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Abstract

Automatic generation of graphical layouts is
crucial for many real-world applications, in-
cluding designing posters, flyers, advertise-
ments, and graphical user interfaces. Given
the incredible ability of Large language mod-
els (LLMs) in both natural language under-
standing and generation, we believe that we
could customize an LLM to help people cre-
ate compelling graphical layouts starting with
only text instructions from the user. We call our
method TextLap (text-based layout planning) 1.
It uses a curated instruction-based layout plan-
ning dataset (InsLap) to customize LLMs as a
graphic designer. We demonstrate the effective-
ness of TextLap and show that it outperforms
strong baselines, including GPT-4 based meth-
ods, for image generation and graphical design
benchmarks.

1 Introduction

Traditional layout generation tasks typically in-
volve organizing text and graphical elements into
a pleasing and professional looking arrangement.
This is often time-consuming and difficult for users,
especially those without training or design skill.
Our goal is to condition an LLM so that it allows
users to generate professional looking layouts by
simply inputting text instructions. We are inspired
by the rapid advancement of generative models for
text (Ouyang et al., 2022; Achiam et al., 2023), im-
ages (Betker et al., 2023; Podell et al., 2023), and
videos (Peebles and Xie, 2023) and recent works
that create layouts using graphical elements such as
category, position, or size as input (Li et al., 2020;
Kikuchi et al., 2021; Jyothi et al., 2019; Inoue et al.,
2023). We advance the field by customizing LLMs

*Work done at University at Buffalo.
†Corresponding Author
1Data and code are available at:
https://github.com/puar-playground/TextLap

as text-guided layout generation models that re-
quire only a text description of the desired layout
and optionally text descriptions for visual elements
as input, enabling layout planning solely in the text
modality. We believe that building an LLM-based
layout generation offers a more user-friendly ap-
proach to achieving desired designs, allowing text
instructions to guide the process—an aspect that is
challenging to incorporate in traditional settings.

Creating 2D graphical layouts from text alone
is challenging for several reasons. First, text de-
scriptions of 2D arrangements are usually under-
specified. There are multiple ways to describe a 2D
layout, and there are multiple 2D layouts that can
meet a description. Furthermore, comprehending
2D spatial relations (Xu et al., 2020) is challenging
for LLMs due to their autoregressive nature and 1D
positional embedding (Vaswani et al., 2017). Even
understanding the meaning of coordinate numbers
in a description is sometimes difficult for LLMs.

To enable the generation of 2D designs from text,
we build an instruction-based layout planning (In-
stLap) dataset to customize large language models.
We then use InstLap to train our Text-based Lay-
out Planning (TextLap) model through supervised
fine-tuning of an LLM, enabling it to understand
2D spatial relationships and generate or modify
bounding box coordinates based on text prompts.
Figure 1 illustrates example inputs and outputs of
the proposed TextLap model.

As an LLM, TextLap enables users to iteratively
refine layout designs through natural language con-
versations. Initial text instructions provide an initial
draft, and users can further customize their designs
by interacting with the model. TextLap generates
text-coherent layouts in response to users’ iterative
requests, enabling them to quickly find the most
suitable custom template for their design. We be-
lieve that TextLap significantly reduces the time
required to create designs, enhances design effi-
ciency, and plays an important role in assisting
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Input 2:  a woman in a blue shawl, with the title 
The Testament of Mary and author Colm Toibin 
displayed prominently on the cover, along with 
the text '…’.

TextLap Model (Pretrained Large Language Model)
Different Output Layout Formats: [CSS, Float, or Integer]

Output 2 (in CSS format):
woman in a blue shawl {height: 364px; 
width: px; top: 75px; left: 167px;}
The Testament of Mary {height: 75px; 
width: 361px; top: 0px; left: 75px;}
Colm Toibin {height: 73px; width: 192px; 
top: 419px; left: 156px;} …

Input 1:  On a canvas with a width of 1080 and a height of 1080, A 
list of visual elements with their descriptions in CSS: svgElement: {},
imageElement:{}, …, textElement-7 : {}…Please generate the 
coordinates (x_min, y_min, x_max, y_max) in CSS format.

Output 1 (in CSS format):
svgElement { left: 0px; top: 531px; width: 1080px; 
height: 549px; } 
imageElement { left: 479px; top: 73px; width: 601px; 
height: 934px; } …
textElement-7 { left: 65px; top: 522px; width: 490px; 
height: 121px; }

InstLap
Dataset

Instruction
Tuning

2. TextLap given Text Prompts only1. TextLap given Text Prompts and Elements Descriptions

Figure 1: Overview of TextLap fine-tuned on InstLap. 1) TextLap can perform graphic designs and output
coordinates given a list of elements including images, texts, and scalable vector graphics (SVG). The image is
rendered accordingly. 2) TextLap can extract key elements from text prompts and provie their coordinates. The
image can be rendered with image generation tools.

graphic designers. Moreover, TextLap also serves
as a layout planning component for image gener-
ators, greatly enhancing the layout coherence of
generated images according to text prompts. Our
contributions are threefold:
• We proposed a novel text-to-layout tasks aim-

ing to enhance design efficiency and designed
evaluation dataset and protocals.

• We built an instruction tuning dataset named In-
stLap with human machine hybird annotations,
enabling LLMs to perform text-to-layout plan-
ning.

• We trained a LLM-based layout planning model
TextLap, and its empirical evaluations on bench-
mark datasets show its superior performance
compared to GPT-4 models.

