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Abstract

The ever-increasing volume of paper submis-
sions makes it difficult to stay informed about
the latest state-of-the-art research. To address
this challenge, we introduce LEGOBENCH, a
benchmark for evaluating systems that gener-
ate scientific leaderboards. LEGOBENCH is
curated from 22 years of preprint submission
data on arXiv and more than 11k machine learn-
ing leaderboards on the PapersWithCode portal.
We present a language model-based and four
graph-based leaderboard generation task con-
figuration. We evaluate popular encoder-only
scientific language models as well as decoder-
only large language models across these task
configurations. State-of-the-art models show-
case significant performance gaps in automatic
leaderboard generation on LEGOBENCH. The
code is available on GitHub1 and the dataset is
hosted on OSF2.

1 Introduction

Comparison of results with prior state-of-the-art
(SOTA) is a standard practice in experimental re-
search papers. Performance on a task using a spe-
cific metric establishes the efficacy of the paper’s
proposed method. However, one of the primary
challenges in scientific research is keeping up with
the rapid volume of research progress and stay-
ing updated with the latest SOTA to compare with
one’s work. The increasing number of manuscripts
(depicted by arXiv submissions in Appendix A.1)
demonstrates the severity of information overload.
With the continuous stream of submission, revision,
and acceptance timelines of conferences and jour-
nals, researchers often struggle to keep up with the
latest methods and developments. Thus, being ac-
quainted with the latest papers, sieving through the

* Equal Contributions.
1https://github.com/lingo-iitgn/LEGOBench
2https://osf.io/9v2py/?view_only=

6f91b0b510df498ba01595f8f278f94c

massive set, and deciding which baselines to com-
pare with can be challenging and time-consuming.
Moreover, the latest papers with novel methods
may have low visibility, and upcoming papers may
overlook those for result comparison as citations
are biased towards old compared to new papers.

To address the information overload and to fa-
cilitate the comparison with meaningful baseline
works, multiple previous works mine scientific ta-
bles from papers (Kayal et al., 2022; Zhong et al.,
2020; Deng et al., 2019; Liu et al., 2007) and con-
struct scientific leaderboards (Yang et al., 2022;
Kabongo et al., 2023, 2021; Kardas et al., 2020;
Hou et al., 2019a). A scientific leaderboard cu-
rates performance scores of competitive models
against the triple <dataset, task, metric>. One of the
most actively maintained platforms, PapersWith-
Code (PwC) (Stojnic et al., 2018), hosts leader-
boards in empirical machine learning. Figure 6
in Appendix A.2 shows a representative leader-
board sample for the image clustering task on the
MNIST dataset, available in PwC. While leader-
boards are helpful for researchers to track the latest
models, a majority of leaderboard curation initia-
tives are manually maintained (Stojnic et al., 2018),
or are dormant (Eckersley, 2017; Tao, 2017; Ruder,
2018). Hence, the need to automate the generation
of leaderboards is imperative.

To streamline the process of automating leader-
board generation, we create the arXiv Papers’ Col-
lection (APC), a curated collection of research
papers and graph data (citation network and per-
formance comparison network) from arXiv. We
also create a dataset sourced from PapersWith-
Code (PwC), consisting of leaderboards mapped
with arXiv papers. We combine APC and PwC
datasets to develop a benchmark framework called
LEGOBENCH, that facilitates evaluation and as-
sessment of automatic leaderboard generation mod-
els. LEGOBENCH introduces the leaderboard gen-
eration task in two configurations, (i) Ranking Pa-
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Figure 1: Organization of leaderboards in PwC. A leaderboard is constructed for a <dataset, task, metric> tuple.
Leaderboards can contain additional metadata, such as the code repository link and model description tags.

pers based on Content and Graph [RPG], and (ii)
Leaderboard Entries Generation by Prompting Lan-
guage Models [LGPLM]. Our contributions can be
summarized as follows:

• We curate the first leaderboard generation
framework, LEGOBENCH, where we provide
datasets and metrics for evaluating scientific
leaderboard generation. Our dataset consists
of 22 years of arXiv data and 11k leaderboards
from PwC, available publicly on OSF2.

• We present five leaderboard generation task
configurations, including four that are graph-
based and one that utilize language mod-
els. The diverse task configurations allow
for a comprehensive evaluation of systems,
showcasing our framework’s adaptability and
breadth across differing methodologies.

• We assess the ability of the existing off-
the-shelf encoder-only scientific LMs and
decoder-only LLMs in the context of leader-
board generation. Our results showcase the
severe limitations of existing models, uncov-
ering avenues for future models to address.

2 Dataset

We curate two datasets, (i) PwC Leaderboards
(PwC-LDB) and (ii) arXiv Papers’ Collection
(APC), which are utilized for the construction of
LEGOBENCH. PwC-LDB is curated from the Pa-
pers With Code repository3 and APC is curated
from arXiv preprint repository4.

2.1 PwC-LDB
PwC-LDB is a dataset of leaderboards for various
ML tasks curated in the PwC repository. The PwC
repository is annotated by their team, as well as

3https://paperswithcode.com/. Dataset curation - 06/2023.
4https://arxiv.org/. Dataset curation - 09/2022.

