-
ing its generalizability to those encountered during
inference. Additionally, computational constraints
restrict MCTS to employing a limited number of
rollouts, hindering its ability to learn effective poli-
cies. Notably, T-EPL demonstrates superior per-
formance to the strong GDP-Zero baseline across
several metrics. This suggests that our experiential
target-driven scoring function provides accurate
assessments of dialogue states compared to the
LLM-based estimation employed by GDP-Zero.
We further report the results of T-EPL and baseline
methods across various domains in Appendix A.7.

Efficiency Comparison. Offline policies (de-
noted by ∗) necessitate minimal API calls to func-
tion the user simulator. In contrast, the MCTS
baseline incurs a quadratic computational cost w.r.t
conversation length due to the costly rollouts. Sim-
ilarly, GDP-Zero also experiences high API call
demands for estimating state values using LLMs.
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DuRecDial 2.0 INSPIRED
Model #APIC Objsr Subjsr Avg. T(↓) Objsr Subjsr Avg. T (↓)
BERT∗ (Devlin et al., 2019) O(TH) 0.851 0.773 6.045 0.090 0.062 13.647
UNIMIND∗ (Deng et al., 2023b) O(TH) 0.720 0.668 6.873 0.163 0.109 13.321
TCP∗ (Wang et al., 2022) O(TH) 0.742 0.679 7.091 0.201 0.168 13.178
COLOR∗ (Wang et al., 2023b) O(TH) 0.805 0.749 7.067 0.206 0.172 13.283
RTCP∗ (Dao et al., 2023) O(TH) 0.877 0.786 5.993 0.136 0.099 13.479
T-EPL ∗ (ours) O(TKH) 0.904 0.813 5.255 0.218 0.172 13.158
MCTS∓ O(TKH2) 0.867 0.784 5.550 0.137 0.112 13.537
GDP-Zero∓ (Yu et al., 2023) O(TKH2) 0.850 0.825 4.475 0.250 0.217 13.216
PPDPP∓ (Deng et al., 2023a) O(TH) 0.667 0.650 7.283 0.150 0.100 13.416
T-EPL∓ (ours) O(TKH) 0.900 0.833 5.034 0.225 0.225 13.000

Table 2: Empirical results on the target achievement where T, H, and K are the number of target items, the maximal
number of conversation turns, and simulation steps, respectively. For ∗, we report the performance on the whole
test set. For ∓, due to their high computational cost in API calls, we follow instructions from (Yu et al., 2023) to
sub-sample the datasets and evaluate the models accordingly (t-test, p < 0.05).

DuRecDial 2.0 INSPIRED
Model Subjsr Avg. T(↓) Subjsr Avg. T (↓)
T-EPL 0.813 5.255 0.172 13.158
- w/o Len 0.837 5.312 0.145 13.161
- w/o Exp 0.801 5.435 0.136 13.372

Table 3: Ablation study on the target achievement of
our T-EPL algorithm (t-test, p < 0.05). Descriptions of
these variants can be found in Appendix A.10.

T-EPL Stat. Coh.
vs Win.(%) Lose.(%) Win.(%) Lose.(%)

RTCP 38 % 32 % 27 % 24 %
COLOR 45 % 34 % 21 % 18 %
PPDPP 27 % 19 % 34 % 23 %
GDP-Zero 32 % 29 % 26 % 22 %

Table 4: Human evaluation on DuRecDial 2.0 dataset.
The inter-annotator agreement score is 0.69.

While our proposed T-EPL algorithm introduces
additional API calls to simulate past interactions,
this step can be pre-computed efficiently. Notably,
during inference, T-EPL exhibits a linear scaling
of API calls with conversation length, comparable
to other offline policy models. We report the com-
putational time of each model in Appendix A.8.

5.3 Ablation Study

The results of the ablation study are presented in
Table 3. We systematically remove each com-
ponent of the T-EPL algorithm, including the
length-penalized term (denoted as w/o Len) and
the experiential target-driven scoring function (w/o
Exp). Overall, removing these components leads
to decreases in the performance of our algorithm,
demonstrating the effectiveness of our contribu-
tions. Interestingly, we observe a trade-off between
two metrics, namely Subjsr and Avg. T, on DuRec-
Dial 2.0. In particular, Subjsr is improved, while

Avg. T degrades as we remove the length-penalized
term. In contrast, on the INSPIRED dataset, re-
moving this component negatively impacts both
Subjsr and Avg. T. The reason might be the IN-
SPIRED dataset contains long-horizon conversa-
tions. Hence, estimating accurate state value be-
comes more challenging, and the accumulated error
during planning becomes larger as the conversation
unfolds. Hence, by penalizing long trajectories, T-
EPL will prioritize shorter experienced interactions
despite their lower potential values. Furthermore,
removing the experiential target-driven function
results in significant performance drops on both
datasets, emphasizing the importance of experience
in improving target-driven planning capabilities.

