
Findings of the Association for Computational Linguistics: EACL 2024, pages 14533–14549
November 12-16, 2024 ©2024 Association for Computational Linguistics

Style-Compress: An LLM-Based Prompt Compression Framework
Considering Task-Specific Styles

Xiao Pu
University of California, Santa Barbara

xiao_pu@ucsb.edu

Tianxing He∗
Tsinghua University

hetianxing@mail.tsinghua.edu.cn

Xiaojun Wan∗

Peking University
wanxiaojun@pku.edu.cn

Abstract

Prompt compression condenses contexts while
maintaining their informativeness for different
usage scenarios. It not only shortens the in-
ference time and reduces computational costs
during the usage of large language models,
but also lowers expenses when using closed-
source models. In a preliminary study, we dis-
cover that when instructing language models
to compress prompts, different compression
styles (e.g., extractive or abstractive) impact
performance of compressed prompts on down-
stream tasks. Building on this insight, we pro-
pose Style-Compress, a lightweight framework
that adapts a smaller language model to com-
press prompts for a larger model on a new task
without additional training. Our approach it-
eratively generates and selects effective com-
pressed prompts as task-specific demonstra-
tions through style variation and in-context
learning, enabling smaller models to act as effi-
cient compressors with task-specific examples.
Style-Compress outperforms two baseline com-
pression models in four tasks: original prompt
reconstruction, text summarization, multi-hop
QA, and CoT reasoning. In addition, with
only 10 samples and 100 queries for adapta-
tion, prompts compressed by Style-Compress
achieve performance on par with or better than
original prompts at a compression ratio of 0.25
or 0.5.

1 Introduction

The rapid advancement of large language models
has revolutionized natural language processing, en-
hancing both text understanding and generation
capabilities (Yang et al., 2024; Min et al., 2023).
Despite these advancements, the increased size of
these models has resulted in longer inference time,
higher computational cost, and greater environmen-
tal impact. Additionally, the token-based fees as-
sociated with closed-source models such as GPT-4

*These authors are co-corresponding authors.

(OpenAI, 2023) and Claude (Anthropic) further
emphasize the need for more efficient solutions.

These challenges highlight the necessity for re-
search into efficient inference techniques, with
prompt compression emerging as a promising ap-
proach to mitigate these issues by reducing the
length of input prompts while still maintaining per-
formance. Previous research has explored com-
pressing contexts into soft prompts (Wingate et al.,
2022; Chevalier et al., 2023), however this method
is ineffective for black-box models. Other studies
have focused on task-agnostic prompt compression
by identifying and pruning redundant tokens using
perplexity as an important metric (Li et al., 2023;
Jiang et al., 2023). This task-agnostic paradigm
naturally encounters difficulties in adjusting to spe-
cial characteristics of end-tasks. On the other hand,
compression methods tailored for certain tasks (Xu
et al., 2023; Jung and Kim, 2024) require additional
training and are challenging to transfer to other
tasks. Due to these challenges, we aim to propose
a training-free prompt compression framework that
can automatically adapt a generative prompt com-
pressor to end tasks, with minimal data for adap-
tion.

Our key intuition is that different tasks prefer
compressed prompts with different styles, e.g., ex-
tractive or abstractive (as shown in Figure 1), and
the performance of prompt compression can be
improved by iteratively learning to compress in
the style beneficial to a specific task. Based on it,
we propose a novel, lightweight framework, Style-
Compress, which adapts smaller language models
and compresses prompts for larger models in differ-
ent downstream tasks without additional training.
Our approach leverages the generative capabilities
of smaller models and enhances their task-specific
compression through iterative style variation and in-
context learning. Specifically, our method involves
iteratively generating and selecting representative
compressions as demonstrations, enabling smaller

14533

Figure 1: Our Motivation: Different usage scenarios
benefit from different styles of prompt compression.
For example, the retrieval QA task prefers compressed
prompts that are extractive and fluent, whereas CoT rea-
soning favors compressed prompts that are abstractive
and maintain a structured format. Therefore, we aim
to automatically tailor prompt compression to specific
downstream tasks from the perspective of styles.

language models to learn effective prompt com-
pression tailored to specific tasks and evaluation
models.

Our experimental results demonstrate that our
method surpasses two baseline compression mod-
els across four tasks: original prompt reconstruc-
tion, text summarization, multi-hop QA, and CoT
reasoning. Notably, prompts compressed by Style-
Compress achieve performance that matches or
exceeds that of original prompts at compression
ratio of 0.25 or 0.5, with only 10 samples and 100
queries for adaptation. By improving prompt com-
pression using smaller models, our research offers
a valuable pathway towards more efficient and en-
vironmentally sustainable use of large language
models.

2 Preliminary Study: On the Role of
Styles in Prompt Compression

In this section, we conduct a pilot experiment to ex-
plore the following research question: if we instruct
LLMs to compress prompts, would the style of
compression affect the performance of compressed
prompts on various downstream tasks?

Styles of Compression. We consider five dimen-
sions of styles 1, and instruct an LLM to do prompt
compression with specific styles. We present the
specific instructions to set these styles in Appendix
A.2:

1In this work, we define ‘style’ as a broad and encompass-
ing feature that distinguishes one piece of text from another.

• Location-aware: Focusing on different parts
of the text to be compressed, such as the be-
ginning, the middle, the end, or covering the
entire text.

• Abstractive or extractive: In light of the works
in text summarization (Hahn and Mani, 2000;
Carenini and Cheung, 2008), we consider both
abstractive and extractive styles of compres-
sion. Extractive style involves selecting words
or sentence spans directly from the original
text while abtractive style generates more cre-
ative and novel expressions.

• Readability: Does the compressed prompt
need to be human-readable? It has been re-
ported that GPT-4 can compress text in an
unreadable way while still being able to re-
construct it 2. We wonder if this trait also
applies to smaller models.

• Format-aware: If there are specific formats in
prompts, language models should retain such
formats, which is called format-aware style.

• Task-aware: Can language models understand
the type of compression required for different
downstream tasks? To explore this, we explic-
itly inform the models of the task usage, e.g.,
"this is for summarization."

Models and Tasks. For starters, we use LLaMA-
2 7B (Touvron et al., 2023) as both the compression
and evaluation model, and larger models will be
used for evaluation in later. We concatenate the
instruction and the original prompt, and feed it to
the compression model. We also incorporate two
baseline compression models, Selective-Context
(Li et al., 2023) and LLM-Lingua (Jiang et al.,
2023), for comparison. We incorporate four tasks:
reconstruction, summarization, multi-hop QA and
reasoning. Details of tasks, evaluation metrics and
baseline models will be explained in Section 4.1.