Artifact PwC-LDB AP-LDB
Datasets 3666 1697
Tasks 1660 675
Metrics 2958 1381
DTMA 70559 43105
Leaderboards 11470 9847

Table 1: Statistics of PwC-LDB & AP-LDB dataset.
DTMA refers to <data, task, metric, method> tuple
representing an entry on the leaderboard. AP-LDB is
curated by mapping PwC-LDB with APC.

curated from other online benchmarks and repos-
itories such as SQuAD (Rajpurkar et al., 2016),
RedditSOTA (Tao, 2017), and NLProgress (Ruder,
2018). ML datasets constitute the parent nodes and
children nodes are tasks associated with dataset.
Each task is evaluated using certain metrics, and
hence each leaderboard is associated with a dataset
(D), task (T), and metric (M), as represented in Fig-
ure 1. Formally, a leaderboard L(D, T, M) is
defined for a triplet <D, T, M>, where an algo-
rithm/method/model (hereafter denoted as A) is
evaluated against D, T, and M. <D, T, M, A>, thus,
represents the addition of algorithm/method/model
to the DTM triple. Every leaderboard consists of
multiple A’s that compare their performance scores
against each other.

We curated 3666 machine learning (ML)
datasets, 1,660 tasks and their corresponding
leaderboards from the PwC repository. 11,470
leaderboards contain 70,559 <D, T, M, A> tuples.
On average, a leaderboard contains six entries, that
is, a performance comparison of six models. The
maximum number of entries in a leaderboard is 863
for the ‘Image classification on ImageNet using the
Top-1 Accuracy leaderboard. The statistics of the
PwC-LDB dataset are presented in Table 1.
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Figure 2: Pipeline for constructing the APC datasets. Blue boxes denote various datasets in the APC collection and
the PwC-LDB dataset.

Dataset Summary Size
AP-TABS Titles and Abstract of arXiv papers extracted from metadata 1.9M Papers

AP-FT Full text of arXiv papers extracted after parsing PDFs with GROBID 1.9M Papers
AP-CN Citation network of arXiv papers extracted using regex from AP-FT 18M nodes & 59M edges

AP-PCN Performance comparison network extracted from table citations using
AP-FT and AP-CN

280k nodes & 309k edges

AP-LDB PWC-LDB mapped with the arXiv Papers’ Collection 9.8k leaderboards & 41k
<DTM>

Table 2: Summary of datasets in the LEGOBENCH benchmark.

2.2 APC: arXiv Papers’ Collection

APC is a collection of datasets that curates diverse
paper information from arXiv4, a research-sharing
platform that hosts preprints of scientific papers
in eight domains. We curate titles and abstracts
(AP-TABS), full-texts (AP-FT) from arXiv, and
process the data to extract the citations (AP-CN)
and performance comparisons (AP-PCN). Next,
we discuss the stages (denoted by [Si]) in the APC
curation pipeline. Figure 2 illustrates the pipeline.
[S1] arXiv Paper Curation: We curate the arXiv
data by collecting metadata and paper PDFs from
Jan 2000 to July 2022, consisting of 1,942,301
papers categorized into eight broad domains. The
domain-wise statistics of the curated papers are
presented in Appendix A.3. In the remainder
of this paper, we refer to the title and abstract
metadata obtained directly as the AP-TABS
dataset (arXiv Papers’ Titles and Abstracts).
[S2] Parsing PDFs: We parse PDFs into TEI-
XML format using GROBID (Lopez, 2009).
GROBID successfully extracts full-text informa-
tion from 1,940,910 papers, which is referred to as
AP-FT (arXiv Papers’ Full Text) dataset.
[S3] Constructing the Unique Paper Index: We

construct a unique index of all papers present in
our dataset. This index includes 1.9M papers
present in AP-FT along with their references.
[S4] Construction of the Citation Network:
The arXiv Papers’ Citation Network dataset
(AP-CN) consists of citations in the AP-
FT dataset (details in Appendix A.3).
[S5] Table Extraction and Construction of the
Performance Comparison Network: Finally, we
extract tabular information from parsed TEI-XML
paper format in the AP-FT dataset. Citations in the
table are extracted and mapped to the papers in
the unique index. It should be noted that the table
citation data of a paper is a subset of the references
of the paper. We only include papers containing at
least one table with at least one citation in the table
text or the caption to construct the AP-PCN (arXiv
Papers’ Performance Comparison Network) data.
[S6] Mapping PwC-LDB with APC: PwC-LDB
dataset consists of leaderboards for a task, dataset,
and metric triple, denoted by <T, D, M>. Each
model A is listed with the paper title and its unique
arXiv Identifier, if available. We leverage these
identifiers to map to the AP-FT dataset. The
metadata and full-text information was originally
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absent in the papers of PwC-LDB, which we
collate and map by joining with the AP-LDB
dataset.
A summary and statistics of introduced datasets
are presented in Table 2 and size, domain, and
modality statistics of the AP-CN and the AP-PCN
dataset are presented in Appendix A.3.