5.4 Human Evaluation

In Table 4, we report the results of the human eval-
uation. In particular, we report the win and lose
rates of T-EPL against RTCP, COLOR, PPDPP, and
GDP-Zero. Overall, our algorithm achieves better
performance across different metrics compared to
baseline methods. In comparison to its backbone
policy RTCP, T-EPL further improves the perfor-
mance on both Stat. and Coh. aspects. The reason
might be that RTCP suffers from the inability to
leverage foresight interaction, which limits its plan-
ning ability. In contrast, T-EPL leverages experi-
enced interactions stored in the memory, enhancing
the predictions from the backbone policy RTCP.

5.5 In-depth Analyses

Frequency of Target Items and Performance
Comparison w.r.t Conversation Turns. In Fig-
ure 3, we present a two-part analysis. The left panel
depicts the frequency of target item recommenda-
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(c) T-EPL∗

Figure 3: Frequency of target items (left) and relative
success rate (right) w.r.t conversation turns of different
models. Green lines show the baseline BERT∗. More
results can be found in Appendix A.4.

tions across three dialogue policies: TCP, RTCP,
and T-EPL. The right panel compares the relative
Subsr of these models to the baseline BERT. Our
analysis reveals that both RTCP and T-EPL tend to
introduce recommendations earlier than TCP. We
posit two common dialogue strategies for target-
item recommendation. The first strategy prioritizes
early recommendations followed by justifications
in subsequent turns. Conversely, the second strat-
egy focuses on introducing relevant topics related
to the target item in the initial stages, with the
actual recommendation occurring later in the dia-
logue. Qualitative examples provided in Appendix
A.14 support this hypothesis. Interestingly, despite
employing similar dialogue strategies, T-EPL still
achieves better performance gains than its back-
bone policy RTCP.

Impact of the Number of Simulation Steps (n).
As we integrated our proposed experiential target-
driven function into the MCTS, it is desired to
examine how other parameters (such as the number
of simulations) would affect T-EPl’s performance
and efficiency. Figure 4.a shows the results of vary-
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Figure 4: Performance of T-EPL with different values
of simulation steps (n) and # retrieved examples (k).

ing the number of simulation steps (n). In this
experiment, the number of retrieved interactions k
was fixed at 20, and the model was evaluated with
n values of 1, 3, 5, and 7, respectively. Overall,
the performance of T-EPL generally improves with
an increasing number of simulation steps. This is
expected since a larger value of n allows the algo-
rithm to construct a more comprehensive search
tree. However, it is crucial to acknowledge the
inherent trade-off between performance and com-
putational cost. A greater number of simulation
steps inevitably incurs a higher computational bur-
den, as evidenced by the increased number of API
calls and overall runtime (Figure 4.c). Therefore,
selecting an appropriate value for n necessitates
careful consideration to achieve a balance between
performance and computational resources.

Analyses on the Number of Retrieved Interac-
tions (k). Figure 4.b shows the impacts of the
number of retrieved interactions k on T-EPL’s per-
formance. In this experiment, we fix the number of
simulation steps (n) to 5, while k is varied across
four settings: 1, 20, 40, and 60. The results demon-
strate a trend of increasing performance followed
by a decrease as the number of retrieved interac-
tions grows. This is expected since a larger value
of k allows the model to consider more interac-
tions, refining policy decisions better. However, a
large value of k also introduces noisy interactions
and leads to value estimation saturation (as shown
in Figure 4.d). This saturation occurs since each

14186



state is evaluated using increasingly similar sets of
interactions, hence hindering model performance.

6 Conclusion

In this work, we propose Experiential Policy Learn-
ing (EPL), a novel dialogue policy for target-driven
recommendation dialogues. Our EPL framework
leverages similar past interactions to enhance its
dialogue planning capability. Moreover, we intro-
duce Tree-structured EPL, a training-free realiza-
tion of EPL, utilizing LLMs and MCTS. Through-
out extensive experiments and analyses on two pub-
lished datasets, we demonstrate the effectiveness of
our proposed method in terms of both performance
and efficiency against state-of-the-art approaches.

Limitations

This section explores several potential limitations
associated with the proposed T-EPL algorithm: (1)
Memory Availability: The T-EPL algorithm relies
on a memory component. In real-world applica-
tions, this memory might not be readily available,
potentially requiring additional effort to construct
it before deploying the algorithm. (2) Computa-
tional Cost of Interactive LLM Evaluation: A
potential drawback of this work lies in its use of
Large Language Models (LLMs) for interactive
evaluation. While this approach better reflects prac-
tical scenarios, conducting online evaluations using
LLMs can incur significant computational costs.
(3) Dependence on Retrieval Models: T-EPL is
also subject to limitations arising from its reliance
on pre-trained retrieval models. The performance
of T-EPL might be heavily influenced by the qual-
ity of retrieved interactions and their corresponding
state values.
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A Appendix

A.1 The Completed T-EPL Algorithm
In this section, we introduce details regarding
the proposed algorithm T-EPL. Similar to MCTS-
based algorithms (Yu et al., 2023; Jang et al., 2020),
T-EPL employ a 4-stages process including: Selec-
tion, Expansion, Estimation and Backpropaga-
tion.