Results. The results of our preliminary study are
shown in Table 1. We highlight two key findings:
(1) Compared with baselines, even a vanilla prompt
can achieve better prompt compression across all
four tasks, highlighting the impressive compres-
sion performance of the LLM. (2) Style matters
for prompt compression. Different styles lead to
significantly varied performance on tasks. More im-
portantly, no single style consistently outperforms
the others across all tasks.

2We first noticed it from this tweet: https://x.com/
VictorTaelin/status/1642664054912155648

14534

https://x.com/VictorTaelin/status/1642664054912155648
https://x.com/VictorTaelin/status/1642664054912155648

Reconstruction Summarization Multi-hop QA Reasoning

RougeL BERTScore RougeL BERTScore EM F1 Acc

vanilla 0.124 0.830 0.216 0.868 0.025 0.106 0.145
loc-begin 0.117 0.826 0.218 0.867 0.030 0.120 0.140
loc-mid 0.120 0.830 0.210 0.867 0.025 0.115 0.140
loc-end 0.118 0.826 0.210 0.866 0.025 0.113 0.155
loc-all 0.125 0.828 0.204 0.865 0.020 0.112 0.110
abstractive 0.122 0.831 0.231 0.873 0.010 0.108 0.170
extractive 0.116 0.827 0.214 0.868 0.030 0.122 0.090
readable 0.124 0.828 0.214 0.865 0.030 0.116 0.145
unreadable 0.068 0.792 0.157 0.838 0.025 0.107 0.175
format-aware 0.117 0.828 0.213 0.867 0.015 0.086 0.150
for reconstruction 0.134 0.843 0.279 0.892 0.000 0.091 0.110
for summarization 0.137 0.845 0.295 0.894 0.010 0.084 0.100
for qa 0.129 0.846 0.285 0.894 0.040 0.110 0.135
for reasoning 0.118 0.841 0.276 0.891 0.020 0.106 0.130

baselines:
selective-context 0.114 0.791 0.147 0.827 0.015 0.094 0.135
LLM-Lingua 0.096 0.796 0.146 0.834 0.015 0.086 0.130

Table 1: Results of our preliminary study. Performance of prompting LLMs with different styles on four downstream
tasks at a compression ratio of 10%, compared with two compression methods (selective context and LLM-Lingua).
A redder background indicates better performance, while a bluer background indicates worse performance. Different
prompting styles yield varying performances across tasks, with no single style being optimal for all tasks.

Motivation. According to our findings, certain
compression styles in are preferred over others for
specific tasks, as illustrated in Figure 1. In light
of this, we propose automatic adaptation of com-
pression model to the task, from the perspective
of styles. Our objective is to enable the compres-
sion LM to learn a specific style that enhances
performance in the target task. We suggest that
among a set of compressions with diverse styles de-
rived from the same original prompt, those perform
best on the task exhibit a task-relevant beneficial
style. This specific style could be one defined by
us (e.g., location-aware styles, abstractive or ex-
tractive), could be a blend or combination of some
predefined styles, or even beyond them. We hy-
pothesize that LMs can mimic these specific com-
pression styles for target tasks when instructed with
a few best-performing compressions as examples.

3 Methodology

3.1 Overview

Our goal is to adapt a smaller LM to compress
prompts for a larger LM on a specific task. We re-
fer to the smaller compression model as LMcompr

and the larger evaluation model as LMeval. To
achieve this, our method consists of two stages:
(1) Adaptation: We generate prompts with diverse
styles and then select the high-performing com-
pressed prompts for this task. (2) Inference: We in-

struct LMcompr with these selected ones as demon-
strations to compress prompts for LMeval. From
these examples, the model can learn specific styles
beneficial to the end task, improving task-specific
prompt compression. Our proposed method is il-
lustrated in Figure 2.

3.2 Adaptation

We generate and filter the high-performing com-
pressions for a specific task within M iterations.
In each iteration i, a new original prompt pi is
compressed by LMcompr independently for N
times. We alternately use two methods to instruct
LMcompr in generating a variety of compressions,
detailed in Section 3.3. Then, LMeval generates
outputs using the compressed prompt p′ji (with
1 ≤ j ≤ n) on the task. A metric value, m′j

i ,
is computed to reflect the quality of p′ji for this
task. After generating and evaluating all N com-
pressions of the same original prompt, the best
compression with respect to the metric, p′∗i , and
its comparative advantage (CA) are added to the
task-specific demonstrations pool. Depending on
whether the best performance is compared to the
worst or median, we have two variants of CA:

CAmin
i = max([m′1

i , ...,m
′n
i])−min([m′1

i , ...,m
′n
i]),

(1)

CAmid
i = max([m′1

i , ...,m
′n
i])−mid([m′1

i , ...,m
′n
i]).

(2)

14535

Figure 2: Illustration of Style-Compress. It adapts a smaller LM as a prompt compressor for a new task in two
stages: In the first stage, the method iterates over M prompts for adaptation, where for each prompt N compressions
are generated by (first) instructing the compression model using style variation (indicated by purple arrows) and
(then) instructing the compressor with high-performing compressions as examples(indicated by orange arrows). The
first stage iteratively generates a task-specific demonstration pool. We then use these examples to instruct the model
in prompt compression during the inference stage.

3.3 Instruction methods for LMcompr

Two methods are designed to instruct LMcompr

in the first stage: style variation and in-context
learning. The former diversifies styles, while the
latter self-improves the quality of generation.

Style Variation: Style variation is designed to
diversify the styles of compressed prompts. A
style controller samples a specific style prompt
from a set of human-written styles predefined by
us. The selected style is added to the instruction
for LMcompr to compress the original prompt pi,
generating a compression, p′ji . When a warm-
up ratio Rwarm-up is set for the style controller, it
will perform random sampling during the initial
Rwarm-up · M iterations, then switch to weighted
random sampling, based on the performance of dif-
ferent styles in past iterations, making styles with
better performance more likely to be sampled.

In-Context Learning: For the ICL method,
compressions with the highest CA in the demonstra-
tions pool are selected as examples. By instructing
LMcompr with these task-specific high-performing
examples, LMcompr is able to mimic some specific
styles beneficial to the target task from them.

For the same original prompt, we perform style
variation for Nstyle times and ICL for Nicl times,
thus N = Nstyle + Nicl. Samples are generated
and then ranked by CA.

3.4 Inference

The first stage yields a task specific demonstrations
pool including M original prompts along with the
best version of their compression and comparative
advantages:[(p1, p′

∗
1, CA∗

1),...,(pM , p′∗M , CA∗
M)].

We select S pairs of original and compressed
prompts with highest CAs from this pool as
demonstrations to instruct LMcompr to conduct
task-specific prompt compression. The choice of
S depends on the sample length of different task
datasets. For each task dataset, we calculate the
maximum number of demonstrations (including
both the original and compressed prompts) that
the compression model’s context window can
accommodate without affecting compression
generation, to determine S.