3 LEGOBENCH: Automatic Scientific
Leaderboard Generation Benchmark

We present LEGOBENCH, a benchmark specif-
ically developed for the evaluation of scientific
leaderboard generation. This benchmark tasks sys-
tems with generating a leaderboard in response to a
natural language query that specifies a dataset (D),
a task (T), and a metric (M), utilizing a collection of
arXiv Papers’ (APC) datasets. To comprehensively
assess the capabilities of scientific leaderboard gen-
eration systems, we design two tasks, resulting
in a total of five configurations. These configura-
tions employ multiple frameworks and use various
datasets from the APC to assess the generation of
diverse leaderboard formats.

The two leaderboard generation tasks are: (i)
Leaderboard Entries Generation by Prompting Lan-
guage Models [LGPLM], and (ii) Ranking Papers
based on Content and Graph [RPG]. The LGPLM
task comprises all 9847 leaderboards presented in
the AP-LDB dataset. The benchmark for the RPG
task comprises 4409 leaderboards for 675 empiri-
cal ML tasks on 1697 datasets (we filter out leader-
board having less than three entries that can be
mapped to arXiv or our APC dataset, as paper text
from arXiv is required for the task). For both tasks,
given query q = <D, T, M>, and arXiv dataset D,
the task is to generate a leaderboard L correspond-
ing to the query q. The format of D and L depends
on the task configuration. q is a natural language
query consisting of <D, T, M> details (E.g., List
the performance scores of various methods in the
MNIST dataset for image classification task using
metric accuracy). Next, we describe each task.

3.1 Leaderboard Entries Generation by
Prompting Language Models [LGPLM]

LGPLM is modeled as a QA task over documents,
where given the query q (consisting of D, T, and M
details), and D = AP-FT, a language model extracts
method performance from papers experimenting
on T and D and reporting scores with M. It focuses
on the extraction of leaderboard entries, consisting

of method and the performance scores for metric
M and arranging them into a leaderboard. The ith

leaderboard entry in L can be represented as <mi,
si>, where mi is the method name and si is the
score. In our dataset, L is stored as a markdown
table containing <mi, si> entries, in string format.
We chose the markdown table format for storing the
leaderboard entries as our preliminary evaluation
highlighted that most LLMs are efficient at gen-
erating a uniform markdown table rather than any
other format (e.g. tab or space separated columns).
However, for evaluation, n-gram metrics such as
ROUGE and BLEU are not suitable. The LLM
output with the ground truth as various LLMs gen-
erate tables in different formats (different markers
might be used to denote table boundaries and cells),
and we are interested in evaluating exact method
names and scores. Instead of using n-gram metrics
like ROUGE and BLEU to compare the raw LLM
output with the ground truth directly, we parse the
leaderboard string to extract methods and scores
and design custom metrics for evaluation. Metrics
are discussed in Section 3.3.

3.2 Ranking Papers based on Content and
Graph [RPG]

Given a short natural language query q (consisting
of D, T, and M details), this task format requires
ranking candidate papers based on the performance
score. For RPG tasks, L is a ranked list of papers,
where the best rank indicates the best performance
on the <D, T, M> triple. The first step is retrieving a
set of candidates from the arXiv Papers’ Collection
(APC). It leverages the network structure as well as
the paper content, to generate a ranked list of papers
such that the papers with the best performance are
ranked highest, and ranks increase as performance
decreases. We encourage the evaluation of graph
models for this task format as we present multiple
configurations of this task with different text and
network datasets.

1. Ranking Papers in the Citation Net-
work with Titles and Abstracts (RPG[CN-
TABS]): Given the title and abstract of each
paper in the arXiv Papers’ Citation Network,
i.e., D = AP-CN

⋃
AP-TABS, construct the

leaderboard based on the citation network
properties and the content.

2. Ranking Papers in the Performance Com-
parison Network with Titles and Abstracts
(RPG[PCN-TABS]): Given the title and ab-
stract of each paper in the arXiv Papers’ Per-
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formance Comparison Network, i.e., D = AP-
PCN

⋃
AP-TABS, construct the leaderboard

based on the comparison network properties
and the content present in TABS. The AP-
PCN dataset encodes which paper compares
results with which papers; however if the per-
formance is better or worse, it is not present
in the graph dataset. The improvement needs
to be extracted from the TABS dataset and
used in addition to the comparison data to
generate the correct ranking of papers in the
leaderboard.

3. Ranking Papers in the Citation Network
with Full Texts (RPG[CN-FT]): Given ac-
cess to the full text of papers along with the
citation network, i.e. D = AP-CN

⋃
AP-FT,

this task focuses on generating the ranked pa-
per list by leveraging the network as well as
the full text. For example, the full text can
be utilized to learn node embeddings in the
graph.

4. Ranking Papers in the Performance
Comparison Network with Full Texts
(RPG[PCN-FT]): This task is similar to
RPG[CN-FT], except that instead of the cita-
tion network, a performance comparison net-
work is provided. D = AP-PCN

⋃
AP-FT.

The two tasks, LGPLM and RPG are designed
for different purposes. While the RPG task focuses
on paper graph representation models and models
for ranking graph nodes, LGPLM focuses on the ex-
traction of methods and their scores from the paper
text and utilizes that for leaderboard generation.

