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Abstract

While coreference resolution is traditionally
used as a component in individual document un-
derstanding, in this work we take a more global
view and explore what can we learn about a do-
main from the set of all document-level corefer-
ence relations that are present in a large corpus.
We derive coreference chains from a corpus
of 30 million biomedical abstracts and con-
struct a graph based on the string phrases within
these chains, establishing connections between
phrases if they co-occur within the same coref-
erence chain. We then use the graph structure
and the betweeness centrality measure to distin-
guish between edges denoting hierarchy, iden-
tity and noise, assign directionality to edges de-
noting hierarchy, and split nodes (strings) that
correspond to multiple distinct concepts. The
result is a rich, data-driven ontology over con-
cepts in the biomedical domain, parts of which
overlaps significantly with human-authored on-
tologies. We release the coreference chains and
resulting ontology 1 under a creative-commons
license, along with the code 2.

1 Introduction

Ontologies categorize concepts into groups and ar-
ranges them in a hierarchy and are essential for re-
searchers in the biomedical domains (Bodenreider
and Burgun, 2005; Rubin et al., 2008; Matentzoglu
et al., 2022), as evidenced by the vast number of
ontologies available in repositories such as BioPor-
tal3. These ontologies are predominately human
curated, they each contains a collection of concepts
arranged in a hierarchy, and for each concept a list
of aliases, which are different equivalent names
for this concept. While useful, such ontologies

1https://huggingface.co/spaces/biu-nlp/
Data-driven_Coreference-based_Ontology

2https://github.com/ShirApp/
Coreference-based-Ontology-Building

3https://bioportal.bioontology.org/

Figure 1: Resulting Ontology Example that may reflect
the type of structure achievable using our method.

have deficiencies: being manually curated they are
both expensive to create and maintain and also non-
comprehensive; they do not cover all areas of inter-
est a researcher may be interested in, especially for
long-tail interests (for example, BioPortal does not
contain an ontology containing a comprehensive
list of peptides); and the concept names and their
aliases may not be aligned with how the concepts
appear in text, reducing their utility for text mining
applications (Blair et al., 2014) (for example, the
UMLS ontology entry for “Alzheimer’s disease”
does not contain the string “alzheimer”, although
it is a very common way to refer to this condition
in text). Thus, a data-driven, text-based ontology
derived directly from the scientific literature can be
of immense value: (a) it will provide coverage of
all (or most) the concepts that appear in the text,
including long-tail ones, arranged in hierarchies
based on their actual use in scientific texts; (b) con-
cepts names and aliases will be naturally aligned
with their text appearances; and (c) they can aid
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manual creation, extension and maintenance of ex-
isting ontologies by surfacing areas of deficiencies
in coverage, and suggesting alternative hierarchies
and potentially missing entries.

In this work we propose to create such a data-
driven ontology from text, using a novel signal:
the topology of a graph created by running in-
document coreference resolution over scientific
documents, and creating a graph where nodes are
textual strings and edges represent that the two
strings participated in a coreference chain. We
show that his graph’s topology contains rich infor-
mation which allows to identify concepts, aliases
and hierarchies like the ones in the Figure 1.

We exploit the dynamics of phrase co-occurrence
within the graph, observing a correlation between
a phrase’s contribution to information flow and its
level of generality. Therefore, our approach cen-
ters on a single centrality measure, specifically be-
tweenness centrality (Freeman, 1977), aimed at un-
derstanding information flow. This measure guides
the transformation of the graph into a directed struc-
ture, establishing the framework for ontology con-
struction.

2 Coreference-based Ontology
Construction

2.1 Coreference Graph Construction

We run a coreference resolution algorithm (Otmaz-
gin et al., 2023)4 on each of 30M PubMed abstracts
to extract coreference chains from each abstract.
Each coreference chain is a list of phrases that oc-
cur in the same document, and were determined by
the coreference algorithm to co-refer to the same
concept.