14536

4 Experiment

4.1 Setting

Tasks and Datasets. We conduct experiments on
four tasks: original prompt reconstruction using
the BBC News dataset (Greene and Cunningham,
2006), text summarization with the CNN/Daily-
Mail dataset (See et al., 2017), multi-hop QA using
the HotpotQA dataset (Yang et al., 2018), and CoT
reasoning with the GSM8k dataset (Cobbe et al.,
2021). More specific details are provided in Ap-
pendix C.

Metrics. We adopt Rouge-1, Rouge-2, Rouge-
L (Lin, 2004), and BERTScore-F1 (Zhang et al.,
2019) as metrics for the reconstruction and sum-
marization tasks. We use the Evaluate, a library
from huggingface to compute them.3 For the re-
construction task, we use the original prompt as
the reference, and for the summarization task, we
use human-written summaries as the reference. We
adopt EM and F1 as metrics for the multi-hop QA
task and EM for the CoT reasoning task.

Models. We use LLaMA-2-7B as the compres-
sion model. For the evaluation model, we choose
the larger version of LLaMA-2, i.e. LLaMA-2
13B and a closed-source model, i.e. GPT-3.5. In
the experiments, we compare Style-Compress with
two baseline methods: Selective-Context (Li et al.,
2023) and LLM-Lingua (Jiang et al., 2023). It is
also compared with a zero-shot approach where
the language model is instructed to compress texts,
which we refer to as the vanilla method.

Details. We experiment with three compression
ratios: 0.1, 0.25 and 0.5. When instructing the
language model to compress a prompt at a target
compression ratio, we first compute the correspond-
ing token count, which is the token count of origi-
nal prompt multiplied by the set compression ratio,
and include it in the instruction. For a fair com-
parison among all the methods, we truncate all the
outputs to the target length. Results of our method
are averaged using three random seeds. For hyper-
parameters, we set M = 10, N = 5, S = 1 for
resconstruction and summarization, S = 2 for QA
and S = 3 for reasoning. As for the setting of
comparative advantage, we use CAmin for recon-
struction, summarization and multi-hop QA, and
CAmid for the CoT reasoning task. We conduct
simple post-processing when zero-shot or few-shot
prompting LLaMA-2 7B to compress text, because

3https://github.com/huggingface/evaluate

we find that the model tends to generate some re-
dundant content, e.g., explanations and made-up
examples.

4.2 Results
Our main results on different tasks are presented
in Table 2, Table 3 and Table 4, respectively. Our
method outperforms the baselines across all four
tasks and enhances the prompt compression abil-
ity of LLMs. We include some examples of com-
pressed prompts in Appendix D.

Q1. How does our method compare to base-
lines? In the reconstruction, summarization and
reasoning tasks, our method surpasses the baseline
methods and vanilla approach at all three compres-
sion ratios, regardless of whether the evaluation
model is GPT-3.5 or LLaMA-2 13B. For the multi-
hop QA tasks, our method also demonstrates supe-
rior performance in most cases. The only excep-
tion is the QA task at a compression ratio of 0.1,
where our method is slightly lower than selective-
context in exact match (EM) but performs better
in the F1 metric. Our method’s superior perfor-
mance compared to the vanilla approach across all
tasks demonstrate that our approach successfully
enhances the prompt compression capabilities of
smaller LMs.

Q2. How well can LMs handle prompt com-
pression? When directly instructing LLaMA-2 7B
to compress text, its performance surpasses two
baseline compression models in some cases, espe-
cially at a smaller compression ratio and in eas-
ier tasks like reconstruction and summarization.
For instance, in the reconstruction task, the vanilla
method (i.e., zero-shot instructing the model to
compress) outperforms both selective-context and
LLM-Lingua at ratios of 0.1 and 0.25. However,
at a compression ratio of 0.5, the baselines start to
overtake. For more challenging tasks like multi-
hop and reasoning, the performance of the vanilla
method and the baselines are comparable, occa-
sionally being slightly higher or lower. Our results
show that a smaller LM as LLaMA-2 7B has some
ability to compress prompts, which aligns with our
previous finding on a smaller evaluation model in
Section 2. Besides, it is quite feasible to use a
smaller LM to compress prompts for a larger LM,
e.g., GPT-3.5 and LLaMA-2 13B.

Q3. How much information is lost after com-
pression? Except for the reconstruction task,
where the original prompts serve as references, we
compare performance of compressed prompts with

14537

Methods
Original Prompt Reconstruction

LLaMA-2 13B GPT-3.5
Rouge-1 Rouge-2 Rouge-L BERTScore Rouge-1 Rouge-2 Rouge-L BERTScore

compression ratio = 0.1

sc 0.128 0.020 0.084 0.694 0.090 0.021 0.064 0.800
lingua 0.103 0.016 0.070 0.776 0.136 0.031 0.094 0.819
vanilla 0.202 0.102 0.138 0.845 0.181 0.100 0.133 0.860
ours 0.225 0.144 0.172 0.858 0.205 0.145 0.165 0.872

compression ratio = 0.25

sc 0.253 0.066 0.151 0.798 0.196 0.069 0.130 0.822
lingua 0.265 0.075 0.166 0.814 0.245 0.076 0.159 0.840
vanilla 0.326 0.193 0.234 0.857 0.319 0.190 0.239 0.867
ours 0.324 0.213 0.240 0.865 0.358 0.315 0.328 0.902

compression ratio = 0.5

sc 0.371 0.146 0.197 0.849 0.348 0.173 0.237 0.856
lingua 0.377 0.148 0.223 0.861 0.424 0.196 0.303 0.872
vanilla 0.372 0.224 0.268 0.861 0.370 0.224 0.277 0.869
ours 0.474 0.371 0.390 0.890 0.516 0.453 0.475 0.919

Table 2: Results of compression methods on the reconstruction task. Here we abbreviate selective-context as sc and
LLM-Lingua as lingua.

the original ones to analyse how much information
is lost after compression. From the results we find
that the performance drop is generally acceptable if
not compressed excessively. In the summarization
task, prompts compressed by our method perform
better than original prompts in almost all metrics
across all settings, even at an extreme compression
ratio of 0.1. In the multi-hop QA task, when com-
pressed using our method at a compression ratio of
0.5, the metrics is only slightly lower than using
prompts without compression. Results from the
CoT reasoning task align with this finding. When
we perform 3-shot CoT prompting, with GPT-3.5
as the evaluation model, the accuracy without com-
pression is 67%, but after our compression at a
ratio of 0.25, the accuracy still reaches 66.5%. In
some cases, performance even improves after com-
pression. For example, in the 3-shot CoT reasoning
task with a compression ratio of 0.5 and GPT-3.5
as the evaluation model, the accuracy after com-
pression is 2% higher than no compression. These
results highlight the great potential of cost saving
from prompt compression.