3.3 Evaluation of Leaderboard Generation
The output of the LGPLM task is a leaderboard con-
sisting of method names and their corresponding
scores, arranged in a markdown table. For LGPLM
task, we design the following metrics:
Method Recall (MR), used for the LGPLM task,
computes the percentage of correct method names
in the model-generated leaderboard with respect to
the method names in the ground truth.
Method Precision (MP) is similar to MR, and
computes the percentage of correct methods in the
model-generated leaderboard with respect to the
total number of generated methods.
Score Precision (SP) computes the percentage of
correctly extracted scores in the model-generated
leaderboard with respect to the total number of gen-
erated methods.
The output of RPG task is a ranked list of papers.

Model MR MP SP
7 B Models

Falcon 0.93 - -
Falcon Instruct 1.06 - -
Galactica 0.00 - -
LLama 2 11.40 5.8 -
LLama 2 Chat 11.93 2.36 2.00
LLama 3 IT 36.78 2.80 5.10
Mistral 2.74 - -
Mistral Instruct 20.47 5.78 1.84
Vicuna 20.95 10.49 2.80
Zephyr Beta 10.97 1.71 1.72

13 B Models
LLama 2 10.23 4.38 -
LLama 2 Chat 3.76 - -
Vicuna 1.55 - -

Closed Models
Gemini Pro 3.38 2.73 13.87
GPT-4 25.24 17.14 13.06

Table 3: Performance of LLMs on the LGPLM task.

We use Kendall’s Tau (KTau) (Kendall, 1938) and
BEM (custom designed by us) metrics for RPG
task, which are described next. Kendall’s Tau
(KTau) (Kendall, 1938) is used to measure the rank
correlation between the ranked list of paper titles
generated by the candidate model and the ground
truth ranks of papers in the leaderboard. It is in
the range of -1 to +1, indicating perfect inverse or
direct association or no association if 0.
Binary Exact Match (BEM) is designed to take
binary values, i.e., one only if the two ranked lists
are exactly similar; otherwise, zero. To enhance
readability, we present BEM percentage values, i.e.,
the percentage of ordered ranked lists.

4 Preliminary Baselines and Results

We present preliminary baselines for each task.

4.1 LGPLM Baselines and Results

We follow a retrieval-augmented-generation setup
for the LGPLM baseline. We use a BM25 ranker
module that takes the leaderboard query and full-
text paper chunks as input and selects top-k chunks.
For our experiments, only the papers present in the
leaderboard (i.e. papers that report performance on
the specified task and dataset using the specified
metric) are split into chunks and provided to the
BM25 ranker. We use k=10 for our experiments.
The top-k chunks and the query are then provided to
a language model, which generates the leaderboard
consisting of methods and performance scores. We
include the top-10 chunks iteratively in the prompt
and keep including the chunks till the model con-
text length is exhausted. The pipeline is presented
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Figure 3: RAG pipeline for leaderboard generation by prompting the language model (LGPLM). Given paper chunks
and a query, a BM25 ranker selects the top-10 chunks that are used by an LLM for generating the leaderboard.

in Figure 3 and the prompt details are presented in
Appendix Figure 8.

We present results with open-source LLMs (Fal-
con (Almazrouei et al., 2023), Galactica (Taylor
et al., 2022), LLama 2 (Touvron et al., 2023), Mis-
tral (Jiang et al., 2023), Vicuna (Chiang et al.,
2023), and Zephyr (Tunstall et al., 2023)) and two
closed models Gemini (Google et al., 2023) and
GPT-4 (Achiam et al., 2023). We evaluate 7B and
13B models and exclude bigger models due to re-
source constraints. We present the results for this
configuration in Table 3.

The Method Recall (MR) is less than 15% for 11
out of the 15 evaluated models, namely Falcon
7B, Falcon Instruct 7B, Galactica 6.7B, Llama 2
and Llama 2 Chat (7B and 13B both), Mistral 7B,
Zephyr 7B, Vicuna 13B, and Gemini-Pro. A man-
ual examination of the results reveals that the ma-
jority of models with MR less than 5% have noisy
and repetitive text including the leaderboard table
header (“Method | Metric”), thereby precluding the
possibility of assessing Score Precision (SP). Fur-
ther, as the models generate table headers only, or
ill-formatted noisy text, it is infeasible to calculate
Model Precision (MP). Galactica, the only LLM
trained specifically on scientific texts (research pa-
pers, references, LATEX, code, DNA sequences, and
knowledge bases), performs poorly on LGPLM
task.

Llama 2 Chat optimized models are better at
table generation in comparison to regular coun-
terparts. While the MR scores for Llama 2 7B
and Llama 2 Chat 7B are similar, Llama 2 Chat 7B
is more efficient at generating the leaderboard table
in a readable format. Llama 2 generated answers
are poorly formatted strings, and score generation
is not consistent hence SP cannot be computed. A
similar trend is observed for Mistral models. The
regular Mistral 7B model performs poorly, attain-

ing less than 5% recall while Mistral 7B IT has
MR of 20.47%, indicating that instruction tuning
helps the model follow instructions to generate a
leaderboard table.