Selection. Starting from the root s←− st (where
st is the current dialogue state), unless we reach a
leaf node, we employ Upper Confidence bounds
applied to Tree (UCT) (Yu et al., 2023) to choose
a node for tree traversal. Formally, at each step,
we travel the tree by using the following recursive
formulation:

s←− argmax
s′∈Children(s)

[
V (s′) + cπp(as′ |s)

√
2N(s)

N(s′)

]
,

where πp(as′ |s; θ) is a backbone policy, offering
prior assessment over actions during tree-search.
For T-EPL, we leverage RTCP (α = 0) (Dao
et al., 2023) as our backbone policy. Furthermore,
N(s),N(s′) are the numbers that the parent state s
and the child node s′ are visited, respectively. c is
a hyper-parameter to balance between exploitation
and exploration aspects.
Expansion: After reaching a leaf node s, we
utilize the backbone policy πp(a|s; θ) to sample a
set of potential actions Ât+1. We employ an action
ât+1 ∈ Ât+1 and move to the new state ŝt+1. If
this newly constructed state is not in the current
tree, we create a new node for this state.
Estimation: Given the state of the newly con-
structed node ŝt+1 and the predefined target item v,
we compute the experiential target-driven scoring
function FM(ŝt+1, v) using E.q. 1.
Back Propagation: We then update the statis-
tics of nodes s along the traveled path using the
recursive formulation detailed in Algorithm 1.

After running the tree search for a number of
simulation steps n, we choose the action ât+1 of
the root node st that leads to the highest quantity
R(s, ât+1, ŝt+1) + V (ŝt+1) and use it to generate
a response.

A.2 Discussions
T-EPL and Existing MCTS-based Dialogue Poli-
cies. First, our proposed T-EPL algorithm ad-
dresses the issue of sampling inefficiency of vanilla
MCTS-based algorithms (Chaffin et al., 2022; Hao

et al., 2023; Zhou et al., 2023; Zhang et al., 2023).
Specifically, such algorithms aim to estimate the
potential value of the current state by using Monte-
Carlo simulations, sampling completed trajectories
whose outcomes will be viable at the terminated
states. To accurately estimate the state’s value, it
is required to run these rollout steps multiple times
and compute the averaged result. However, in the
worst-case scenario, the process continues until the
generated conversations reach a predefined max-
imum length (denoted by H). In the context of
target-driven dialogues, this characteristic causes
vanilla MCTS-based algorithms to exhibit a com-
putational cost, quadratically scaling with the con-
versation horizon (i.e.,O(H2)). Such an extremely
high complexity hinders their applications in real-
world scenarios.

To address this limitation, some existing ap-
proaches propose to utilize deep neural networks
(Wang et al., 2020) or LLMs (Yu et al., 2023) for
state value evaluation, effectively bypassing the
costly rollout processes. However, these methods
require pre-training the value functions on a lim-
ited amount of simulated interactions that may not
accurately reflect real-world human conversations.
Moreover, such pre-trained neural networks are
fixed after the training stage, limiting their adapt-
ability to newly encountered interactions during
inference. Additionally, despite showing promis-
ing performance in various tasks, such as conver-
sational intent discovery (Liang and Liao, 2023;
Liang et al., 2024a,b), seamlessly invoking LLMs
at inference time for state value estimation offers a
potential solution, the frequent API calls involved
can introduce significant computational overhead,
making it impractical for real-world applications.

Hence, we propose T-EPL, a novel dialogue pol-
icy method that also utilizes the MCTS algorithm.
In contrast to existing memory-less approaches, we
employ a memory structureM, storing past expe-
rienced states and their assessment values. Given
the current state, T-EPL attempts to retrieve similar
experienced dialogue stages and aggregate their as-
sessment values. This approach not only allows us
to bypass the costly rollout steps but also alleviates
the need for either pre-trained neural networks or
LLMs for state value estimations. Last but not least,
while almost existing methods are offline (i.e. their
policies remain static during inference), T-EPL still
refines its policy at testing time by dynamically
updating the memory structure. This characteristic
distinguishes T-EPL from existing methods since
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Figure 5: Frequencies of target items (left) and relative
success rate (right) w.r.t conversation turns of BERT,
UNIMIND, and COLOR models.

the T-EPL algorithm can be seen as an online dia-
logue policy.

Reflecting on Experience. Inspired by the self-
reflection process in human psychology, we pro-
pose Experiential Policy Learning (EPL) for target-
driven dialogues. Specifically, upon encountering
a decision-making situation, people may attempt to
recall similar experiences from their memory. By
considering the outcomes of different actions taken
in those past circumstances, they could choose the
course of action that appears most beneficial. In a
similar vein, our EPL method leverages analogous
past interactions to estimate the potential values
of different actions. By retrieving and aggregat-
ing past experiences, the algorithm can select the
action most likely to achieve optimal results.