4.3 Ablation Study and Parameter Analysis

Here we explore how different settings in our pro-
posed method would affect the performance of
prompt compression. The default settings of our
method in this section are as follows: The com-

pression and evaluation models are all LLaMA-2
7B. Iteration count M is set to 10, Nstyle and Nicl

are both set to 5. We exclude warming-up in the
style variation module. Due to space constraints,
we only present the most important part of our ab-
lation study, focusing on the effects of style varia-
tion and ICL for generating and selecting examples
here. The analysis of the effects of comparative
advantage, iteration count and warming-up in style
controller is included in Appendix B.

Effects of style variation and ICL for generat-
ing and selecting examples. To examine whether
the two designed modules, style variation and In-
Context Learning, are necessary for the adaptation
stage in our method, we remove them separately
and test the performance. As shown in Table 5, we
observe a decline in accuracy in both cases. On
the CoT reasoning task, accuracy of answers drops
by 1.1% without ICL and 2.8% without styles vari-
ation. The reconstruction task also shows poorer
performance when these modules are excluded.

4.4 Discussion

What styles has the compressor learned? Our
method involves two stages: first, we generate
and select high-performing compressions as task-
specific demonstrations. Then, we use these
demonstrations to guide the LM in compressing
prompts. As we propose in Section 2, we believe

14538

Methods
Summarization Multi-hop QA

LLaMA-2 13B GPT-3.5 LLaMA-2 13B GPT-3.5
R-1 R-2 R-L BS R-1 R-2 R-L BS EM F1 EM F1

compression ratio = 0.1

sc 0.108 0.008 0.084 0.817 0.128 0.007 0.096 0.827 0.005 0.102 0.1 0.235
lingua 0.144 0.017 0.106 0.831 0.162 0.014 0.116 0.837 0.03 0.107 0.045 0.187
vanilla 0.243 0.078 0.174 0.860 0.302 0.103 0.216 0.871 0.035 0.116 0.07 0.202
ours 0.270 0.089 0.191 0.866 0.327 0.115 0.231 0.876 0.05 0.135 0.098 0.235

compression ratio = 0.25

sc 0.133 0.019 0.098 0.830 0.161 0.019 0.118 0.836 0.02 0.112 0.08 0.222
lingua 0.187 0.034 0.128 0.846 0.223 0.039 0.152 0.853 0.03 0.134 0.045 0.186
vanilla 0.257 0.086 0.178 0.864 0.288 0.096 0.197 0.869 0.035 0.125 0.075 0.214
ours 0.288 0.101 0.200 0.870 0.311 0.112 0.217 0.874 0.055 0.146 0.103 0.230

compression ratio = 0.5

sc 0.204 0.054 0.138 0.852 0.228 0.060 0.156 0.858 0.025 0.129 0.08 0.223
lingua 0.221 0.059 0.150 0.859 0.254 0.066 0.171 0.864 0.02 0.122 0.045 0.196
vanilla 0.262 0.085 0.178 0.865 0.284 0.095 0.193 0.869 0.035 0.142 0.05 0.214
ours 0.280 0.100 0.193 0.870 0.297 0.107 0.205 0.872 0.067 0.151 0.09 0.239

no compression

0.260 0.101 0.181 0.867 0.292 0.106 0.203 0.872 0.08 0.207 0.095 0.265

Table 3: Results on the summarization and multi-hop QA tasks.

LLaMA-2 13B GPT-3.5

0-shot
0.195 0.55Methods

1-shot 3-shot 1-shot 3-shot

compression ratio = 0.1

sc 0.09 0.105 0.625 0.395
lingua 0.115 0.13 0.62 0.575
vanilla 0.135 0.135 0.615 0.61
ours 0.152 0.15 0.635 0.647

compression ratio = 0.25

sc 0.125 0.115 0.63 0.525
lingua 0.175 0.14 0.66 0.68
vanilla 0.175 0.18 0.645 0.665
ours 0.19 0.238 0.665 0.73

compression ratio = 0.5

sc 0.16 0.195 0.645 0.68
lingua 0.19 0.19 0.65 0.695
vanilla 0.18 0.195 0.63 0.71
ours 0.193 0.257 0.665 0.75

no compression

0.255 0.335 0.670 0.73

Table 4: Result on the CoT reasoning task.

Reasoning Reconstruction

Acc. Rouge1 Rouge2 RougeL BS

Ours 0.12 0.372 0.274 0.297 0.88
- w/o Styles 0.092 0.344 0.244 0.271 0.875
- w/o ICL 0.109 0.33 0.228 0.251 0.875

Table 5: Ablation study of style variation and ICL.

that by leveraging high-performing compressions,
the compressor can learn a task-specific style that
is particularly beneficial.

To investigate what constitutes this "specific
style" and how it differs from predefined styles,
we compare our approach with an alternative: in-
stead of using demonstrations, multiple predefined
styles are established, and the best one for the task
is identified and directly applied to guide the com-
pressor during inference.

We specifically compare our method against two
approaches that rely on selecting the best prede-
fined style:

• BestStyle-CA: We maintain the comparative
advantage setting of our method. We compare
different compression styles for the same orig-
inal prompts and record the best compression
based on its comparative advantage. During
evaluation, we select the style with the highest
comparative advantage as the best style.

14539

Reconstruction Summarization Multi-hop QA CoT Reasoning
R-1 R-2 R-L BS R-1 R-2 R-L BS EM F1 Acc.

Ours 0.372 0.274 0.297 0.88 0.289 0.104 0.201 0.871 0.045 0.138 0.12
Ours w/o ICL 0.33 0.228 0.251 0.875 0.289 0.103 0.196 0.87 0.045 0.126 0.109

BestStyle-CA
0.334 0.196 0.237 0.862 0.274 0.091 0.186 0.867 0.03 0.129 0.095

(format) (loc-end) (extractive) (loc-all,unreadable)

BestStyle-Stat
0.331 0.182 0.229 0.859 0.278 0.102 0.191 0.869 0.005 0.088 0.105

(loc-all) (extractive) (unreadable) (format)

Table 6: Results of the discussion part. For the BestStyle methods, we place the selected best style in the bracket
below the corresponding numbers. Compared with two BestStyle methods, our method has better performance
across all four tasks. Even without ICL when generating and selecting demonstrations, our method still outperforms
the BestStyles.

• BestStyle-Stat: For each original prompt, we
conduct pairwise comparisons of the compres-
sion styles based on specific metrics. Finally,
we choose the style with the highest win rate
as the best style.

The results are shown in Table 6. Our method
outperforms both BestStyle methods across all four
tasks, demonstrating its effectiveness. Furthermore,
we find that even without ICL in the first stage, our
method still generally surpasses the two BestStyle
methods. It means that the specific style compres-
sor learned is not identical to styles predefined by
us. Instead, the learned specific style may incor-
porate different predefined styles or introduce new,
task-beneficial elements due to the inherent ran-
domness in the inference process of language mod-
els, thereby becoming a better and more precise
compression style tailored to the target task.