GPT-4 and Llama 3 IT have best method recall.
MR presents the percentage of ground truth method
names that are present in the LLM-generated
leaderboard. GPT-4 MR scores indicate that merely
25.24% original methods are generated by the LLM
on average. Gemini performs poorly in comparison
to GPT-4 with only 3.3% MR. Among the open-
source LLMs, Llama 3 IT 8B has an MR of 36.8%,
which is higher than GPT-4. However, the method
precision and score precision of the Llama 3 model
are much lower than GPT-4, highlighting its ineffi-
ciency in extracting scores. Further, the LLMs are
poor at ranking as we observe KTau close to 0 for
both GPT-4 and Llama 3.

GPT-4 has the highest Method Precision of only
17%, indicating limitations in the generation of
method names for leaderboard generation task.
We present the MP (Method Precision) scores,
which compute the precision of correctly gener-
ated methods in the LLM-generated leaderboard
for models with at least 10% MR. Llama 3 re-
sponses are long, leading to higher MR but low
MP. GPT-4 has the highest precision, with roughly
generating 17% correct method names on average.
However, it still indicates that the model halluci-
nates and generates several method names that are
not present in the papers.

Score generation presents a more challenging
task than method generation for most models.
SP computes the percentage of correctly generated
scores with respect to the correctly generated meth-
ods in the leaderboard. Gemini which only has
3.38% method recall, generates 13.87% exactly
correct scores for the 3.38% correctly generated
methods. GPT-4 has a similar SP of 13.06% for
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the 25.24% correctly generated methods. Overall,
the model GPT-4 only correctly generates 25.24%
correct methods, and further, the scores for these
methods are incorrect 74.76% times. This also
highlights that score generation is more challeng-
ing for models in comparison to method generation.

Task → RPG[CN-TABS] RPG[PCN-TABS]
Model ↓ BEM KTau BEM KTau

SciBERT 2.66 -0.010 8.26 -0.187
SPECTER 2.60 -0.009 8.74 -0.177

SciNCL 2.25 -0.015 8.51 -0.175
OAG-BERT 2.62 -0.009 8.34 -0.201

Task → RPG[CN-FT] RPG[PCN-FT]
Model ↓ BEM KTau BEM KTau

SciBERT 0.184 -0.006 6.743 -0.140
SPECTER 0.851 -0.008 6.978 -0.137

SciNCL 0.888 -0.006 6.283 -0.015
OAG-BERT 0.665 -0.010 7.201 -0.132

Table 4: Performance of PageRank for ranking nodes.
Candidates Retrieval selected intersecting candidate doc-
uments retrieved by query unigram search.

4.2 RPG Baselines and Results
We follow a retrieve-then-rank procedure for rank-
ing papers based on content and network as de-
picted in Figure 4. The first step is candidate re-
trieval, which selects a subset of papers from the
arXiv dataset, followed by a ranker module that
ranks the papers to generate leaderboard entries.
Candidate Retrieval Module: We present a
straightforward methodology to retrieve candidate
papers given the query. We preprocess the natural
language query (consisting of <D, T, M> details),
and tokenize it to obtain unigrams. The query uni-
grams are searched in papers (title and abstract if
AP-TABS, and full-text for AP-FT configuration),
and papers containing all unigrams are selected.
Ranker Module: After candidate retrieval, we
construct a graph of the retrieved papers. The can-
didate papers retrieved in the previous step are con-
sidered nodes, and directed unweighted edges are
added from the citation or performance comparison
network depending on the dataset provided with
the task. Weights are added to the existing edges
by encoding paper content (TABS) using language
models (described next) and computing cosine sim-
ilarity between the paper nodes.

Following the above-described retrieve-then-
rank architecture, we create multiple baselines
by utilizing different networks (AP-CN or AP-
PCN) and language models. We experimented

with popular scientific encoder models such as
SciBERT (Beltagy et al., 2019), SPECTER (Cohan
et al., 2020), SciNCL (Ostendorff et al., 2022), and
OAG-BERT (Liu et al., 2022), to encode the paper
content. Node scores are calculated using PageR-
ank (Page et al., 1999) and are used to rank the
nodes. We report the leaderboard generation per-
formance results in Table 4. Next we discuss key
takeaways from the results presented in Table 4.

LM generated ranks are uncorrelated to leader-
board ranks. KTau values close to 0 for all base-
lines indicate that there is no correlation between
the generated lists. The maximum BEM values are
in the range of 6-8%, indicating less than random
chance papers being ranked correctly.

Performance Comparison Network is better
suited to construct leaderboards in comparison
to Citation Networks. Among the baselines uti-
lizing the citation network vs. performance compar-
ison network as presented in Table 4, the usage of
AP-PCN shows promise over AP-CN with roughly
6 points increase in BEM scores with both TABS
and FT datasets. We posit that performance com-
parison is a robust signal compared to citations, as
previous works indicate that all citations are not
central to the paper and certain citations are solely
out of ‘politeness, policy, or piety’ (Teufel et al.,
2006; Ziman, 1969). In the current settings, us-
age of the AP-FT leads to inferior performance
than AP-TABS, however, we posit the large can-
didate set retrieved from AP-FT to be the actual
reason. AP-FT usage could potentially enhance
performance as it is more likely to discuss per-
formance scores exhaustively in the full-text, con-
tingent upon the integration of a more effective
candidate retrieval module. Performance compari-
son networks and paper full-text datasets have long
been unexplored and have the potential to improve
leaderboard generation performance. Existing base-
lines, however, perform poorly, thereby presenting
an opportunity to leverage the benchmark for the
assessment of novel graph and encoder models.