Objective and Subjective Evaluation. Prior
works (Wang et al., 2022; Deng et al., 2023b; Wang
et al., 2023b; Dao et al., 2023) on target-driven rec-
ommendation dialogues often evaluate the model
performance by utilizing objective metrics (e.g. de-
termining if the generated responses contain the
target item). As shown in Section 5.2, this ap-

proach might overestimate the true effectiveness
of target-driven recommendation systems. For ex-
ample, suppose we utilize a rule-based policy that
simply outputs the target item at every turn. In such
a circumstance, the objective SR would be 100%.
However, such a dialogue strategy is undesired
as it might frustrate users and negatively impact
their experience. Recognizing this limitation, we
employ both objective and subjective SR metrics.
While acquiring real-world human judgments can
be expensive, we leverage LLMs to obtain user-
simulated judgments. Additionally, unlike existing
works (Wang et al., 2022; Deng et al., 2023b; Dao
et al., 2023; Wang et al., 2023b), which focus on
single-turn interactions, we evaluate model perfor-
mance through multi-turn conversations, which are
more practical and related to real-world applica-
tions.

Domain DuRecDial 2.0 INSPIRED
Movie 190/121/161 368/42/55
Music 139/109/120 -
Food 48/13/30 -
Point-of-interest (POI) 96/42/65 -

Table 5: The detailed statistics of target items regarding
different domains in DuRecDial 2.0 and INSPIRED
datasets.

A.3 Additional Statistics regarding Datasets

In this work, we conduct experiments on two pub-
lished benchmark datasets, namely DuRecDial 2.0
(Liu et al., 2021) and INSPIRED (Hayati et al.,
2020). Besides reported statistics in Table 1, in Ta-
ble 5, we further show the number of target items
across various domains within the training, valida-
tion, and test sets. For DuRecDial 2.0, after the data
pre-processing, we identify four domains: Movie,
Music, Food, and POI. Additionally, the data ex-
hibits a bias toward Music and Movie recommenda-
tions. This suggests that a scarcity of training data
for POI and Food domains may present a greater
challenge in learning effective dialogue strategies
for these domains, which is further investigated in
Section A.7. For the INSPIRED dataset, movie
recommendations comprise the sole scenario.

In Table 6, we show detailed statistics of the di-
alogue strategies employed within the DuRecDial
2.0 and INSPIRED datasets. The table details the
number of distinct dialogue strategies identified
in each dataset. Notably, there are 13 and 14 dif-
ferent dialogue strategies for DuRecDial 2.0 and
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INSPIRED, respectively. Furthermore, for DuRec-
Dial 2.0, we experience that the amounts of di-
alogue strategies associated with the Music and
Movie domains are greater compared to these two
other ones. We recommend interested readers to
check out their corresponding papers for more de-
tails.

DuRecDial 2.0 INSPIRED
Strategy Amount Strategy Amount
Greetings 4,948 Opinion inquiry 1,258
Ask about weather 4,393 Self modeling 235
Play music 10,034 Personal opinion 1,388
Q/A 6,072 Credibility 1,563
Music on demand 1,692 Encouragement 1,146
Movie recommendation 1,4882 Similarity 539
Chat about stars 16,276 Rephrase preference 103
Say goodbye 12,819 Preference confirmation 436
Music recommendation 13,170 Acknowledgment 814
Ask about date 2,401 Personal experience 304
Ask questions 2,100 Experience inquiry 880
POI recommendation 5,451 Offer help 449
Food recommendation 4,465 Transparency 120

No strategy 1,423

Table 6: The detailed statistics regarding the numbers
of dialogue strategies in the DuRecDial and INSPIRED
datasets.

A.4 Recommendation Strategies of Different
Dialogue Policy Methods

In this work, we compare our proposed T-EPL al-
gorithm to various baseline methods. Specifically,
these methods can be categorized into two main
approaches: predictive policies and generative poli-
cies. Predictive policies, such as BERT and RTCP,
aim to predict a probability distribution across di-
alogue actions. In contrast, generative policies,
including UNIMIND, TCP, and COLOR, directly
generate dialogue strategies using text generation
models. As discussed in Section 5.5, we experi-
ence that two primary recommendation strategies
emerge across different dialogue policies: early
recommendations and late recommendations. In
Figure 5, we further illustrate the frequency of tar-
get item recommendations of BERT, UNIMIND,
and COLOR methods. Our findings reveal another
interesting trend: predictive policies (BERT and
RTCP) tend to favor both early and late recommen-
dations, whereas generative policies often prioritize
late suggestions. This might explain UNIMIND
and COLOR’s lower success rates compared to
BERT in early conversation turns since these gener-
ative policies simply generate fewer recommenda-
tions. Another potential hypothesis is that different
domains necessitate distinct dialogue strategies for
making recommendations, and there is a significant

performance gap between predictive and generative
models across different recommendation domains.
Section A.7 will provide detailed analyses regard-
ing this hypothesis.