How generalizable are the compressions
across LMs? To explore this, we select the re-
construction task, set the compression model to
LLaMA2-7B or GPT-3.5, and test the performance
of compressions obtained from different models ap-
plied to other models. We find a small-to-large gen-
eralization phenomenon of compressions within
the same model family, as shown in Table 7. Espe-
cially, when applying compressions from LLaMA-
2 7B to LLaMA-2 13B, the performance is better
than LLaMA-2 13B’s own compressions. However,
this strong generalization ability is not observed
in the reverse direction. We notice a similar phe-
nomenon between GPT3.5 and GPT 4. Across
different model families, we find that GPT-3.5 gen-
eralizes relatively well to LLaMA-2 13B, no matter
the compression model is LLaMA-2 7B or GPT-
3.5, as shown in Table 8.

From To Rouge-L BERTScore

LLaMA-2 7B LLaMA-2 13B 0.306 0.881
LLaMA-2 13B LLaMA-2 13B 0.240 0.865
LLaMA-2 13B LLaMA-2 7B 0.252 0.866
LLaMA-2 7B LLaMA-2 7B 0.297 0.880

GPT-3.5 GPT-4 0.279 0.889
GPT-4 GPT-4 0.262 0.888
GPT-4 GPT-3.5 0.337 0.899
GPT-3.5 GPT-3.5 0.328 0.902

Table 7: Generalizability of compressions within the
same model family in the reconstruction task when the
compression model is set to LLaMA-2 7B. "From" indi-
cates the LLM used as the evaluation model to obtain
the compressions, and "To" indicates the model these
compressions are tested on. Metrics are marked in bold
if the performance of compressions from another model
is better than the model’s own compressions.

5 Related Work

The goal of prompt compression is to make the in-
put of language models shorter, therefore accelerate
the inference time and reduce the computational
cost. Wingate et al. (2022) and Chevalier et al.
(2023) employ learned soft prompts instead of dis-
crete tokens to compress language model inputs.
Soft prompts have been demonstrated to preserve
high-level information in context. However, this
approach is not suitable for black-box models.

The other line of work compresses prompts
by removing redundant discrete tokens. Li et al.
(2023) calculate self-information for each token
in a prompt using a smaller LM, then eliminate
lexical units with low self-information. Similarly,
Jiang et al. (2023) employ a comparable strategy
for prompt compression but introduce a novel bud-
get controller. This controller dynamically allo-
cates compression ratios to different prompt com-
ponents. Our method differs from theirs in two

14540

Compressor From To R-L B-S

LLaMA-2 7B

LLaMA-2 13B GPT-3.5 0.262 0.874
GPT-3.5 GPT-3.5 0.328 0.902
GPT-3.5 LLaMA-2 13B 0.297 0.872
LLaMA-2 13B LLaMA-2 13B 0.240 0.865

GPT-3.5

LLaMA-2 13B GPT-3.5 0.195 0.861
GPT-3.5 GPT-3.5 0.205 0.863
GPT-3.5 LLaMA-2 13B 0.297 0.872
LLaMA-2 13B LLaMA-2 13B 0.182 0.855

Table 8: Generalizability of compressions across model
families, in the reconstruction task when the compres-
sion model is set to LLaMA-2 7B and GPT-3.5. Here
R-L stands for Rouge-L and B-S stands for BERTScore.
We notice a good generalization of compressions from
GPT-3.5 to LLaMA-2 13B.

aspects: firstly, our approach is generation-based,
harnessing the strong generation capabilities of
LMs to produce compressed text. Secondly, while
these two methods are task-agnostic, we propose
a lightweight framework to adapt LMs to task-
specific prompt compressors without training.

Other researchers explore to empower efficient
inference for some specific tasks: Xu et al. (2023)
train extractive and abstractive summarization mod-
els to compress retrieved documents. Tailered for
the in-contect learning task, Zhou et al. (2023) pre-
dict the number of examples needed for each sam-
ple to avoid redundancy. Yin et al. (2023) focus on
the role of task definitions in prompts and propose
to iteratively remove the unimportant contents in
task definitions.

6 Conclusion

This work aims to solve the challenge of enhancing
prompt compression for diverse tasks. Our prelim-
inary study reveals that styles have an impact in
prompt compression. In light of that, enabling the
compression model to compress in styles beneficial
for different tasks could be a solution for this chal-
lenge. We propose Style-Compress, a training-free
framework that adapts a smaller LM to compress
prompts for a larger LM across different tasks. We
first generate and evaluate effective compressions
with diverse styles, then use theses examples to
guide the compression model. By learning task-
relevant styles, our model demonstrates improved
performance across four tasks. With limited data
for adaptation and queries for the larger LM, Style-
Compress is able to compress at compression ratios
like 0.25 and 0.5 with minimal or no performance
drop on tasks including summarization, multi-hop

QA and reasoning.

Limitations

A limitation of our method is the difficulty in con-
trolling the length of compressed prompts, a natural
drawback of generative methods. Although we im-
plement some procedures like including the target
token count in the instructions for compression
and setting parameters like min_new_token and
max_new_token when generating with the com-
pression model, we still find it challenging to in-
struct smaller LMs to generate compressed prompts
that adhere to a target compression ratio set by us.
In our experiment using a smaller LM, i.e. LLaMA-
2 7B as a compression model, we find that the ac-
tual compression ratios are usually far lower than
the target ratio when the target ratio is a bit higher,
e.g. 0.5. Therefore, our method is at a disadvantage
compared to extraction-based methods in terms of
precise length control.

In addition, since the compression is generated
by a language model, we cannot guarantee the gen-
erated compression is completely faithful to orig-
inal prompt. Like other machine-generated text,
prompts compressed by this method could suffer
from hallucinations (Huang et al., 2023) or bias
inherited from the compression LM.

Acknowledgements

We thank the reviewers and the area chair. This
work was supported by Beijing Science and Tech-
nology Program (Z231100007423011) and Key
Laboratory of Science, Technology and Standard in
Press Industry (Key Laboratory of Intelligent Press
Media Technology). Xiaojun Wan and Tianxing
He are the corresponding authors.

References
Anthropic. Claude. https://www.anthropic.com

[Accessed: (2024-06-10)].

Giuseppe Carenini and Jackie C. K. Cheung. 2008. Ex-
tractive vs. NLG-based abstractive summarization of
evaluative text: The effect of corpus controversial-
ity. In Proceedings of the Fifth International Natural
Language Generation Conference, pages 33–41, Salt
Fork, Ohio, USA. Association for Computational
Linguistics.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language

14541

https://www.anthropic.com
https://aclanthology.org/W08-1106
https://aclanthology.org/W08-1106
https://aclanthology.org/W08-1106
https://aclanthology.org/W08-1106
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2023.emnlp-main.232

Processing, pages 3829–3846, Singapore. Associa-
tion for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Derek Greene and Pádraig Cunningham. 2006. Practi-
cal solutions to the problem of diagonal dominance
in kernel document clustering. In Proc. 23rd Interna-
tional Conference on Machine learning (ICML’06),
pages 377–384. ACM Press.