Overall, LEGOBENCH presents a challenging
task for LLMs. Leaderboard generation is a chal-
lenging task, as it involves several tasks. For a
given natural language query consisting <D, T, M>
details, first step is identification of appropriate
papers, followed by identification of methods, ex-
traction of scores, and finally reasoning over the
extracted methods and scores to rank the entries for
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Figure 4: Pipeline for ranking papers with content and graph for leaderboard generation (RPG).

a leaderboard construction. The task necessitates
complex reasoning, making it a challenging task
for large language models. We posit that models
proficient on LEGOBENCH can be utilized by re-
searchers in tracking model progress and finding
state-of-the-art papers.

5 Related Works

Information Extraction from Scientific Papers:
Several works (Viswanathan et al., 2021; Jain
et al., 2020; Luan et al., 2018; ?, 2017) extract
dataset, task, method, and metric (DTMM) enti-
ties for leaderboards. Bedi et al. (2022) annotate
4.9k references as baselines similar to AP-PCN,
and Kabongo et al. (2021) curate DTM triples from
4.5k articles. However, these datasets are signif-
icantly smaller than our dataset, which contains
1.9M articles, citation and comparison networks
from the last 22 years of arXiv, and 70,000 DTM
triples. Multiple works extract table data from
images (Kayal et al., 2022; Zhong et al., 2020),
LATEX (Kardas et al., 2020; Li et al., 2020) and
PDFs (Liu et al., 2007). However, IE works extract
entities from the text and tables and don’t focus
much on leaderboard construction due to several
challenges such as entity normalization, determina-
tion of metric directionality, merging results, and
organizing results into leaderboards.
Automatic Leaderboard Generation Hou et al.
(2019b) presents two datasets and a framework
called TDMS-IE for automatically extracting
DTM entities and score information from pa-
pers. IBM-TDMS (Hou et al., 2019b) and ORKG-
TDM (Kabongo et al., 2021) use an RTE (recogniz-
ing textual entailment) task, where given the paper
context, the task determines if TDM tuples are
entailed, contradicted, or can’t be deduced. How-
ever, Kabongo et al. (2023) show that RTE models
for DTM identification are not generalizable to
new data. Parallely, AxCell (Kardas et al., 2020)

and Yang et al. (2022) present an end-to-end ML
pipeline for extracting results from papers, also pre-
senting a dataset of only 2000 leaderboards. Singh
et al. (2019) consolidate tables from multiple pa-
pers into a graph that illustrates performance im-
provements. In contrast, our setting is flexible and
realistic, as it starts with a natural language query
and is focused on LLMs.

6 Conclusion

We curate two dataset collections, APC and PwC-
LDB, to construct LEGOBENCH benchmark for
automatic scientific leaderboard generation task.
Our APC collections features multiple datasets,
including titles, abstracts, and full-text of 1.9M
arXiv papers, a citation network consisting of
18M papers, and a performance comparison net-
work of 280k papers extracted from scientific ta-
bles. The AP-LDB dataset which presents PwC
leaderboards mapped with arXiv data consists of
9.8k leaderboards consisting of 41k <D, T, M>
entries. LEGOBENCH largely caters to graph-
based rankers and language models for leaderboard
generation. We design two tasks, with five con-
figurations, to comprehensively evaluate diverse
systems for automatic scientific leaderboard gen-
eration. Across both tasks, we find that existing
models severely lack the capabilities to generate
scientific leaderboards leveraging paper texts and
paper network datasets. This opens up a new av-
enue for foundation models to focus on, which
also helps the community by reducing the over-
load of comparing and organizing scientific output
by generating leaderboards. In addition to the au-
tomatic leaderboard generation problem, our pro-
posed datasets and LEGOBENCH can also be used
in traditional tasks such as citation recommenda-
tion and intent identification, impact prediction,
novelty assessment in review generation, citation
count prediction, and venue recommendation for
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manuscript submission.

7 Limitations

The leaderboard dataset was curated from Paper-
sWithCode (PwC), and any papers missing in the
PwC or arXiv dataset (APC) were excluded from
the dataset. Our RPG task excluded leaderboards
with less than three entries and also removed multi-
ple models from the same paper as we formulated it
as a paper ranking task. LGPLM task, on the other
hand, takes into consideration all methods instead
of the best performing method. The performance
comparison network (AP-PCN) is currently based
on the identification of citation patterns in tables
in papers. However, it should be noted that not all
tables are result comparison tables. Similarly, it is
not necessary that all papers whose results are com-
pared are included in tables, and sometimes, results
can be compared in the text alone. Such compar-
ison papers won’t be present in our performance
comparison network. Our PwC-LDB dataset is
curated from the PaperWithCode repository. An
adversary can add incorrect results, leading to poor
performance of good ranking models. Similarly,
adversaries can also add incorrect results to exist-
ing leaderboards to favor a specific group or an
individual organization. Lastly, we rely on PwC
to correctly map the scores to the corresponding
papers, even if they are reported as baselines in
other papers.
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A Appendix

A.1 Exponential Growth in Monthly Paper
Submissions on arXiv: 1995-2022

Figure 5 presents monthly submissions to arXiv
from 1995 to 2002, indicating the exponential
growth in submitted manuscripts. This exponen-
tial growth highlights the exigency of automated
leaderboard generation to stay updated with recent
state-of-the-art methods.