A.5 Performance Comparison w.r.t Different
Conversation Turns

In Figure 6, we show the performance compari-
son of our T-EPL algorithm and several baseline
methods, including TCP, UNIMIND, COLOR, and,
RTCP, across various conversation turns. In partic-
ular, we evaluate the relative success rate of each
model against the standard BERT baseline. Our
findings demonstrate that T-EPL consistently out-
performs all baseline methods across different con-
versation turns. Notably, in both DuRecDial 2,0
and INSPIRED datasets, we experience that the per-
formance gap is more significant in earlier rounds.
This shows that T-EPL possesses a superior capabil-
ity to manage early recommendations compared to
alternative dialogue policy methods. Additionally,
on the INSPIRED dataset, encompassing conversa-
tions with longer horizons, T-EPL still exhibits its
strength in later conversation turns. This observa-
tion also implies that our algorithm retains a robust
long-range planning capability.

Figure 7 further investigates the performance
comparison between T-EPL and several baseline
methods, including vanilla MCTS, GDP-Zero,
and PPDPP, across different conversation turns.
Our proposed algorithm consistently outperforms
vanilla MCTS across different conversation stages.
In comparison with the strong baseline GDP-Zero,
T-EPL achieves competitive results, particularly in
later conversation turns. While GDP-Zero appears
to perform better in the initial turn, this might be
attributed to its tendency to solely focus on early
recommendations. In some circumstances, this
behavior might be undesired as consistently recom-
mending the target item in the early rounds might
hurt user experience and fail to establish user en-
gagement on the targeted item. Furthermore, de-
spite its competitive performance, GDP-Zero in-
curs significantly higher computational costs, as
will be detailed in Section A.8.

A.6 Statistics of Different Dialogue Strategies
w.r.t Conversation Turns

In Figure 8, we show the frequency of dialogue
actions employed by different dialogue policies,
including T-EPL, RTCP, and TCP, across different
conversation turns. Our findings reveal that in the
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Figure 6: Comparison of relative success rate against the standard baseline (i.e. BERT) at different conversation
turns. We utilize 10 and 14 conversation turns for DuRecDial and INSPIRED, respectively.
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Figure 7: Comparison of relative success rate against the standard baseline (i.e. MCTS) at different conversation
turns. We utilize 10 and 14 conversation turns for DuRecDial 2.0 and INSPIRED, respectively.

early stages of conversations (turns 1 to 4), these
models prioritize establishing rapport with users
rather than immediately offering recommendations.
This initial interaction phase is crucial for foster-
ing positive user experiences before introducing
recommendations. Furthermore, between the 5th
and 6th turn, we observe some changes in their
dialogue policies. Particularly, the three consid-
ered policies initially provide recommendations for
some specific domains, such as Music, Food, and
Movie. Notably, RTCP and T-EPL exhibit a higher
frequency of recommendations during this period.
This aligns with our findings presented in Section
5.5, which demonstrates that these models tend to
offer both early and late recommendations. More-
over, the reported statistics also reveal that the rec-
ommendation strategies might vary across different
domains. Specifically, we experience a tendency to

favor music and food recommendations in the early
rounds (i.e. 3rd-4th turns and 5th-6th turns), while
movie and point-of-interest (POI) suggestions are
preferred in later turns (i.e. 7th-8th and 9th-10th
turns). This observation indicates that optimal dia-
logue strategies for maximizing user benefit may
vary depending on the domain under consideration.

A.7 Performance Comparison w.r.t Different
Recommendation Domains

In target-driven recommendation dialogues, it is
desired to investigate the performance of dialogue
policy methods across diverse domains. As shown
in the previous section, optimal dialogue strate-
gies might vary with different domains of interest.
Hence, in Table 8, we show the performance of
our T-EPL algorithm and other baseline models
on the DuRecDial 2.0 dataset across four domains
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(i.e. Movie, POI, Food, and Music). Particularly,
the reported results are consistently lower for POI
and Food domains, compared to Movie and Music
ones. This suggests that achieving successful POI
and Food recommendations is more challenging. A
potential explanation lies in the limited amount of
training data for these two domains, which may hin-
der the model’s ability to learn effective dialogue
policies. Furthermore, the proposed T-EPL algo-
rithm significantly outperforms all baseline meth-
ods across 3 out of 4 domains of consideration.
This demonstrates the superiority of our proposed
T-EPL algorithm, compared to other existing base-
line methods. Notably, this success highlights the
generalizability of T-EPL, suggesting its capacity
to enhance target-driven dialogue planning irrespec-
tive of the domain under consideration.

Model Inference Time (s)
DuRecDial 2.0 INSPIRED

BERT (Devlin et al., 2019) 6.01 6.62
UNIMIND (Deng et al., 2023b) 7.54 9.21
TCP (Wang et al., 2022) 13.60 34.34
COLOR (Wang et al., 2023b) 10.81 26.07
RTCP (Dao et al., 2023) 7.53 8.69
MCTS 105.29 232.04
GDP-Zero (Yu et al., 2023) 90.62 148.70
PPDPP (Deng et al., 2023a) 7.59 9.49
T-EPL (ours) 50.71 84.43

Table 7: Inference time on one target item of different
dialogue policy methods. In particular, the maximal
number of conversation turns are 10 and 14 for DuRec-
Dial 2.0 and INSPIRED, respectively.