2 Related Work

Layout Generation Models Various approaches
have been developed for controllable layout gen-
eration. Jiang et al. (2023); Arroyo et al. (2021);
Gupta et al. (2021) utilize transformers to create
auto-regressive models that produce layouts as a
sequence of element attributes. Adversarial genera-
tive models (Kikuchi et al., 2021; Li et al., 2020)
and diffusion models (Chen et al., 2024; Inoue
et al., 2023; Zhang et al., 2023) have been used
to enhance the quality of generation and unify vari-
ous conditional generation tasks in a single model.
TextDiffuser (Chen et al., 2023b) applies a layout
transformer to generate layouts for keywords in
text-rich images. (Jin et al., 2022; Hsu et al., 2023;
Yu et al., 2022) generate background-aware lay-
outs for posters by detecting smooth regions of the
background image. (Yang et al., 2022) introduces a
graph transformer architecture to generate layouts

for images based on a scene graph that describes
the relationship between visual objects. The visual
layout serves as a crucial spatial control in image
generation. GLIGEN (Li et al., 2023) integrates
gated self-attention to enable spatial grounding ca-
pabilities in pre-trained diffusion models. Similarly,
InstanceDiffusion (Wang et al., 2024) integrates lo-
cations and descriptions at the instance level into
the generation process. TextLap is an LLM-based
layout planning model that can be used to design
various items, such as posters and book covers.
LLM-based Layout Generation Recent stud-
ies have introduced approaches based on language
models to enable interactive layout generation
and modification through chatting. TextDiffuser-2
(Chen et al., 2023a) fine-tunes a large language
model to generate keywords for text rendering.
(Yang et al., 2024) demonstrate that the integra-
tion of programming code in LLM training benefits
the performance of LLM agents in various tasks.
LayoutNUWA (Tang et al., 2023) leverages a large
language model to generate layouts as HTML code.
LayoutGPT (Feng et al., 2023) in-context visual
demonstrations in CSS structures to enhance the
visual planning skills of GPT-3.5/4 (Ouyang et al.,
2022; Achiam et al., 2023) to plan layouts from
text conditions. MuLan (Li et al., 2024) iteratively
plans the layout of an image by breaking down the
text prompt into a sequence of sub-tasks with an
LLM, and then revises the image at each step based
on feedback from a vision-language model (VLM).
InstructScene (Lin and Mu, 2024) uses ChatGPT
to filter the caption describing the layout elements.
TextLap sets itself apart from prior research by
delving into the text-to-layout task, which allows
users to generate a layout design based on natural-
language descriptions.
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Instructions: A potted plant is to the left of a tv, which is 
at the center; a laptop is on the lower right.

COCO Image
+ Caption +
Bbox

LLM-based Augmentation: A bonsai in 
a ceramic pot is to the left of a flat 
screen LED TV, which is at the center; a 
sleek silver laptop is on the lower right..

COCO Bbox (Target Output): potted plant: [ 0,  20,  30, 
104] Tv: [43,  49,  77,  75] laptop: [74, 103, 104, 111]Shift the 

laptop to the 
right by 23 Shift Augmentation: potted plant: [ 0,  20,  30, 104] Tv: 

[43,  49,  77,  75] laptop: [97, 103, 127, 111]GPT-4

GPT-4V

GPT-4V

SVGs Images Texts

Instructions: On a canvas with a 
width of 940 and a height of 788, A list 
of visual elements with their 
descriptions is given in CSS format:
[ele_1: {description}, ele_2:{}, …, ele_n:
{}]. Please generate the bounding box 
coordinates (x_min, y_min, x_max,
y_max) in CSS format.

MS Phi-3-Vision

Coordinates (Target Output): background 
{left: 0px; top: 0px; width: 940px; height: 788px; 
} imageElement1 { left: 91px; top: 9px; width: 
772px; height: 772px; } textElement1 { left: 
327px; top: 716px; width: 294px; height: 26px; }.

Crello Dataset: Elements + Bbox

Heuristic
Filters

Shift Augmentation: textElement1 { left: 
350px; top: 716px; width: 294px; height: 26px; } 

(a) (b)
Figure 2: Overview of how to build the InstLap dataset. (a) shows how to build InstLap based on COCO dataset,
which is composed of two data augmentations for input instructions and output layouts, respectively. (b) presents
the how to incorporate Crello dataset into Instlap, where visual elements are first described by Phi-3-Vision and
augmented into the text instructions.

3 Creating the InstLap Dataset

To customize a language model for layout plan-
ning, we developed the Instruction to Layout Plan-
ning (InstLap) dataset which comprises filtered
and enhanced image-caption pairs from MS-COCO
(2017) (Lin et al., 2014), a subset of the LAION
datset (Schuhmann et al., 2022; Chen et al., 2023b),
and Crelllo (Yamaguchi, 2021). Table 1 provides
the statistics for the InstLap dataset, which includes
human-annotated benchmarks, the original dataset,
and augmented samples.

Domain Task Train Test Bench

Image
Layout Planning 27,246 1,255 –
Keywords Aug. 22,364 1,039 –
Layout Shift 22,364 – –

Text
Layout Planning 4,873 – 502
Text Split 4,873 – –

Graphic
Layout Planning 16119 1954 –
Layout Shift 16176 – –

Table 1: Number of examples in each training and test-
ing of the InstructLap datasets. Tasks refer to the orig-
inal layout planning data processed and its different
augmentation methods.