Figure 5: The graph illustrates the exponential growth
in the number of papers published monthly on arXiv
from 1995 to 2022. This trend showcases the continuous
expansion of research and knowledge in the academic
community.

A.2 Representative leaderboard taken from
PapersWithCode

We present a snapshot of a leaderboard taken from
PapersWithCode in Figure 6.

Figure 6: A snapshot of the leaderboards from PwC
showcasing top-performing models for Image Cluster-
ing on MNIST Dataset and ranked based on NMI (Nor-
malized Mutual Information) metric. Image clustering
in the MNIST dataset is the process of grouping similar
handwritten digit images and the NMI metric measures
how well the clusters align with the actual categories.

A.3 Dataset Statistics

The size and the connected components in the ci-
tation and performance comparison network are
presented in Table 5. The statistics of different
dataset modalities and tasks in the dataset are pre-
sented in Table 6 and Table 7 respectively. We
finally also present the statistics of the Citation net-
work and the Performance Comparison network
for each domain in Table 8. The citation network
for the Physics domain is the densest, while for the
Economics citation network is the sparsest.

Citation Network Property
Directed Yes
Nodes 18,325,578
Edges 59,890,375
|CC| 0.993436
|SCC| 0.001794

Comparison Network Property
Directed Yes
Nodes 280444
Edges 309483
|CC| 0.518481
|SCC| 0.000043

Table 5: Statistics of the Citation network and Com-
parison network. |CC| and |SCC| denote the number of
connected components and strongly connected compo-
nents, respectively.
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Dataset Modality Frequency
Images 498
Texts 364

Videos 166
Graphs 101

Environment 69
Audio 41
Lidar 39

Medical 34
3d 26

Point Cloud 21
RGB-D 19
Speech 15

Time Series 14
Tracking 12
Tabular 10
Others 44

Table 6: Frequency of various dataset modality of
datasets in the AP-LDB dataset. The modality infor-
mation is taken from PapersWithCode repository.

Task Category Frequency
Computer Vision 1180

NLP 350
Graphs 109

Playing Games 74
Miscellaneous 42

Medical 40
Time Series 33
Reasoning 30

Speech 28
Knowledge Base 13

Audio 12
Computer Code 11

Robots 7
Music 4

Adversarial 2
Others 146

Table 7: Frequency of various task categories in the AP-
LDB dataset. The category information is taken from
PapersWithCode repository.

A.4 Baseline System Design
In this section, we present a detailed overview of
our baselines for the RPG and LGPLM tasks. Ad-
ditionally, we also present another configuration,
RPLM. For inferencing with LLMs, we use the
vLLM library. We had access to a 64 core Intel(R)
Xeon(R) Gold 6226R CPU @ 2.90GHz, running
Ubuntu 20.04 with 355GB RAM, and one 32GB
Nvidia Tesla V100 GPU. We utilized the GPUs
for embedding the paper content using the SciB-
ERT, SPECTER, SciNCL, and OAG-BERT, and
for LLM inferencing for RPLM and LGPLM tasks.
We used NLTK for preprocessing text.

The RPG pipeline is presented in Figure 4. It
is provided with the natural language query (con-
sisting of D, T, M) and papers dataset and network
dataset from the arXiv Papers’ Collection. The
candidate retriever generates a set of initial can-
didate papers that report performance on the <D,
T, M> triple. The Ranker module leverages the
AP-CN or AP-PCN dataset depending on the RPG
task configuration and generates a ranking of the
papers.

Our baseline for LGPLM is a RAG setup. For
the natural language query consisting of <D, T, M>
details, we select relevant papers. We split these pa-
per texts into chunks and a BM25 ranker function
selects top-10 chunks with respect to the query. The
top-10 chunks, query, and an instruction are fed to
an LLM, and asked to extract leaderboard entries
(methods and scores) from the chunks. We experi-
mented with the parameters (temperature=0.1, 0.9,
top_p=0.1, 0.5, 0.95) on a smaller subset and se-
lected temperature=0.1 and top_p=0.95 after man-
ually inspecting LLM answers. We use the vLLM
library for inferencing. The pipeline is presented
in Figure 3 and a representative prompt is presented
in Figure 8.