A.8 Detailed Analyses regarding Model
Complexity and Computational Time

First, we provide detailed analyses regarding the
API call complexities of T-EPL and other baseline
models at inference time. Suppose T,H , and K are
the number of target items, the conversation hori-
zon, and the number of simulation steps used in
MCTS-based algorithms, respectively. It is straight-
forward to show that the offline policies (i.e. BERT,
UNIMIND, COLOR, and RTCP) require T ×H
API calls to evaluate the whole item set. Therefore,
the upper bound of their computational complexi-
ties is O(TH). For vanilla MCTS, due to the need
for rollout steps, its complexity scales quadrati-
cally with the conversation horizon H . This makes
the overall complexity of MCTS O(TKH2). Re-
garding GDP-Zero, it utilizes LLMs for state value
estimation. In particular, at each simulation step,
GDP-Zero needs to call LLMs for N >= 1 times

to compute the state value. Following official im-
plementations of GDP-Zero, we utilize N = H ,
making its complexity O(TKH2). Finally, our
T-EPL policy exhibits a complexity of O(TKH).
This is reasonable since T-EPL estimates the state’s
potential score using past experienced interactions.
Therefore, it does not require costly rollout steps
and LLM-based evaluations during inference.

To approximately validate these derived com-
plexities, in Table 7, we present the inference time
on one target item of considered models. In particu-
lar, the observed inference times align with the cor-
responding API call complexities, where a greater
number of API calls correspond to a higher infer-
ence time. Notably, our T-EPL algorithm demon-
strates a significant advantage compared to other
MCTS-based methods, including vanilla MCTS
and GDP-Zero.

A.9 Additional Details of Baseline Methods
In this work, we compare our T-EPL algorithm
against several representative baselines, including:

• BERT 4 (Devlin et al., 2019) is a general pre-
trained language model based on Transformer
Encoder. Specifically, we utilize BERT to
predict the next dialogue strategy.

• TCP 5 (Wang et al., 2022) is an early target-
driven recommender system. In particular, it
leverages a text generation model to generate
a sequence of actions, starting from the target
action to the current turn.

• UNIMIND 6 (Deng et al., 2023b) is a goal-
aware conversational recommender system
that utilizes a multi-task learning paradigm
and a prompt-based learning to unify sub-
tasks of multi-goal CRS setting.

• COLOR 7 (Wang et al., 2023b) is a recent
target-driven dialogue system aiming to learn
latent traditions within the dialogues via the
Brownian-motion bridge.

• RTCP 8 (Dao et al., 2023) is the state-of-the-
art target-driven recommendation model that
aims to direct the conversation with a short-
term and a long-term planning module. Addi-
tionally, this model balances these two afore-
mentioned modules with a strategic balancing

4https://huggingface.co/google-bert/
bert-base-cased

5https://github.com/iwangjian/Plan4RecDial/
tree/main

6https://github.com/dengyang17/UniMIND
7https://github.com/iwangjian/Color4Dial
8https://github.com/rtcpproject/RTCP
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(d) Turns 9 - 10

Figure 8: Frequencies of predicted dialogue strategies w.r.t different conversation turns of TCP, RTCP, and T-EPL.
In particular, we consider the DuRecDial 2.0 dataset and report the statistics accordingly.

mechanism.
• GDP-Zero 9 (Yu et al., 2023) is a recent target-

driven dialogue system. Specifically, it uti-
lizes open-loop MCTS to perform look-ahead
planning, where state values are produced by
prompting an LLM model.

• PPDPP 10 (Deng et al., 2023b) is a recent
target-driven dialogue system. In particu-
lar, this model leverages some background
datasets to finetune a small LM model, serv-
ing as the prior dialogue policy. The policy is
then further fine-tuned with simulated conver-
sations generated via RL to maximize long-
term rewards.

In this work, we leverage the published source
codes of baseline methods to conduct experiments.
Moreover, for the ablation study, we compared our
T-EPL with other variants described as follows:

• w/o Len: The variant without the length con-
straint in E.q 2 (i.e λ = 0).

• w/o Exp: The variant without the expe-
riential target-driven scoring function (i.e
FM(s, v) = 0).

9https://github.com/jasonyux/GDPZero
10https://github.com/dengyang17/PPDPP

A.10 Implementation Details
We implement our T-EPL algorithm using the Py-
Torch framework 11. Experiments were conducted
on a single NVIDIA A100 40GB GPU card. More-
over, the performance evaluation protocols are de-
tailed as follows:

• Full Test Set (∗): For this circumstance, we
use the whole test set (376 and 55 target items
for DuRecDial 2.0 and INSPIRED, respec-
tively) and execute each model twice with
varying random seeds. The reported results
represent the average of these runs.

• Comparison against MCTS, GDP-Zero,
and PPDPP (∓): Due to the high compu-
tational demands of these baselines, we fol-
low the approach outlined by Yu et al. (2023).
This involved randomly selecting 20 target
items (i.e. 100 and 140 interaction rounds
in total for DuRecDial 2.0 and INSPIRED,
respectively) from the test set for automatic
evaluation. Each model was then run three
times with varied random seeds, and the final
results were obtained by averaging these runs.