3.1 MS COCO Layout
We conducted data processing and filtering to re-
move abnormal samples, resulting in 27,246 text-
to-layout pairs for layout planning tasks. We then
generated textual descriptions for these layouts by
prompting GPT-4V. we use different augmentation
methods to obtain more instruction tuning data and
split the dataset into training and testing for visual
layout planning task.
Layout Normalization We standardized the size
of the images in MS COCO by scaling the longest
axis to a uniform length and centering it within a
square canvas. This adjustment also involved recali-
brating the bounding box coordinates to ensure that

the scaling process did not distort the appearance
of objects.

Object Selection In the annotations, small
bounding boxes were discarded to simplify the lay-
out. An area threshold τa = 0.1 was applied to
the largest box in an image to avoid layouts clut-
tered with numerous small objects. Furthermore,
a threshold τl = 0.2 was established for the max-
imum dimension (height or width) of all boxes in
each image to remove background objects that are
too small or irrelevant to the overall scene. These
thresholds were manually selected.

Overlapping Filtering Overlapping bounding
boxes were considered undesirable as they could
introduce conflicting guidance in the same region,
potentially leading to localized inaccuracies or “hal-
lucinations” in the generated image. To address this
issue, we calculated a pairwise matrix of Intersec-
tion over Union (IoU) scores for all bounding boxes
within each image. A threshold τo = 0.01 was se-
lected as the maximum value to filter out images
with significant overlaps of the boxes.

Crowd Filtering Images in MS COCO with the
‘is_crowd’ label in their annotations were removed.
This label indicates cases where a bounding box en-
compasses multiple instances of the same class un-
der a single label (e.g., a densely populated area of
people annotated with the singular label "person").
Such cases can potentially make LLMs confused
when estimating the size of an individual.

3.2 Graphic Design Data

We also built InstLap based on Crello (Yamaguchi,
2021) for automatic graphic designs. Specifically,
we first merge three types of elements into the back-
ground: i) tiny elements that occupy less than 1%
of the canvas and ii) elements with more than 70%
transparent pixels, which means that their shapes
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are difficult to describe as bounding boxes. We
then filter the dataset based on the number of re-
maining elements, discarding those with more than
10 elements resulting in 16,119 training layouts
and 1,954 layouts for testing.

3.3 LLM-Assisted Annotation

Layout Prompt Generation We observed a sig-
nificant inconsistency between object detection and
caption annotations within the MS COCO dataset.
Frequently, many objects either lack references in
any of the five captions or are described using dif-
ferent terminology. For example, an object labeled
as "person" in the annotation might be referred to
as "woman" in the caption. As a result, caption
annotations cannot reliably serve as prompts for
layout generation. A detailed example is given in
Appendix A.

To address this challenge, we capitalize on
the observational and interpretative capabilities of
large vision-language models, such as GPT-4V
(Yang et al., 2023), LLaVA (Liu et al., 2023), and
Phi-3-Vision (Abdin et al., 2024). We utilize these
models to generate text prompts that describe given
layouts, which consist of selected objects based
on box annotations and the original image. To en-
sure consistency between the generated prompt and
layout, we provide manually crafted examples to
illustrate desired captions for specific layouts. Ad-
ditionally, we instruct the model not to mention any
objects in the image that are not included among
the selected objects.

In the Crello dataset, the elements are too var-
ied to be categorized or described using a prede-
termined set of labels. Consequently, we utilized
the Phi-3-Vision model to create a brief descrip-
tion for every element in the dataset, including the
background for content-aware graphic designs. In
addition, we employed a heuristic method to cre-
ate spatial descriptions for major elements in the
design. All element captions, sizes, and spatial
instructions are added in the prompt, providing
contexts for LLM when generating vibrant layouts.

Object Augmentation The MS COCO dataset
employs a set of labels of 80 classes, which would
restrict the generalizability of LLM models. We
utilize an LLM to augment the labels to facilitate
open-set layout inference. Specifically, we provide
carefully curated examples as context for GPT-4
(Achiam et al., 2023) and ask it to replace the single
word tag of a box with a phrase that describes an

object of comparable size and similar semantics,
ensuring that the enhancement remains concise and
natural.

Layout Shift Augmentation We enrich the train-
ing data with instruction-following pairs to pro-
mote the model’s understanding of the relationship
between bounding-box coordinates and directions.
We guide the model in moving an object in a spec-
ified direction for a random distance. To prevent
overlaps, we ask the model to move objects at the
boundary further from adjacent objects, e.g., mov-
ing the leftmost object further to the left. This
strategy boosts the model’s spatial awareness and
ensures the integrity of the data.

3.4 Visual Text Layout Data

We have curated a collection of 4,873 layout
prompts specifically tailored for visual text analysis.
These prompts were generated from TextDiffuser-2
training data samples (Chen et al., 2023a), which in-
clude caption-OCR pairs derived from the MARIO-
10M dataset. We developed two distinct prompts
for each layout to improve TextLap’s ability to
adhere to user instructions for keyword splitting
and to autonomously handle keyword segmenta-
tion. One prompt explicitly demonstrates how key-
words are split, providing clear guidance for the
process. The other prompt delegates the segmen-
tation task to TextLap, allowing the model to au-
tonomously determine the optimal segmentation
approach based on the layout context.

InstaLap Bench We build InstLap Bench follow-
ing the TRINS-Gen dataset (Zhang et al., 2024b).
Considering the difficulty of rendering too many
words in a single image, we run Paddle OCR and
filter out images with more than 10 OCR words, re-
sulting in a curated set of 502 images. We hired an-
notators from Upwork to write human annotations
for each given image, which describe both textual
and visual objects. Each annotator has to explicitly
describe words and their positions within the im-
age. To this end, we introduce InstLap-Bench, the
visually-rich document design benchmark meticu-
lously annotated by humans.

