@inproceedings{ran-etal-2024-capturing,
title = "Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data",
author = "Ran, Yiting and
Wang, Xintao and
Xu, Rui and
Yuan, Xinfeng and
Liang, Jiaqing and
Xiao, Yanghua and
Yang, Deqing",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.853",
pages = "14566--14576",
abstract = "Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia. While existing RPAs well portray the characters{'} knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ran-etal-2024-capturing">
<titleInfo>
<title>Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiting</namePart>
<namePart type="family">Ran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xintao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinfeng</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaqing</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanghua</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deqing</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia. While existing RPAs well portray the characters’ knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.</abstract>
<identifier type="citekey">ran-etal-2024-capturing</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.853</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>14566</start>
<end>14576</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data
%A Ran, Yiting
%A Wang, Xintao
%A Xu, Rui
%A Yuan, Xinfeng
%A Liang, Jiaqing
%A Xiao, Yanghua
%A Yang, Deqing
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F ran-etal-2024-capturing
%X Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia. While existing RPAs well portray the characters’ knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations.
%U https://aclanthology.org/2024.findings-emnlp.853
%P 14566-14576
Markdown (Informal)
[Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data](https://aclanthology.org/2024.findings-emnlp.853) (Ran et al., Findings 2024)
ACL
- Yiting Ran, Xintao Wang, Rui Xu, Xinfeng Yuan, Jiaqing Liang, Yanghua Xiao, and Deqing Yang. 2024. Capturing Minds, Not Just Words: Enhancing Role-Playing Language Models with Personality-Indicative Data. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 14566–14576, Miami, Florida, USA. Association for Computational Linguistics.