For T-EPL’s implementation, we utilize the RTCP
policy (α = 0) (Dao et al., 2023) as the backbone
policy. Specifically, the policy was first fine-tuned
on the training data from the corresponding back-
ground dataset (i.e. DuRecDial 2.0 or INSPIRED)

11https://pytorch.org/
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Movie Music POI Food
Model Subjsr Avg. T(↓) Subjsr Avg. T(↓) Subjsr Avg. T(↓) Subjsr Avg. T(↓)
BERT∗ 0.869 6.782 0.833 4.333 0.723 6.938 0.533 6.600
UNIMIND∗ 0.788 6.503 0.858 4.825 0.261 7.769 0.500 7.566
TCP∗ 0.832 6.881 0.791 5.975 0.569 7.000 0.200 8.600
COLOR∗ 0.782 7.391 0.800 6.700 0.584 8.153 0.533 5.553
RTCP∗ 0.925 6.204 0.875 4.375 0.738 7.107 0.333 7.773
T-EPL ∗ (ours) 0.851 5.708 0.891 3.891 0.831 4.892 0.667 5.133

Table 8: Performance comparison w.r.t different domains. Specifically, we report the results on four domains:
Movie, Music, Point-of-Interest (POI), and Music Recommendation. The final results are reported on the whole test
set (t-test, p < 0.05).

to predict the next action. This fine-tuning process
involved training the policy model for 5 epochs
with learning rates of 5e-5 and 1e-5 for DuRec-
Dial 2.0 and INSPIRED datasets, respectively. Fol-
lowing fine-tuning, the pre-trained policy was em-
ployed to construct the memory component (de-
noted by M), as described in Section 4.2. The
dimension of the hidden vectors within this mem-
ory was set to 768. Moreover, we set the number
of simulation steps (n) and the size of the memory
buffer k to 5 and 20, respectively. Finally, we re-
gard a generated conversation as a successful case
if its target-driven assessment score surpasses a
threshold of ϵ = 1.

A.11 Response Generation Model
This study primarily focuses on evaluating the plan-
ning capabilities of our proposed T-EPL algorithm
in comparison to existing dialogue policy methods.
To isolate the final performance from other aspects,
such as the response generation model as well as to
ensure a fair comparison, we employ the same text
generation model for all dialogue policy methods
under investigation. Specifically, a BART-based
model with 114M parameters is utilized for text
generation across all considered dialogue policies.
The input provided to the text generation model is
constructed by combining three elements, namely
predicted dialogue strategies and topics from the
dialogue policies and the current dialogue history.
For model training, we set the number of training
epochs and learning rate to 5 epochs and 5e-5 for
both DuRecDial 2.0 and INSPIRED datasets.

A.12 User Response Simulation
In this section, we describe the role-playing prompt
employed to instruct LLMs in simulating user re-
sponses. In particular, we utilize a 1-shot prompt-
ing scheme, where the input of the LLM is con-
structed by using the current dialogue history, the

newly generated system response, and one demon-
strative conversation. The prompt utilized for the
user simulator is detailed in Table 9. In particular,
we prompt the LLM with temperature ρ = 0. To
avoid bias during the dialogues, the targeted item
should never be mentioned in the designed prompt
for user response generation.

A.13 LLM-based Target-driven Assessment
In target-driven recommendation dialogues, it is
crucial to determine if the user is happy and willing
to accept the target item recommended by the sys-
tem. This section outlines the instruction prompt
employed to compute an LLM-based target-driven
assessment. The specific details of this prompt are
presented in Table 10. In particular, we prompt the
LLM with temperature ρ = 1.1 for 5 times and
compute the averaged score.

A.14 Qualitative Analyses
In Section 5.5, we hypothesize that there are two
potential dialogue strategies that T-EPL can lever-
age to introduce target items to users. To demon-
strate this hypothesis, Table 11 presents example
conversations generated by our T-EPL algorithm.
In the first conversation, T-EPL attempts to intro-
duce the target item, [Forever Young], early in the
interaction sequence, specifically during the sec-
ond turn. Subsequently, T-EPL seeks to further
persuade the user by providing additional details
about the recommended item, such as mentioning
its actor, Xiaoming Huang. Conversely, the sec-
ond conversation example showcases a different
approach. Here, T-EPL initially presents relevant
information, such as mentioning Hsu Chi and Bo
Huang. Only after the user expresses interest does
T-EPL introduce the target item, The Island. These
examples demonstrate T-EPL’s capability to em-
ploy diverse dialogue strategies when making rec-
ommendations.
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Role Utterance
[Target Goal]: [Movie recommendation]

1-shot example system This is an example of a Movie recommendation conversation
between the user (you) and the system.

assistant [1] How tall is Xiaoming Huang?
user He’s 180cm tall.
assistant I know. Thank you. You know so much.
user [2] I also know that he has won Best Actor of the Year at the 10th

Chinese American Film Festival.
assistant Yeah, he’s very good at acting. I like him very much.
user As an actor, he has been improving his acting skills. He is really a

good actor. I’m not surprised you like him.
assistant I’m glad you can say that, and I will always support him.
user [3] Then you can go to see his movie Sacrifice. It’s said to be a

good movie.
assistant Who directed the film?
user Kaige Chen and Chongjie Ma.
assistant Wow, it’s amazing. I must watch it.
user [4] All right. I’m going for lunch. Talk to you next time. Bye!
assistant Bye!