4 Model Training

We construct the TextLap model by fine-tuning the
Vicuna-1.5 7B (Chiang et al., 2023) model using
the FastChat framework (Zheng et al., 2024). The
model is trained on the InstLap-train set with both
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object layouts and text layouts. Figure 2 presents
examples of conversations from the InstLap-train
dataset. We train the model using both the closed-
set layout prompt and the prompt enhanced with
object augmentations. The training aims to enable
the model to extract objects and separate visual-
text elements when no specific target is provided.
Additionally, the model is trained to focus on user-
specified keywords or modification instructions.
Training details are included in Appendix B.1.

We use multiple text formats for layout repre-
sentation, including lists of integer/float numbers
and CSS structures. However, we notice that multi-
digit coordinates are often tokenized into multi-
ple tokens, potentially complicating the model’s
numerical understanding. We integrated discrete
coordinates as single tokens into the tokenizer to
mitigate this.

5 Experimental Results

5.1 Experiments Setup

We evaluate our model’s capability to generate lay-
outs for objects and visual text using the InstLap-
Test split. All TextLap varaints utilize the same set
of weights trained on the InstLap-Train set. We
first assess the model’s performance in close-set
object layout generation, which feature a defined
label set of 80 classes, and an open-set scenario
that include LLM-augmented object descriptions.
In both experiments, we present prompts with and
without specific objects to evaluate the TextLap on
identifying key objects within the text prompts.

Then, we conduct an experiment using the Crello
dataset (Yamaguchi, 2021) for graphic design given
a list of elements, including images, texts, and
SVGs.

In addition, we evaluate our model for identi-
fying visual-text elements and creating visual-text
layouts using the InstLap-Bench split. The prompts
in this dataset are significantly more complex than
the 5k visual-text training samples in the InstLap-
Train set. All experiments are implemented with
PyTorch and performed on Nvidia A100 GPUs.

5.2 Visual Layout Generation

While image generation has greatly benefited from
the continual expansion of diffusion models, con-
trollability remains a challenge, particularly in sce-
narios involving multiple user-imposed conditions
or constraints. Current generative models like
DALL·E 3 (Betker et al., 2023) and SDXL (Podell

et al., 2023) still struggle to generate samples that
satisfy all conditions. These challenges underscore
the limitations of relying solely on larger models,
prompting the need to incorporate additional layout
planning components to better address the problem.

Evaluation Metrics To assess the quality of
the generated content, we employ six computa-
tional metrics: (1) Fréchet Inception Distance (FID)
(Heusel et al., 2017): Assesses the similarity be-
tween distributions of generated layouts and val-
idated layouts, capturing both the variety and fi-
delity of the generated layouts. We modified the
network structure to adapt the open-set layout. The
model is introduced in Appendix B.2. (2) MaxIoU
(Maximum Intersection-over-Union): this metric
assesses the overlap between the generated and
target layouts by calculating the average IoU of
the optimally matched element pairs. We adapt
the original definition by (Kikuchi et al., 2021),
focusing on matching layouts generated from the
same prompt rather than from the same set of labels.
For object layouts, we find the best-matched box
among the boxes that share the same label. Finding
exact matches is challenging for visual-text lay-
outs, where box labels are segments of phrases that
may be split differently. Therefore, we define the
closest match using the cosine similarity of CLIP
text features. (3) Failure rate: the proportion of
layouts generated by the LLM in an invalid format
that cannot be processed automatically. (4) Pre-
cision: Accuracy of correctly identified elements
within all extracted elements. (5) Recall: The ratio
of correctly identified elements within all ground
truth elements. (6) F-score: The harmonic mean of
Precision and Recall, balancing their contributions.

Settings To evaluate the effectiveness of text-to-
layout models, we use text-to-image generation
as a downstream task. We compare our method,
TextLap, with LayoutGPT (Feng et al., 2023) and
GPT-4-based baselines for close-set and open-set
text-guided layout generation. The naive base-
line is termed GPT-4, where we ask GPT-4 to
generate a layout for a given prompt with three
fixed examples to demonstrate the desired out-
put format. We introduce two additional base-
lines, GPT-4 (R) and GPT-4 (rCSS), for our ex-
periments designed to enhance in-context learning
for the GPT-4 model. These baselines employ co-
sine similarity of CLIP text features to identify
and retrieve the most relevant demonstration exam-
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Methods
Text prompts with target objects

FID ↓ MaxIoU ↑ Fail % ↓ F-score ↑
GPT-4 382.0 0.292 0.956 0.989
GPT-4 (R) 26.40 0.452 1.116 0.979
GPT-4 (rCSS) 37.45 0.459 1.116 0.969
LayoutGPT 248.0 0.435 0.000 0.959
TextLap-S128 18.64 0.454 2.151 0.974
TextLap-D128 13.54 0.475 0.398 0.983
TextLap-D1024 14.43 0.456 0.398 0.973
TextLap-Float 15.09 0.475 0.159 0.996
TextLap-CSS 19.32 0.458 0.000 0.998

Text prompts only
GPT-4 504.0 0.005 98.566 0.012
GPT-4 (R) 30.01 0.417 4.382 0.856
GPT-4 (rCSS) 39.17 0.427 1.594 0.867
LayoutGPT 265.7 0.416 0.000 0.900
TextLap-S128 20.67 0.452 1.116 0.976
TextLap-D128 14.77 0.267 25.976 0.537
TextLap-D1024 16.27 0.347 9.163 0.716
TextLap-Float 14.36 0.424 3.426 0.877
TextLap-CSS 18.69 0.440 0.080 0.979