We filter phrases that correspond to pronouns
and stop words (as determined by SciSpacy (Neu-
mann et al., 2019) and NLTK (Bird et al., 2009)), re-
move stop-words, pronouns, determiners and quan-
tifiers from the beginning of phrases, and unified
singular and plural versions of phrases. We further
remove phrases which we determine to contain only
verbs, as these stem mostly from coreference mis-
takes, and do not correspond to entities. We then
designate each of the unique remaining phrases as
nodes, and connect two nodes if their phrases co-
occur in the same coreference chain, weighing the
edge by the number of chains in which this pair co-

4We selected this algorithm for its highly efficient runtime,
with minimal impact on performance, which is crucial for
handling large corpora like those used in our experiments.

occurs. (The same phrase may appear in different
documents, hence participating in multiple chains)

The resulting graph G has over 3 million nodes
and approximately 7 million weighted edges.

2.2 Ontology Extraction
Our aim is to take the corefence graph G and ex-
tract an ontology: a directed acyclic graph where
each node corresponds to a concept, and an edge
from node B to node A indicates that A is more
specific than B (“A is a B”). Each node is associ-
ated with one or more strings which are aliases for
this concept. To extract an ontology from G, we:

1. Identify equivalence relations between nodes,
which will form the aliases. We do this by
marking some edges in G as indicating iden-
tity.

2. Mark the remaining edges in G as indicating
a hierarchy, and assign them a direction.

3. Split some nodes where the same string corre-
sponds to multiple distinct concepts.

4. Tag some edges in G as noisy or irrelevant.

At a high level, we utilize estimated betweenness
centrality values of the nodes to determine the kind
and direction of each edge in the graph, thereby
transforming the graph into a Directed Acyclic
Graph (DAG), from which we will derive the on-
tology.

Betweenness Centrality as a Main Measure
The coreference graph is undirected, and we wish
to assign edges with direction that indicate IS-A
relations. A major observation is that phrases that
denote concepts that are higher-up in the IS-A hier-
archy (are more general) co-occur in many differ-
ent coreference clusters, and with many different
phrases, while phrases that are more specific be-
long in only few clusters, with a more restricted set
of phrases (e.g., concepts like "disease" will appear
in many clusters denoting specific diseases, "lung
diseases" will appear with "disease" as well as with
many specific lung diseases, while "asthma" may
share a cluster with "diseases" and with "lung dis-
ease", but likely not with other lung diseases). Con-
sequently, if we choose two random nodes in the
graph, if there is a path between them it either goes
directly from the less specific to the more specific
one, or it goes to a common shared parent (which
is more general than both) and then back. Thus,
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we expect the more general concepts to be on more
paths connecting pairs of nodes in the graph. This
is precisely the notion that is captured by the be-
tweeness centrality measure.

Therefore, the first step in establishing the edge
direction is to compute the betweeness centrality
score of each node, and assign the direction of an
edge to be from the the node with higher centrality
(more general nodes) to one with lower centrality.
When both nodes havea centrality score of zero
(these nodes don’t connect different concepts) we
denote them as identity edges.

As exact centrality computation is expensive—
O(V 2 + V × E) when using the fast algorithm of
Brandes (2001)—and our graph is large, we opted
for an approximate solution that relies on perform-
ing a restricted number of shortest-path computa-
tions above a small set of randomly chosen pivots
(Brandes and Pich, 2007). Using this approxima-
tion with 500 pivots works well for our purpose
without reducing accuracy, as we use centrality
scores only for computing relative ordering, rather
than needing the exact values (as also detailed in
Appendix A).

From Graph to DAG Roughly 70% of the nodes
have a betweenness value of 0, suggesting they
function as leaves in the DAG hierarchy. This is
while 240,000 of the edges in the graph connect
such nodes. Consulting a random sample of edges
reveal that they indeed connect aliases of the same
concept. We subsequently mark these edges as
(unordered) identity edges, indicating alises. The
rest of the edges (6.7 million edges) are marked
temporarily as indicating a hierarchy, and we assign
direction from the node with higher betweeness
score to the one with the lower score. (In the next
steps, we will reveal that some of these "hierarchy
edges" are actually identity edges or noise, and we
relabel them as such.)