Udo Hahn and Inderjeet Mani. 2000. The challenges of
automatic summarization. Computer, 33(11):29–36.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. Preprint, arXiv:2311.05232.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13358–13376, Singapore. Association for
Computational Linguistics.

Hoyoun Jung and Kyung-Joong Kim. 2024. Discrete
prompt compression with reinforcement learning.
IEEE Access, 12:72578–72587.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin.
2023. Compressing context to enhance inference ef-
ficiency of large language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6342–6353, Singa-
pore. Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2023.
Recent advances in natural language processing via
large pre-trained language models: A survey. ACM
Comput. Surv., 56(2).

R OpenAI. 2023. Gpt-4 technical report. ArXiv, 2303.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

David Wingate, Mohammad Shoeybi, and Taylor
Sorensen. 2022. Prompt compression and contrastive
conditioning for controllability and toxicity reduction
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
5621–5634, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023.
Recomp: Improving retrieval-augmented lms with
compression and selective augmentation. Preprint,
arXiv:2310.04408.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiao-
tian Han, Qizhang Feng, Haoming Jiang, Shaochen
Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the
power of llms in practice: A survey on chatgpt and
beyond. ACM Trans. Knowl. Discov. Data, 18(6).

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caim-
ing Xiong, and Chien-Sheng Wu. 2023. Did you read
the instructions? rethinking the effectiveness of task
definitions in instruction learning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3063–3079, Toronto, Canada. Association for
Computational Linguistics.

14542

https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.1109/ACCESS.2024.3403426
https://doi.org/10.1109/ACCESS.2024.3403426
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://doi.org/10.18653/v1/2023.emnlp-main.391
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2022.findings-emnlp.412
https://doi.org/10.18653/v1/2022.findings-emnlp.412
https://doi.org/10.18653/v1/2022.findings-emnlp.412
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://doi.org/10.1145/3649506
https://doi.org/10.1145/3649506
https://doi.org/10.1145/3649506
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2023.acl-long.172
https://doi.org/10.18653/v1/2023.acl-long.172
https://doi.org/10.18653/v1/2023.acl-long.172

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Ryan Cot-
terell, and Mrinmaya Sachan. 2023. Efficient prompt-
ing via dynamic in-context learning. arXiv preprint
arXiv:2305.11170.

14543

A Prompt Instructions

Here we list instructions used for compressing
prompts.

A.1 Instructions for Prompt Compression

The vanilla instruction for prompt compression is
shown in Figure 3. When using the instruction one
needs to add the corresponding elements inside the
angle brackets:

Compress the following text into <target to-
ken count> tokens, as such you can still un-
derstand the original meaning of it. <style
instruction>
Original Text: <original prompt>
Compressed Text:

Figure 3: Vanilla instruction for prompt compression.

The few-shot instruction for prompt compression
is shown in 4.

Follow the demonstrations to compress the
original text in <target token count> tokens.
——-
Original text:<original prompt of demon-
stration 1>
Compressed text:<compressed prompt of
demonstration 1>
——-
Original text:<original prompt of demon-
stration 2>
Compressed text:<compressed prompt of
demonstration 2>
——-
......
——-
Original text:<original prompt>
Compressed text:

Figure 4: Few-shot instruction for prompt compression.

A.2 Instruction for Styles

• loc-begin: "Focus on the initial portion of the
text."

• loc-mid: "Focus on the middle portion of the
text."

• loc-end: "Focus on the latter portion of the
text."

• loc-all: "Compress the entire text comprehen-
sively, ensuring all parts are condensed effec-
tively."

• style-ab: "Make it more abstractive, by para-
phrasing in your own words or restructuring
the original text to convey the same meaning
in a more concise form."

• style-ex: "Make it more extractive, by select-
ing the most important phrases or sentences
to condense the content."

• readable: "Make sure the compressed text
is fluent, grammatically correct, and human-
readable."

• unreadable: "Do not make it human-readable.
Abuse of language mixing, abbreviations,
symbols(unicode and emojis) to aggressively
compress it."

• format-aware: "If the original text has a spe-
cific structure or format, maintain the key sen-
tences from the original to preserve this struc-
ture or format."

• for reconstruction: "This is for the reconstruc-
tion task."

• for summarization: "This is for the summari-
sation task."

• for qa: "This is for the multi-hop QA task."

• for reasoning: "This is for the reasoning task."

B Supplementary Ablation Study and
Parameter Analysis

Effects of comparative advantage. When choos-
ing the best compressed prompts as examples, we
assess candidates based on their comparative ad-
vantages. We have two variants of comparative
advantage in this work: CAmin and CAmid. To
examine the effects of comparative advantage, we
compare these variants against using absolute ad-
vantage. In the absolute advantage setting, different
compressed prompts of the same original ones are
not compared against each other. Instead, the com-
pression LM processes a new original prompt each
time, and all compression samples are compared
together using the absolute value from the metrics.

14544

Reasoning Reconstruction

Acc. Rouge1 Rouge2 RougeL BS

absolute 0.107 0.311 0.212 0.242 0.867
CAmin 0.115 0.372 0.274 0.297 0.88
CAmid 0.12 0.346 0.242 0.267 0.872

Table 9: Ablation study of comparative advantage.

Reasoning Reconstruction

M Acc. Rouge1 Rouge2 RougeL BS

5 0.107 0.233 0.105 0.152 0.847
10 0.12 0.372 0.274 0.297 0.88
20 0.125 0.352 0.259 0.284 0.882
50 0.132 0.379 0.252 0.277 0.873

N/2 Acc. Rouge1 Rouge2 RougeL BS

3 0.109 0.343 0.188 0.235 0.864
5 0.12 0.372 0.274 0.297 0.88
10 0.111 0.356 0.257 0.281 0.876

Table 10: Effect of iteration count, M and N . Here
N/2 = Nstyle = NICL.

The iteration count and computational complexity
are kept the same for a fair comparison.

The results of this ablation study, shown in Table
9, demonstrate that comparative advantage outper-
forms the absolute version. CAmid performs better
for reasoning tasks, while CAmin is more effective
for reconstruction tasks. The reasoning task uses
a discrete metric for each sample (either 1 or 0).
In this case, the max-min variant often results in
various compressed prompts tying for the top spot
with the same comparative advantage (which is 1),
whereas the max-mid variant can better distinguish
the best compression samples.