Table 2: Comparative results of close-set layout genera-
tion with 80-class COCO labels

Methods
Text prompts with target objects

FID ↓ MaxIoU ↑ Fail % ↓ F-score ↑
GPT-4 291.8 0.330 1.347 0.979
GPT-4 (R) 48.59 0.421 1.925 0.974
GPT-4 (rCSS) 41.73 0.456 0.481 0.972
LayoutGPT 261.4 0.383 0.000 0.824
TextLap-D128 17.77 0.485 1.059 0.972
TextLap-D1024 21.18 0.467 0.385 0.949
TextLap-Float 18.16 0.456 0.481 0.937
TextLap-CSS 19.48 0.464 0.000 0.996

Text prompts only
GPT-4 398.4 0.006 95.091 0.011
GPT-4 (R) 78.03 0.155 9.047 0.315
GPT-4 (rCSS) 88.66 0.093 2.406 0.197
LayoutGPT 269.4 0.326 0.000 0.712
TextLap-D128 16.38 0.322 18.383 0.642
TextLap-D1024 18.34 0.349 10.298 0.714
TextLap-Float 16.67 0.309 3.272 0.633
TextLap-CSS 19.44 0.446 0.192 0.960

Table 3: Results on open-set layout generation with
LLM-augmented labels

ples from the InstLap-Train dataset for each test
prompt (Feng et al., 2023). They differ in their
approach to representing layout coordinates: GPT-
4 (R) uses lists of integers, while GPT-4 (rCSS)
adopts a CSS-like structure with a maximum value
of 128. We finetuned four TextLap variants with
different coordinate representations: discrete co-
ordinates on 128×128 and 1024×1024 canvases
(TextLap-D128, TextLap-D1024), floating-point
coordinates (TextLap-Float), and a CSS format
with a max value of 128 (TextLap-CSS). Addition-
ally, we trained a model with 128 new tokens for
discrete coordinates, called TextLap-S128.

RQ1: Does simply scale up the LLM help for
design problems? Table 2 presents the results
of TextLap models alongside three GPT-4-based
methods. In particular, TextLap models achieve
significantly lower layout FID scores compared
to GPT-4 baselines, highlighting the advantages
of fine-tuning. In the open-set generation results,
presented in Table 3, there is a notable decrease
in the retrieval scores for GPT-4 baselines when
objects are not specified in the prompt. This de-
cline could be attributed to the fact that, in close-set
experiments, the retrieval process often identifies
examples with matching objects, implicitly provid-
ing the necessary keywords in context. This shows
that task-specific models can potentially outper-
form larger models and simple scaling-up does not
help for design problems.

RQ2: What is the impact of different layout rep-
resentations? Among various TextLap variants,
TextLap-CSS stands out, outperforming all base-
lines by a considerable margin and demonstrating
high stability in object extraction. TextLap-S128
showed inferior performance, likely due to inad-
equate training data to effectively integrate new
weights. GPT-4 (rCSS) also exhibits the lowest fail-
ure rates among the baseline methods, consistent
with insights from previous studies by (Yang et al.,
2024; Feng et al., 2023; Tang et al., 2023), which
suggest that pre-trained large language models bet-
ter understand programming patterns, possibly due
to exposure to code snippets in their training data.

RQ3: Are special tokens of coordinates useful?
TextLap-S128, which incorporates special coor-
dinate tokens, performs well on closed-set data,
with a lower failure rate in text prompt-only set-
tings compared to TextLap-D128 and TextLap-
Float. However, it struggles in open-set generation,
likely due to the large number of new parameters
requiring more training data and time. As shown
in the loss curve in Figure 3, TextLap-S128 had
higher loss after the same number of epochs and
converged to a slightly higher loss even with ex-
tended training, indicating a need for more training
to achieve similar performance. Fine-tuning exist-
ing tokens, which are well-trained in LLMs and
handle arithmetic effectively, proves more efficient.
Thus, adding special tokens is less effective than
a CSS-based layout representation, especially for
open-set tasks, where large-scale pre-training may
help (Lv et al., 2023).
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Figure 3: Loss curve on close-set layout generation with
80-class COCO labels.

5.3 Visual Text Layout Generation
We evaluate the ability of our models in generat-
ing layouts for visual-text using the InstLap-Bench
set. Specifically, we compare TextLap-Float and
TextLap-CSS with GPT-4 and GPT-4 (rCSS). Ad-
ditionally, we benchmark our models against the
large language model (LLM) employed in TextD-
iffuser2, which is fine-tuned on the same 5,000
visual-text layout training samples, utilizing the
Vicuna-v1.5 7B checkpoint.

Methods MaxIoU (suc) ↑ MaxIoU ↑ Fail % ↓
GPT-4 0.231 0.206 10.778
GPT-4 (rCSS) 0.252 0.241 4.192
TextDiffuser-2 0.166 0.165 0.80
TextLap-Float 0.209 0.096 54.09
TextLap-CSS 0.211 0.211 0.00

Table 4: Results on text layout generation on the
InstLap-Bench.

Table 4 shows the results comparion between
TextLap and GPT-4. Given the high failure rates
of GPT-4 and TextLap-Float, we also present Max-
IoU (suc), which represents the average MaxIoU
across all successful generations. In particular,
TextLap-CSS achieves the lowest failure rate and
significantly outperforms TextDiffuser2 in Max-
IoU. However, it fails to outperform the GPT-4
baselines. This limitation is likely attributed to in-
sufficient training data, stemming from the limited
number of visual-text samples in the InstLap-train
dataset and the inconsistent distribution of layouts
between InstLap-train and InstLap-Bench.