Betweenness Centrality Challenges Using be-
tweenness centrality for determining edge direction
is sensitive to common nodes that represent specific
entities. These nodes often exhibit higher between-
ness than their neighbors, leading to misleading
hierarchical relations. We identified three instances
of this:

1. A node that co-occurs with other phrases in
coreference chains more frequently than its
more general neighbor (e.g., "COVID-19" vs.
"epidemic"), as illustrated in Figure 4.

2. A specific entity name appears more fre-
quently than its aliases (e.g., "gys2" vs.
"glycogen synthase 2"), as depicted in Fig-
ure 5.

3. A node shares a common name with multiple
entities (e.g., "IL" for "Illinois," "IL-6," "IL-
8"), as shown in Figure 6.

The first case leads to incorrect hierarchy direc-
tion, while the second leads to incorrect tags.

For the first case, we establish that names are
more specific than general nouns, so we change the
direction of edges from nouns to names, correcting
around 200,000 edges5.

We failed to tag edges as identity in cases 2 or
3 due to their substructure in the graph. All edges
to neighbors were wrongly marked as hierarchical
instead of identity, and case 3 also involves string
ambiguity, causing incorrect paths. Our goal is to
fix these tags and paths. Identifying these cases
requires finding all names with children. Case 2
involves one concept, while case 3 has at least
two distinct senses. We group nodes into concepts
using semantic representations, ensuring nodes of
the same entity are closer. For case 3, we split the
ambiguous node into separate concepts.

We designed Algorithm 1 to resolve incorrect
substructures by grouping strings into distinct en-
tities. We embed the node n and its children
C = c1, c2, . . . , cl using a language model6, cap-
turing their semantic similarities. Next, we create a
KNN subgraph, where n and ci ∈ C are the nodes,
and each is connected by an edge to its k closest
neighbors. The resulting subgraph captures rela-
tions between phrases based on their semantic simi-
larity, meaning that strongly connected phrases are
more likely to refer to the same entity. The Louvain
algorithm (Blondel et al., 2008) is then applied to
the subgraph to detect communities (dense areas)
representing distinct senses, allowing us to split
nodes accordingly, if necessary. Finally, each com-
munity is treated as a concept. If one community
is detected (case 2), we merge n and ci ∈ C into a
single concept. Otherwise (case 3), each detected
community is treated as a separate concept, and n
is split into different nodes (with the same string)

5Names are identified based on capitalization; consistently
capitalized terms are names, while others are nouns.

6We used the S-BERT model (Reimers and Gurevych,
2019) from (Deka et al., 2022), trained on health data. The
only input to the model was the phrase itself.
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for each concept. During this process we tagged
about 230,000 edges from hierarchical to identity.

Cleaning noisy edges We observe unwanted
noisy edges in the graph that connect very com-
mon phrases (e.g. "group" and "variant") that are
not supposed to be connected. These edges arise
from pairs of phrases that are mistakenly assigned
to the same coreference cluster.

In these cases, the erroneous relations are due to
mistakes made by the coreference annotator, and
their edges have much lower weight compared to
other relations in which their respective nodes par-
ticipate. We therefore used the PMI measure (Fano
and Hawkins, 1961) to calculate the association be-
tween each pair of connected phrases. Edges whose
association was less than expected by chance, i.e.,
those with negative PMI values, were filtered out.

Let the probability P (phrasei) be defined as
the ratio of the count of co-occurrences of phrase
phrasei with other phrases to the total num-
ber of co-occurrences of all phrases in the cor-
pus: P (phrasei) =

count(phrasei)∑N
k=1 count(phrasek)

where N

is the total number of distinct phrases in the
corpus. Let us also denote the joint proba-
bility P (phrasei, phrasej), which is defined as
the number of co-occurrences of phrases phrasei
and phrasej divided by the total number of co-
occurrences in the corpus: P (phrasei, phrasej) =
count(phrasei,phrasej)∑N

k=1 count(phrasek)
We calculated the PMI for each

pair of phrases connected by an edge in the
graph as follows: PMI(phrasei, phrasej) =

log
(

P (phrasei,phrasej)
P (phrasei)·P (phrasej)

)
. We identified approxi-

mately 350,000 such edges and labeled them as
noise.