Effect of iteration count. Here we analyse
how M and N (including Nstyle and Nicl) affect
the compression performance. As shown in Table
10, accuracy of our method on the reasoning task
becomes higher as M increases: compared to 10,
accuracy increased by 0.5% when M is set to 20,
and 1.2% when M is set to 50. On the reconstruc-
tion task, we do not observe a clear improvement
when M is increased from 10 to 50. In addition,
the optimal setting of iteration count Nstyle and
Nicl are 5 for both tasks.

Effect of warming-up in style controller. In
Figure 5, we test our method with different warm-
up ratios when M is set to 5, 10, 20, and 50. The
results demonstrate that if we use weighted random
sampling from the very beginning, the performance

Figure 5: Effect of warm-up ratio in style controller.
When ratio is set to 1, style controller randomly samples
styles all the time.

across different values of M is similar. As the
warm-up ratio increases to 0.25, accuracy improves
for all values of M , with more iterations leading to
greater improvements. However, as the ratio contin-
ues to increase, we observe a performance drop at
a ratio of 0.5, followed by continuous improvement
up to a ratio of 1.

C Details of Tasks and Datasets

In the original prompt reconstruction task, the eval-
uation LLM is asked to reconstruct the compressed
prompt to its original version. Higher similar-
ity between the reconstruction of the compressed
prompt and the original prompt indicates more ef-
fective compression. We use the BBC News dataset
(Greene and Cunningham, 2006) for this task.

For the text summarization task, we use the CN-
N/DailyMail dataset (See et al., 2017). We compare
the summaries generated from the compressed text
with the human-written reference summaries. For
the reconstruction and summarization tasks, we
compress news articles in the dataset.

Multi-hop QA is a challenging question-
answering task that requires language models to
extract and combine multiple pieces of information
from the context and perform multi-hop reason-
ing to answer the question. We use the HotpotQA
dataset (Yang et al., 2018) for this task, where LMs
are tasked with answering questions based on 10
pieces of Wikipedia articles. In this task, we con-
catenate the provided Wikipedia articles for each
question and then compress them.

In the CoT reasoning task, LMs are instructed
with examples that include the question, interme-
diate reasoning steps, and the final answer, to an-
swer another math question. CoT prompting has
been proven to enhance LMs’ complex reasoning

14545

capabilities (Wei et al., 2022). We use GSM8k
(Cobbe et al., 2021), a dataset of human-written
grade school math word problems for this task. We
only compress the intermediate reasoning steps of
each example, and then concatenate it with the cor-
responding question and final answer together as a
demonstration provided to LLMs.

For each dataset, we take 200 samples as the test
set and additionally sample 10-100 samples for the
adaptation phase (according to different settings).
For the samples to be compressed, we preprocess
them to be within 1000 tokens, with any excess
parts being truncated.

D Examples of Compressed Prompts

Here we present some examples of prompt com-
pression for the reconstruction task (as shown in
Figure 6) and CoT reasoning task (the original
prompt shown in Figure 7 and the compressed
shown in Figure 8). When compressing for the
reconstruction task on the BBC dataset, it can be
observed that Style-Compress learns a summary-
like fluent style. Therefore, when we use GPT-3.5
to reconstruct the compressed content, the differ-
ence between the original and recovered texts is
minimal due to this fluency. Compared with this,
the vanilla method adopts a fact-listing format, and
the text compressed by LLM-Lingua is hard for
humans to understand. After recovery with GPT-
3.5, both methods perform worse in metrics com-
pared to ours. When Style-Compress is applied
to the reasoning task, we observe a precise and
logical style in the compressed prompt. We com-
pare its effectiveness in condensing demonstrations
with few-shot CoT prompting, demonstrating that
our compression method enhances accuracy on the
math reasoning task compared to zero-shot prompt-
ing.

14546

Original Prompt: Boris Johnson has submitted evidence to MPs investigating whether he
misled Parliament over Covid rule-breaking parties in Downing Street. The former prime
minister, who denies misleading MPs, wants his defence to be published as soon as possible. The
Privileges Committee said it was reviewing the material to make redactions before publication. Mr
Johnson(......)An investigation by senior civil servant Sue Gray found widespread rule-breaking
had taken place and a police inquiry led to 83 people, including Mr Johnson himself, being fined
for attending events. The Privileges Committee’s initial report said it had seen evidence that
"strongly suggests" Covid rule breaches would have been "obvious" to Mr Johnson.

Compressed by Style-Compress: Boris Johnson has submitted evidence to MPs investigating
whether he misled Parliament over Covid rule-breaking parties in Downing Street. The former
prime minister, who denies misleading MPs, wants his defence to be published as soon as possible.
The Privileges Committee is reviewing the material to make redactions before publication. Mr
Johnson will be questioned by the cross-party committee in a televised session (77 tokens)
Reconstructed by ChatGPT: Boris Johnson has submitted evidence to MPs investigating whether
he misled Parliament over Covid rule-breaking parties in Downing Street. The former prime
minister, who denies misleading MPs, wants his defence to be published as soon as possible. The
Privileges Committee is reviewing the material to make redactions before publication. Mr Johnson
will be questioned by the cross-party committee in a televised session.
(Rouge-1: 0.199 Rouge-2: 0.190 Rouge-L: 0.196 BERTScore: 0.885)

Compressed by Vanilla: 1. Nicola Sturgeon is SNP leader and her husband Peter Murrell is
CEO. 2. Peter Murrell loaned SNP £107,620 to help with cash flow. 3. SNP repaid £47,620 of
the loan by Oct 2021. 4. Loan was not initially thought to be a reporting obligation. 5. Electoral
Commission records show (72 tokens)
Reconstructed by ChatGPT:Boris Johnson has submitted evidence to MPs who are investigating
whether he misled Parliament. The evidence will be published soon, with redactions made to
protect the identities of witnesses. Johnson is scheduled to be questioned in a televised session
on Wednesday. If he is found guilty, he could face punishments such as issuing an apology
or suspension from Parliament. Some of Johnson’s allies have expressed concerns about the
independence of the inquiry. Members of Parliament will have a free vote on any sanctions that
may be imposed. The committee conducting the investigation is chaired by Labour’s Harriet.
(Rouge-1: 0.205 Rouge-2: 0.105 Rouge-L: 0.142 BERTScore: 0.866)

Compressed by LLM-Lingua: B has he over Covidbreaking in denies, his beTheges makeactions
the a an Mr Parliament The and wouldas is possible the of making appropriate some witnesses
could be in his will was any but punishments from his say theThe theor, a by committee by
breakingid be Westminster Johnson has integrity and ofid servant toobvious (78 tokens)
Reconstructed by ChatGPT: Mr Johnson denies breaking any rules over Covid, as his actions in
Parliament make it possible for appropriate witnesses to be in his will. However, the committee by
Westminster could say that he is breaking the integrity and obvious servant of the law.
(Rouge-1: 0.131 Rouge-2: 0.028 Rouge-L: 0.080 BERTScore: 0.819)

Figure 6: Examples of different methods compressing the same original prompt for the reconstruction task.