5.4 Automatic Graphic Designs
We conducted an experiment on content-aware
graphic designs using the Crello dataset, where
canvas sizes varies for each design. For CSS for-
mat layouts with integer coordinates, we include

the canvas size in the prompt. We also normalize
box coordinates to decimal values between 0 and 1
("Float") and write layouts as JSON to leverage the
model’s code understanding. Figure 4 illustrates a
generated example using CSS forat, where TextLap
provides coordinates for each element given a text
instruction and a list of elements.

background { 
 left: 0px; 
 top: 0px; 
 width: 419px; 
 height: 298px; 
} 
imageElement { 
 left: 35px; 
 top: 43px; 
 width: 190px; 
 height: 241px; 
}

CSS style Layout Rendered Image

Background

1.imageElement is located 
in the middle left of 
the canvas. 

2.textElement1, and 
textElement2 is to the 
right of imageElement.

CSS style prompt

/* A text that says: "Arnold," */ 
textElement2 {width: 88px; height: 19px}

Spatial condition

/* A text says: "I heard you were */ 
/* feeling a little blue! Get well soon!” */ 
textElement1 { 

width: 117px;  
height: 75px}

/* A cartoon person blowing his nose into*/ 
/* a tissue. */ 
imageElement { 

width: 190px;  
height: 241px}

textElement1 { 
 left: 253px; 
 top: 133px; 
 width: 117px; 
 height: 75px; 
} 
textElement2 { 
 left: 268px; 
 top: 94px; 
 width: 88px; 
 height: 19px; 
}

Please arrange the layout of elements on a canvas 
with a width of 419 and a height of 298.  

/* The background is a light blue square with */ 
/* a white rectangle. */ 
background { 

width: 419px,  
height: 298px}

Figure 4: An example from InstLap that is built based
on the Crello dataset.

MaxIoU↑ Precision↑ Recall↑ F-score↑
GPT-4 (CSS) 0.190 0.874 0.257 0.364
GPT-4 (rCSS) 0.209 0.934, 0.296, 0.406
GPT-4 (Float) 0.457 0.980 0.980 0.980
GPT-4 (rFloat) 0.440 0.984 0.984 0.984
TextLap-CSS 0.407 0.998 0.986 0.990
TextLap-Float 0.535 1.000 1.000 1.000

Table 5: Results on automatic graphic design on Crello.

We compare TextLap with four GPT-4 baselines
that generate CSS and JSON-style layouts with
both integer and float coordinates. SBERT retrieves
demonstration layouts for the GPT-4 (rCSS, rFloat)
baselines. Table 5, shows TextLap significantly out-
performs its GPT-4 counterpart, demonstrating the
effectiveness of instruction fine-tuning. Addition-
ally, methods using float coordinates outperform
those using integer coordinates, likely due to the
complexity of adapting to different canvas sizes.

5.5 Impact of Layout on Text-to-Image
Generation

We evaluated the effect of layout guidance on text-
to-image generation using the COCO dataset. The
experiment compared three models: Stable Diffu-
sion 1.5, which serves as the layout-free baseline;
TextLap + InstanceDiffusion (Wang et al., 2024),
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Figure 5: Generated visual and textual layout planning examples. Layouts are provided by TextLap given text prompts
and images are rendered by ARTIST (Zhang et al., 2024a) and InstanceDiffusion (Wang et al., 2024) respectively.

Method Image FID GPT-Preference
SD 1.5 58.09 -
InstDiff (TextLap) 58.92 72%
InstDiff (True Layout) 58.39 76%

Table 6: Text-to-image generation results on the COCO
dataset. Layout-guided models are compared to the
layout-free baseline, Stable Diffusion (SD) 1.5.

where layouts are generated by our TextLap model
to guide InstanceDiffusion; and True Layout + In-
stanceDiffusion, where the actual COCO layout
is used for guidance. The models were evaluated
using two metrics. The first metric, Image FID,
measures the quality of the generated images by
comparing them to real images from the COCO
dataset, with lower FID scores indicating better
quality. The second metric, GPT-Preference, in-
volves presenting three images and the text caption
to GPT-4o: two images generated by a test model
and Stable Diffusion 1.5 using the same prompt,
and the real image used to generate the text caption
of the layout. GPT-4o compares the generated im-
ages to determine which has a more similar layout
to the real image and better coherence with the text
caption. The results, shown in Table 6, indicate that
layout guidance slightly impacts FID but improves
text-image alignment. TextLap + InstanceDiffu-

sion is preferred by GPT-4o 72% of the time, while
the true layout model achieves 76%.

5.6 Qualitative Evaluation
Examples of Object Layout Generation We
compare generated layouts between GPT-4 (rCSS)
and InstLap-CSS and further evaluate them based
on images rendered by InstanceDiffusion (Wang
et al., 2024), as shown in Figure D.1. Both GPT-4
and InstLap can generate layouts that follow the
constraints from the prompts. The advantages of
InstLap include: (i) generated layouts can simplify
the process of creating visually appealing images,
indicating that these layouts are of high quality and
more suitable for open-source rendering engines,
as reflected in evaluation metrics such as MaxIOU;
and (ii) InstLap offers customization based on user
needs through instruction tuning, with a model size
significantly smaller than GPT-4. Examples of text
layout generation are provided in Appendix F.