The Final Graph Overall, we were able to label
over 6 million graph edges. We marked most of
them as indicating an identity or hierarchy relation,
and the rest as noise. We found the hierarchical
relation to be much more common in our graph.
We marked approximately 5.3 million edges as
directed edges indicating a hierarchy, and about
440,000 as identity edges. The rest of 350,000
edges are tagged as noise.

3 Evaluation and Results

Evaluating the quality of the resulting graph is
challenging, as there is no ground-truth to com-
pare to (McCrae, 2009). Still, we compare our
results to existing human curated ontologies in the

biomedical domain (UMLS (Bodenreider, 2004)
and SnomedCT (Bodenreider et al., 2018)), and
assess how well we manage to capture concepts
from them. UMLS provides aliases for identity
nodes, while SnomedCT provides hierarchical re-
lations and directions between concepts. If these
resources were perfect, we wouldn’t need to create
the data-driven one to begin with. We thus combine
automatic metrics with human evaluations.

Evaluating Hierarchy Assignments We com-
pare ourselves to SnomedCT, an ontology with
1.4M medical phrases and 1.7M corresponding "is
a" relation tuples. We consider only edges between
the strings that are available in both SnomedCT
and our data resulting in 226,278 edges for evalu-
ation. Let correct denote the number of predicted
hierarchy edges that participate in the same hierar-
chy in SnomedCT (there is a directed path between
them in SnomedCT). We compute precision as cor-
rect / all predicted hierarchy edges, and recall as
correct / all edges that are marked as hierarchy
in SnomedCT. We achieve a high recall of 84.3%,
with a lower precision, at only 40.1%. However,
examining the precision error reveals that many
cases stem from valid disagreements between the
resources. For example, our graph places "defibril-
lation" under "procedure", which is not reflected in
SnomedCT. We thus sample 100 random hierarchy
edges and annotate them manually (not compared
to SnomedCT), revealing a substantially higher
precision of 75%.

Hierarchy Edge Direction Evaluation For hier-
archy edges whose end-points are reachable also in
SnomedCT, we find the edge direction is consistent
with SnommedCT in 92.1% of the cases.

Identity-edge Evaluation Finally, we evaluate
the accuracy of the identity edges, which represent
aliases. Here, we value precision over recall: it is
better to miss an alias than to introduce an incorrect
one: mistaking an alias relation for a hierarchical
one is not as bad as erroneously equating two con-
cepts. Here, we compare to UMLS aliases, focus-
ing on the 29,798 strings that are shared between
our ontology and UMLS. We treat identity edges as
inducing clusters, evaluate the clustering using two
metrics: entropy, to measure the homogeneity of
the predicted clusters compared to a gold standard
(lower means more homogeneous) and Adjusted
Rand Index (ARI) to measures similarity between
our clustering and UMLS’s. We obtain an entropy
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Algorithm 1 Split and Classify Names with Hierarchical Behavior to Senses Algorithm
1. Identify all nodes that are names (starting with a capital letter) and are hierarchical in our DAG (have

children).

2. For each node n, and its children C = {c1, c2, . . . , cl}:

(a) Embed each string in V = {n} ∪ C using an LLM.
(b) Create a nearest neighbour graph over V , where each node has an edge to its k closest nodes.
(c) Use the Louvain algorithm to find the communities, representing the senses.
(d) Split n into |communities| nodes and unify each split with a community. The split node would

inherit only the common parents with the concept it is connected to.