Dialog History system Now enter the role-playing mode. In the following conversation,
you will play as a user. You are the user who is looking for a
Movie recommendation. Please reply with only one short and
succinct sentence.

user Hello ! How do I help you?
assistant Hi! I’m looking for a movie recommendation. Is there any sug-

gestion?
user It’s Bingbing Fan’s New Shaolin Temple.
assistant Thank you for the recommendation!
user You’re welcome. Bingbing Fan has won the Hundred Flowers

Awards for Best Actress.
User Response assistant That’s impressive! I’ll definitely check out the movie.

Table 9: Detailed instruction prompt for user simulator for a movie recommendation conversation. "Role" is
identical to the role in the ChatGPT prompting scheme. For user response generation, we exchange the roles of the
system and the user in the instruction prompt. It is worth noticing that the target item of the current conversation
should never be indicated directly in the instruction prompt.

A.15 Instructions for Human Evaluation
Given generated dialogues by our T-EPL and other
baseline methods, we ask the annotators to com-
pared those dialogues in both Satisfaction and Co-
herency aspects, defined via following questions:

• Satisfaction: Given the target item, which
dialogue offers more convincing justifications
to accept the target item ?

• Coherency: Given the target item, which di-
alogues offer more reasonable topical transi-
tions towards the target item ?
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Role Utterance
[Target Item]: [New Shaolin Temple]

Conversation system The following is a new conversation between a recommender and
an user.

assistant Hello ! How do I help you?
user Hi! I’m looking for a movie recommendation. Is there any sug-

gestion?
assistant It’s Bingbing Fan’s New Shaolin Temple.
user Thank you for the recommendation!
assistant You’re welcome. Bingbing Fan has won the Hundred Flowers

Awards for Best Actress.
user That’s impressive! I’ll definitely check out the movie.
assistant You have a good taste. Bingbing Fan has also won the Hundred

Flowers Awards for Best Actress.
user Thank you! I appreciate the recommendation.
assistant You’re welcome. Bingbing Fan’s New Shaolin Temple is also very

good. You can watch it.
user I will definitely add it to my watchlist. Thank you!
assistant You’re welcome. I’m sure you’ll like it.
user I look forward to watching it!
system Based on the given conversation, you need to infer the attitude of

the user towards the target item: [New Shaolin Temple]. You need
to infer if the user is happy and willing to accept the target item:
[New Shaolin Temple]. If the user is happy, you need to generate
the word: [accept]. If the user is confused or not willing to accept
the item: [New Shaolin Temple], you need to generate the word:
[reject].

Results assistant [accept, accept, accept, accept, accept]

Table 10: Detailed instruction prompt for LLM-base target-driven assessment for a movie recommendation
conversation. "Role" is identical to the role in the ChatGPT prompting scheme. After getting the results from
ChatGPT, we convert textual assessments to corresponding scalar values (i.e. accept = 1, reject = -1) and compute
the averaged score.
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Role Utterance
[Target Item]: [Forever Young]

Example 1 T-EPL Hello! How can I help you?
User I’m looking for a good movie to watch, any recommendations?
T-EPL It’s Xiaoming Huang’s Forever Young
User Thank you for the recommendation!
T-EPL You’re welcome. Xiaoming Huang is the Most Popular Actor in

the 17th Beijing College Student Film Festival
User That’s impressive!
T-EPL Yes. He also won the Most Anticipated Actor of the Chinese Film

Media Award.
User He must be very talented
T-EPL Yes, his movie Forever Young is very good. You can watch it.
User I’ll definitely check it out, thanks!
T-EPL You’re welcome. I’m sure you’ll like it.
User I appreciate the recommendation.

[Target Item]: [The Island]
Example 2 T-EPL Hello ! How do I help you ?

User I’m looking for a good action movie to watch, any recommenda-
tions?

T-EPL Hsu Chi is a popular movie star. Do you like her ?
User Yes, I like her a lot !
T-EPL Do you like Bo Huang? He won the Golden Horse Award for Best

Actor.
User Yes, I think Bo Huang is a talented actor!
T-EPL Yes, he has also won the Asian Film Awards for Best Actress.
User Bo Huang is actually a male actor, not a female actress.
T-EPL Yes, I’d like to recommend his movie The Island to you. It’s a

good action movie.
User Thank you for the recommendation, I’ll check out The Island!
T-EPL I’m glad you like it.
User Thank you!

Table 11: Two interactive conversations between our T-EPL agent and the LLM-based simulator, showing two
common dialogue strategies to recommend the target items. For the first example. T-EPL aims to recommend the
target item [Forever Young] at early rounds and offer further justifications in later turns. In contrast, in the second
example, T-EPL first offers interacting information in early turns while aiming to nudge the user with the target item
[The Island] at later turns.
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