Emergent Visual-Text Layout Generation As
shown in Table 1, TextLap has been fine-tuned
for text layout designs in TextDiffuser-2 (Chen
et al., 2023a) and visual object designs on InstLap
based on MS COCO 2017 (Caesar et al., 2018). It
shows surprising generalization ability and emer-
gent visual-text joint layout planning ability. The

R1: Move svgElement2 (angel) to the right
R2: Move svgElement1 (envelope with heart) 

 to the top edge of the canvas
R3: Move textElement  

(“Be my Valentine”) upward by 80 px

Please arrange layout elements with given descriptions:  
[{element_name: background, caption: The background is a solid light blue color., width: 1.0, height: 1.0}, {element_name: svgElement1, caption: The image 
shows a stylized representation of a heart within a geometric frame. The heart is filled with a solid color, and the frame is outlined in a contrasting color., 
width: 1.0, height: 0.866}, {element_name: svgElement2, caption: The image is a cartoon illustration of a cherub with curly hair, a pink body, and a brown 
bow and arrow., width: 0.382, height: 0.648}, {element_name: textElement, caption: A text that says: Be myValentine, width: 0.656, height: 0.128}] 
Please ensure the following relationship: svgElement1 is located in the middle center of the canvas.

Figure 6: Examples of interactive layout design, where user gives instructions to TextLap.
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great generalizability comes from a carefully de-
signed dataset building strategy as described in
Section 3. Figure 5 shows examples of visual-text
layout generation, and more examples can be found
in Appendix F.

Interactive Layout Design Figure 6 and E.1
shows an example of an interactive layout design,
where the user can comment on existing layout
designs, and TextLap can generate a new layout,
fulfilling user requests. This is another emergent
ability, as TextLap is never fine-tuned on conversa-
tional data.

6 Conclusion

This study addresses the text-to-layout task by cre-
ating an instructional dataset built upon available
resources with the assistance of GPT-4v to fine-
tune a large language model for layout planning.
The fine-tuned model, TextLap, outperforms GPT-4
in object layout planning and can generate layouts
with both text and object when trained on text-
only and object-only layouts. TextLap provides a
framework to addressing real-world graphic design
challenges by building instruction-following layout
datasets. It is desired if the image rendering mod-
els can be finetuned or jointly trained with InstLap.
However, it is beyond the scope of this paper as
InstLap aims to unveiling the graphic design ability
of large language models.

7 Limitations

The limitations of the paper are caused by the de-
sign of the dataset and the model architecture. In-
stLap is a dataset created with complex heuristics
and the help of large language models. There is
still a quality gap between InstLap and high-quality
human annotations. However, InstLap is much
cheaper to build and can serve as a pioneer dataset
to quickly verify whether language models can per-
form automatic graphic designs. TextLap uses the
standard LLM architecture, and a special design
with 2D spatial embedding layers should provide
better performance. It is very expensive to pretrain
such a model and is beyond the scope of this paper.

8 Ethics Statement

Our paper introduces a new instruction tuning
dataset, which acknowledges the potential ethical
implications inherent in using large language mod-
els for such applications.We have taken compre-
hensive steps to ensure that our research adheres

to the highest ethical standards, particularly with
respect to data privacy and responsible use of AI.
This ethics statement reflects our dedication to con-
ducting responsible research and our commitment
to advancing the field of AI in a manner that re-
spects individual privacy rights and promotes the
ethical use of technology.
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Appendix

A Comparison between Annotations in COCO and InstLap

The key objective behind the development of the InstLap dataset is to ensure consistency in spatial
relationships and object naming between captions and bounding box annotations. This alignment is
critical for accurately mapping visual elements to descriptive captions, which is particularly important for
tasks involving layout understanding.

To highlight the difference between datasets, consider the following five human-generated captions
from the COCO dataset:

• "A picture of a dog laying on the ground."

• "Dog snoozing by a bike on the edge of a cobblestone street."

• "The white dog lays next to the bicycle on the sidewalk."

• "A white dog is sleeping on a street and a bicycle."

• "A puppy rests on the street next to a bicycle."

While these captions provide descriptive information, they lack the consistency between annotations.
In contrast, the InstLap dataset provides coherent and detailed captions with precise layout annotations,
enabling a tighter alignment between descriptions, spatial relationships, and object details:

• Close-set caption: "A dog is lying on the ground on the right with a bicycle parked to the left."
Objects: [bicycle, dog]

• Open-set caption: "A sleepy labrador is lying on the ground on the right with a cherry red bicycle
parked to the left."
Objects: [cherry red bicycle, sleepy labrador]

B Implementation Detail

B.1 Training Detail

All models are trained using eight NVIDIA A100 80GB GPUs. We use the default configuration load
from the pre-trained Vicuna model. In fine-tuning, we use a cosine annealing schedule with an initial
learning rate of 2e-5 and a batch size of 32. This set of hyperparameters is adopted across all checkpoints.

B.2 Open-Set Layout Encoder for FID Score Calculation

The FID score evaluates the quality of generated data by measuring the distance between feature vectors
of real and generated samples, which requests a feature encoder that captures the position and semantic
details of layout elements in a single vector. Adapting from the close-set approach by (Kikuchi et al.,
2021), we develop our feature encoder for open-set layouts. The model uses a transformer-based encoder-
decoder backbone, which encodes a sequence of layout elements to a feature vector and uses the decoder
to reconstruct the input sequence. The feature is also trained to discriminate between clean and noisy
layouts. Specifically, each element x = [b,CLIP(s)] is defined as a four dimension bounding box b
consisting of the left, top, right, bottom coordinates and the CLIP (Radford et al., 2021) text feature of
the phrase s of the element. The model is trained by three losses: A binary cross-entropy loss as the
discrimination loss and a reconstruction loss consisting of a mean cosine distance loss for CLIP features
and a mean square error loss for bounding boxes.
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C Additional Quantitative Results

Table C.2 presents the results that combine open-set and close-set prompts, where TextLap models exhibit
similar performance. This consolidation of results further underscores the consistent performance of
TextLap models, showing that smaller LLMs customized for specific tasks can beat huge general LLMs,
such as GPT4V.