Ontology Task Measure Score
SnomedCT Hierarchy edges Precision 0.401

Recall 0.842
F1 0.541

Hierarchy Directions Precision 0.921
UMLS Identity edges Entropy 0.406

ARI 0.387

Table 1: Our results compared to other ontologies
show that we successfully identified the majority of hier-
archy edges, with a small number of errors in concepts.

of 0.406 for the predicted clusters, suggesting the
clusters are reasonably pure (do not contain many
erroneous entries). Moreover, the moderate ARI
score of 0.387 indicates that our clusters are also
split well.

The evaluation suggests our approach aligns well
with established ontologies. Human assessments
of hierarchical edges and entropy metrics indicate
near-precision, while recall and ARI measures sug-
gest the extracted ontology is close to complete.

4 Related Work

Ontology learning, essential for many applications,
has traditionally relied on linguistic approaches,
using pattern extraction and syntactic analysis com-
bined with statistical methods. While syntactic
patterns can be effective, they often require hu-
man intervention. A well-known example is (Fell-
baum and Miller, 1998), which designed a pro-
cess to extract patterns for specific relations from
phrase pairs. Some works apply syntactic anal-
ysis by parsing dependency trees to extract rela-
tions and build ontologies automatically, as seen
in (Ciaramita et al., 2005; Gamallo et al., 2002).
Statistical methods like (Drymonas et al., 2010)
use hierarchical clustering for taxonomy building
and conditional probabilities for non-taxonomic re-
lations, while (Faure and Nédellec, 1998) applies
conceptual clustering to automatically acquire and

organize subcategorization frames.
These techniques differ from ours by focus-

ing on local relations, while we make use of
global signals—cross-document-level coreference
relations—to identify relationships more globally
within the corpus.

Recent studies have explored using large lan-
guage models (LLMs) for ontology building due
to their ability to capture contextual information
(Brown et al., 2020; Devlin et al., 2019; Achiam
et al., 2023). For example, (Giglou et al., 2023)
applied a zero-shot prompting approach to term typ-
ing, taxonomy discovery, and relation extraction,
while (Funk et al., 2023) used ordered prompts to
construct concept hierarchies. Both studies show
that while LLMs can aid ontology learning, they
cannot yet construct ontologies independently.

5 Conclusions

We demonstrated that a text-based, data-driven
biomedical ontology7 can be created by consid-
ering the topology of a coreference graph obtained
from a large corpus. Furthermore, we achieved this
primarily through the use of a single centrality mea-
sure. A significant contribution of this approach is
its generality, allowing for easy adaptation to other
fields. Additionally, our method is scalable and
can be implemented for networks of varying sizes.
Compared to existing ontologies, we obtain very
accurate directionality and high recall of hierar-
chical structure. We also find accurate hierarchical
relations that are not reflected in the human-curated
ontologies. In future work, our automatically con-
structed ontology could be applied to downstream
tasks.

7https://huggingface.co/spaces/biu-nlp/
Data-driven_Coreference-based_Ontology
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6 Limitations

Evaluation difficulties. Assessing our unsuper-
vised approach poses challenges in achieving a
comprehensive and scalable evaluation. Direct
comparisons to established ontologies are com-
plicated, as these may not fully capture diverse
language usages present in extensive corpora. Man-
ual evaluations, limited by scalability, may not be
wholly representative of our graph’s overall quality.

Error Propagation. The propagation of errors or
inconsistencies from the corpus into the ontology
might compromise its quality and accuracy.

7 Ethics Statement

We do not identify ethical concerns with this work.
The resulting ontology is useful but not perfectly
accurate, and must be used with care and using
human oversight.
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A Centrality Approximation for
Betweenness in Large Networks

A.1 Overview of Betweenness Centrality
Betweenness centrality (Freeman, 1977) is a cen-
trality measure that aids, among other things, in
the analysis and characterization of graphs. It is
particularly valuable in networks where intermedi-
aries play a crucial role in facilitating information
flow or identifying connectivity. At its core, be-
tweenness centrality quantifies the significance of a
node within a network by assessing how frequently
it lies on the shortest paths between other nodes.
Mathematically, for a given node v, its betweenness
centrality BC(v) is defined as:

BC(v) =
∑

s ̸=v ̸=t

σst(v)

σst

where σst denotes the total number of shortest
paths from node s to node t, and σst(v) represents
the number of those paths that pass through node
v.