14547

CoT 3-shot Prompting
Refer to the following examples to answer the math problem.
Example 1
Question:Stanley was standing on the side of the mountain, at an elevation of 10,000 feet, when
a gust air blew the comb out of his pocket, causing the comb to fall 4,000 feet to a ledge below.
Stanley’s brother, Oliver, was also on the mountain, but he was at an elevation of 3,000 feet.
Stanley called Oliver on his cellphone and asked Oliver to find Stanley’s comb. How many feet
must Oliver climb to reach the elevation of Stanley’s comb?
Answer:The elevation of Stanley’s comb was 10,000 - 4,000 = «10000-4000=6000»6,000 feet. Thus
Oliver, who was at an elevation of 3,000 feet, must climb 6,000 - 3,000 = «6000-3000=3000»3,000
feet to reach the elevation of Stanley’s comb. The answer is: 3000
Example 2
Question: Carl has four times as many marbles as Sean and Sean has half as many marbles as Cal.
If Sean has 56 marbles, how many marbles do Carl and Cal have combined?
Answer:Cal has 56*2 = «56*2=112»112 marbles. Carl has 4*56 = «4*56=224»224 marbles. Carl
and Cal have 112+224 = «112+224=336»336 marbles combined. The answer is: 336
Example 3
Question:Paul is at a train station and is waiting for his train. He isn’t sure how long he needs to
wait, but he knows that the fourth train scheduled to arrive at the station is the one he needs to
get on. The first train is scheduled to arrive in 10 minutes, and this train will stay in the station
for 20 minutes. The second train is to arrive half an hour after the first train leaves the station,
and this second train will stay in the station for a quarter of the amount of time that the first train
stayed in the station. The third train is to arrive an hour after the second train leaves the station,
and this third train is to leave the station immediately after it arrives. The fourth train will arrive 20
minutes after the third train leaves, and this is the train Paul will board. In total, how long, in
minutes, will Paul wait for his train?
Answer:The first train stays in the station for 10 minutes * 2 = «10*2=20»20 minutes. So Paul
waits for the first train for 20 + 10 = «20+10=30»30 minutes. The second train arrives after half an
hour, which is the same as 60 minutes 2 = «60/2=30»30 minutes. It then stays in the station for a
quarter of the time the first train did which is 20 minutes 4 = «20/4=5»5 minutes. So Paul waits for
the second train for 30 + 5 = «30+5=35»35 minutes. The third train arrives an hour later, which is
the same as 60 minutes * 1 hour = «60*1=60»60 minutes. After the final wait, Paul has waited a
total of 30 minutes for the first train + 35 minutes for the second train + 60 minutes for the third
train + 20 minutes final wait = «30+35+60+20=145»145 minutes. The answer is: 145
Question: Ted the T-Rex was planning to bring potato salad to the dinosaur picnic. He knows that
an adult dinosaur will eat 10 lbs of potato salad, and a child will eat half as much as an adult. If
there will be 20 adults and 5 children at the picnic, how many pounds of potato salad does Ted
need to bring to the picnic if he hopes to have enough to feed everyone?

Answer: An adult will eat 10 lbs of potato salad and a child will eat half as much which
is 5 lbs. Therefore, the total amount of potato salad needed to feed all the adults and children is:
10 lbs x 20 adults = «10*20=200»200 lbs + 5 lbs x 5 children = «5*5=25»25 lbs. Ted needs to
bring a total of 200 + 25 = «200+25=225»225 lbs of potato salad to the picnic. The answer is 225.
(Correct!)

Figure 7

14548

Style-Compressed 3-shot CoT Reasoning
Refer to the following examples to answer the math problem.
Example 1
Question: Stanley was standing on the side of the mountain, at an elevation of 10,000 feet, when a
gust air blew the comb out of his pocket, causing the comb to fall 4,000 feet to a ledge below.
Stanley’s brother, Oliver, was also on the mountain, but he was at an elevation of 3,000 feet.
Stanley called Oliver on his cellphone and asked Oliver to find Stanley’s comb. How many feet
must Oliver climb to reach the elevation of Stanley’s comb?
Answer: Stanley’s comb elevation: 6,000 ft («6000=3000»3,000 ft climb to reach). The answer is:
3000

Example 2
Question:Carl has four times as many marbles as Sean and Sean has half as many marbles as Cal.
If Sean has 56 marbles, how many marbles do Carl and Cal have combined?
Answer:Cal has 112 marbles. Carl has 224 marbles. The answer is: 336

Example 3
Question:Paul is at a train station and is waiting for his train. He isn’t sure how long he needs to
wait, but he knows that the fourth train scheduled to arrive at the station is the one he needs to
get on. The first train is scheduled to arrive in 10 minutes, and this train will stay in the station
for 20 minutes. The second train is to arrive half an hour after the first train leaves the station,
and this second train will stay in the station for a quarter of the amount of time that the first train
stayed in the station. The third train is to arrive an hour after the second train leaves the station,
and this third train is to leave the station immediately after it arrives. The fourth train will arrive 20
minutes after the third train leaves, and this is the train Paul will board. In total, how long, in
minutes, will Paul wait for his train?
Answer:1. First train stays 20 min 2. Paul waits for first train 30 min 3. Second train arrives after
half an hour 30 min 4. Second train stays 5 min 5. Third train arrives 1 hour later 60 min 6. Paul
waits total 145 min. The answer is: 145
Question: Ted the T-Rex was planning to bring potato salad to the dinosaur picnic. He knows that
an adult dinosaur will eat 10 lbs of potato salad, and a child will eat half as much as an adult. If
there will be 20 adults and 5 children at the picnic, how many pounds of potato salad does Ted
need to bring to the picnic if he hopes to have enough to feed everyone?

Answer: 20 adults x 10 lbs/adult = 200 lbs 5 children x 5 lbs/child = 25 lbs Total pounds of potato
salad = 225 lbs The answer is 225.
(Correct!)

Zero-shot Prompting
Answer the following math problem.
Question: Ted the T-Rex was planning to bring potato salad to the dinosaur picnic. He knows that
an adult dinosaur will eat 10 lbs of potato salad, and a child will eat half as much as an adult. If
there will be 20 adults and 5 children at the picnic, how many pounds of potato salad does Ted
need to bring to the picnic if he hopes to have enough to feed everyone?
Answer: 35 pounds (Wrong!)

Figure 8: An example of our method, Style-Compress, for the reasoning task. We make a comparison between
zero-shot or few-shot CoT prompting on the reasoning task, and shows that our compression method can condense
the demonstrations will increase accuracy than zero-shot prompting. The responses are generated by LLaMA-2
13B.

14549