Testing Methods
Captions with target objects

FID ↓ MaxIoU ↑ Fail % ↓ Precision ↑ Recall ↑ F-score ↑
GPT-4 382.0 0.292 0.956 0.989 0.989 0.989
GPT-4(r) 26.40 0.452 1.116 0.979 0.980 0.979
GPT-4(rCSS) 37.45 0.459 1.116 0.969 0.971 0.969
TextLap-S128 18.64 0.454 2.151 0.972 0.977 0.974
TextLap-D128 13.54 0.475 0.398 0.995 0.979 0.983
TextLap-D1024 14.43 0.456 0.398 0.993 0.966 0.973
TextLap-F 15.09 0.475 0.159 0.996 0.997 0.996
TextLap-CSS 19.32 0.458 0.000 0.998 1.000 0.998

Captions only
GPT-4 504.0 0.005 98.566 0.012 0.012 0.012
GPT-4(r) 30.01 0.417 4.382 0.838 0.900 0.856
GPT-4(rCSS) 39.17 0.427 1.594 0.842 0.925 0.867
TextLap-S128 20.67 0.452 1.116 0.977 0.980 0.976
TextLap-D128 14.77 0.267 25.976 0.538 0.540 0.537
TextLap-D1024 16.27 0.347 9.163 0.718 0.719 0.716
TextLap-F 14.36 0.424 3.426 0.878 0.882 0.877
TextLap-CSS 18.69 0.440 0.080 0.983 0.981 0.979

Table C.1: Comparative results of close-set layout generation with 80-class COCO labels

Testing Methods
Caption with target objects

FID ↓ MaxIoU ↑ Fail % ↓ Precision ↑ Recall ↑ F-score ↑
GPT-4 334.3 0.309 1.133 0.985 0.984 0.984
GPT-4(r) 27.99 0.438 1.482 0.977 0.978 0.977
GPT-4(rCSS) 32.54 0.458 0.828 0.970 0.972 0.971
TextLap-D128 8.49 0.479 0.697 0.991 0.973 0.978
TextLap-D1024 10.52 0.461 0.392 0.983 0.953 0.962
TextLap-F 9.96 0.466 0.305 0.969 0.970 0.969
TextLap-CSS 12.53 0.461 0.000 0.997 0.999 0.997

Caption only
GPT-4 394.1 0.005 96.992 0.011 0.013 0.011
GPT-4(r) 43.07 0.298 6.495 0.589 0.664 0.611
GPT-4(rCSS) 53.38 0.276 1.962 0.543 0.610 0.563
TextLap-D128 8.46 0.292 22.537 0.587 0.587 0.585
TextLap-D1024 10.75 0.348 9.677 0.718 0.717 0.715
TextLap-F 9.74 0.372 3.357 0.768 0.771 0.767
TextLap-CSS 12.46 0.443 0.131 0.974 0.972 0.970

Table C.2: Comparative results on layout generation with both close-set and open-set labels.
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D Qualitative Comparison with GPT-4 Results

Figure D.1: Comparison between TextLap-CSS and GPT-4 (rCSS). Images are rendered by InstanceDiffu-
sion (Wang et al., 2024) given layouts.

E Examples of Interactive Editing

Initial prompt: a stainless steel microwave is in the foreground on the left, a flat screen TV is in the background on the 
upper right, and a blonde woman is seated to the right of the stainless steel microwave.

R1: Could you change the microwave to smaller 
boxes and give me the complete layout?

R2: Could you move the TV 
to the upper left? 

R3: Could you add another 
woman with black hair?

Figure E.1: Examples of interactive layout design on COCO dataset, where user gives instructions to
TextLap.

F Examples of Text Layout Generation

Figure F.1 shows examples of text and visual layout generation, where InstCap can detect keywords,
objects and plan their locations within the image.

a woman dressed in a long gown standing in a room with a 
chair and curtains, and the title ‘Legacy of mercy’ by ‘LYNN 
AUSTIN’ at the bottom.

a wicker basket on a sandy beach with a stormy sky in the 
background, the title 'Duma Key' and 'Novella' under it, and 
'Stephen King' on the left.

Figure F.1: Examples of generated layout including both visual and textual elements by TextLap. Green boxes are text
elements and Red boxes are visual elements of the generated layouts.
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a big white deer on the left, with a 
snowy and starry sky. 'THE BOOK OF 
DUST CRATE' is the title of the special 
edition book.

the title 'LIGHT FROM DISTANT 
STARS' and the author name 
'SHAWN SMUCKER' are displayed 
on the book cover.

THE SEATTLE TIMES COOKBOOK' is the 
major text and there are various cooking 
ingredients in the background.

an impressionist painting of a 
drawbridge and a sunken canoe in the 
center, with the title 'Van Gogh' and 
author 'Ingo F. Walther' on top, and 
'Taschen' at the bottom.

Figure F.2: Examples of designing text layouts where visual elements are generated based on the prompts.
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