However, computing the betweenness centrality
for each node in the graph requires calculating all
shortest paths between pairs of nodes. The fastest
known algorithm for this task (Brandes, 2001) has
a time complexity of O(V 2 + V × E).

A.2 Approximation Algorithm
As networks scale in size, such as in our case, the
number of shortest paths that must be computed
is huge, making exact calculations infeasible. A
practical solution is to employ an approximate be-
tweenness centrality calculation. This approach is
particularly valid when only relative importance is
required, as is the case in our work where we aim
to establish an order among the nodes.

To address the computational cost, we sought
an appropriate approximation that could dramati-
cally reduce the number of computations while still
allowing us to create the desired order. The only
approximation that is adapted to large network as
ours is (Brandes and Pich, 2007), which proposes
a solution that relies on performing a limited num-
ber of shortest-path computations over a small set
of randomly chosen pivots. By focusing on this
smaller subset, the number of path computations
is significantly reduced, yielding a complexity of
O(k(V + E)), where k represents the number of
sampled nodes. Increasing k enhances accuracy but
may also extend computation time. The main con-
straints in their framework indicate that the number

of pivots should be greater than log(V ) and that
the graph’s diameter should be constant, conditions
that our case satisfies.

A.3 Experimental Results
Accuracy of Results. Since the algorithm assists
in creating a DAG, we evaluated its performance
based on two criteria. The first criterion is its ac-
curacy in determining the direction of edges in the
graph that represent hierarchical relations within
the ontologies we compared. The second criterion
assesses its accuracy in identifying leaves that are
connected to the same concept. We found both
metrics to have high scores for k = 500: 91.3 for
the direction of edges and 86.7 for the accuracy of
the connected leaves.

Consistency of Results. To measure approxima-
tion consistency and variability, we executed the
algorithm 5 times on our graph, using different
k values: 100, 500, 1,000, 2,000, 2,500. We calcu-
lated the order for each edge in each run and dis-
covered that only 6% of all edges were conflicted
(at least one run disagreed with the others regard-
ing the edge direction). Furthermore, only 0.01%
of the cases lacked consensus, with no majority of
more than 2

3 of the runs agreeing on the direction.

B Figures

Here are some figures that may clarify our intu-
itions and solutions presented in the paper.
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Figure 2: Co-occurrence behavior example demonstrating why the more general the phrase, the more central the
phrase. Each phrase can appear with any of the phrases that are more specific than it, making a phrase like "disease"
a bridge between communities that is much more central than "breast cancer" in our graph.
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Figure 3: Example of directions assignment to the edges in the graph. The upper graph demonstrates the
connections between phrases that appeared in our corpus, and their betweeness centrality (BC) values in this graph.
The one below shows the result of a directed graph using them.
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Figure 4: Fixing Edge Direction in cases where a name (e.g., "COVID-19") co-occurs with others in coreference
chains more frequently than its general phrase neighbor (e.g., "epidemic"). Our solution (on the right) for correcting
the directionality in these cases helps make the paths more accurate (The gray background represents a concept)

Figure 5: Union Nodes to a Concept when a common name (e.g., "gys2") is incorrectly identified as being more
hierarchical than its alias neighbors. Our solution (on the right) that is based on semantic similarity representations
helps in solving such cases. (The gray background represents a concept)

Figure 6: Splitting Nodes with Multiple Senses when an abbreviation (e.g., "IL") needs to be split into separate
alias nodes for its different meanings (e.g., "Israel" and "IL-9"). Our solution is depicted on the right, showing the
rearrangement of the subgraph into concepts, using the semantic similarity representations (The gray background
represents a concept.)
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