A.4.1 Ranking Papers by Prompting
Language Models [RPLM]

RPLM focuses on ranking the papers using lan-
guage models (LMs). Given a natural language
query q (consisting of D, T, and M details), and D
is a randomly shuffled list of paper titles present
in the leaderboard corresponding to <D, T, M>.
LMs are expected to generate output L as a ranked
list of paper titles, such that the best-ranked pa-
per in the list achieves the best score on <D, T,
M>. This task intends to leverage LMs to rank
papers by retrieving the best performance score of
the model discussed in the paper. This task opens
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PC Network Citation NetworkDomain Papers Nodes Edges Nodes Edges
Computer Science 618010 61677 18738 188269 2510609
Economics 5924 639 47 1633 10394
Electrical Engineering
and Systems Science

50456 6864 375 14089 95145

Mathematics 530067 5225 20350 171825 2068125
Physics 1123204 360071 37952 360071 4296484
Quantitative Biology 36298 1313 700 11098 97310
Quantitative Finance 14881 699 294 4630 41599
Statistics 157189 9973 3485 50761 87695
TOTAL PAPERS 1938693 613333 4644 107715 5419356

Table 8: Distribution of arXiv papers from Jan 2000-July 2022 in each category. The details of the Performance
Comparison network and the Citation network are listed. This data includes the papers not present on arXiv but
present in AP-CN.

PROMPT:
You are provided with a list of paper titles in the
machine learning domain. Your task is to rank them
based on their performance on a specific task and
dataset using a metric mentioned in the query(the
best-performing model should be listed first and
the worst should be listed last). Use only the best-
performing model proposed in the papers below to
compute the ranks. Only include the ranked list of
titles in your response and skip any additional text.
Query - Rank the performance of the following pa-
pers on the <TASK> on dataset <DATASET> using
metric <METRIC>.
T1: . . .
T2: . . .
T3: . . .
T4: . . .

Figure 7: Prompt Template for Ranking by
Prompting Language Models [RPLM]. <TASK>,
<DATASET>, and <METRIC> are replaced by ap-
propriate T, D, and M values in the prompt.

PROMPT:
Excerpts: ....
You are provided with a dataset, task, and metric.
You need to create a leaderboard which lists the per-
formance of various methods on the provided dataset
and task using the provided metric. Excerpts from
research papers are provided above which report the
performance of methods on these task, dataset and
metric. Extract the performance from the excerpt to
create the leaderboard. The output should be a sin-
gle table listing each method and performance only.
Do not include any explanation or additional text in
the output, only include method name and perfor-
mance scores. Query - List the performance scores
of various methods on the <DATASET> dataset on
the <TASK> task using metric <METRIC>.

Figure 8: Prompt Template for Leaderboard Gener-
ation by Prompting Language Models [LGPLM].
<TASK>, <DATASET>, and <METRIC> are re-
placed by appropriate T, D, and M values in the
prompt.
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the possibilities for evaluating if a language model
encodes/memorizes relevant information about the
paper results in the model parameters as paper text
is not provided. However, it is a challenge to au-
tomatically ascertain whether the rationale behind
the generated rankings truly takes into account the
extracted scores. We use the AP-LDB dataset to
construct the queries. As this is a ranking task, we
only use leaderboards where at least three unique
papers are present so that it is practical to evaluate
the generated paper title rankings.

The baseline for the RPLM pipeline is straight-
forward as it involves prompting a language model
with the natural language query (<D, T, M>) and
a list of paper titles. We provide succinct instruc-
tions in the prompt to explain the task to LLM. The
pipeline is presented in Figure 9 and a representa-
tive prompt is presented in Figure 7.

Figure 9: Pipeline for ranking papers by prompting
language models (RPLM).

A.4.2 RPLM Baselines and Results
For the RPLM task, we prompt language models
by adding an instruction to the provided natural
language query q and paper titles. The pipeline and
complete prompt are presented in Figure 9 and Fig-
ure 7, respectively. We present results with open-
source LLMs (Falcon (Almazrouei et al., 2023),
Galactica (Taylor et al., 2022), LLama 2 (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023),
Vicuna (Chiang et al., 2023), and Zephyr (Tun-
stall et al., 2023)) and two closed models Gem-
ini (Google et al., 2023) and GPT-4 (Achiam et al.,
2023). We evaluate 7B and 13B models and ex-
clude bigger models due to resource constraints.

We use the following two additional metrics for
evaluating results of RPLM baselines. Complete
Inclusion Score (CIS) CIS denotes the percentage
of model-generated leaderboards that have all the
titles present in the ground truth. Concordant
Pairs (CP) measures the percentage of pairs of
leaderboard entries ranked in the same order as in
the ground truth. It lies in the range 0-100, with

100% indicating that all pairs are ranked in the
same order.

Results for the models are presented in Table 9.
LLama 2 Chat 7B and Vicuna 7B perform best
among the open-source LLMs in generating a
ranked list that consists of all the titles provided in
the input prompt (i.e. CIS metric) for around 16%
of the instances in the dataset. The 7B versions
of Llama 2 and Vicuna perform better at generat-
ing the same titles (and hence understanding the
instruction correctly) than their counterpart 13B
models. Overall, GPT-4 has the highest CIS of
21.89%. BEM and KTau are calculated for the
subset of instances for which the LLM-generated
ranked list contains all the papers in the ground
truth, hence we omit these values for papers with
CIS less than 1%. BEM values are less than 1%
for all models, indicating less than 1% of the LLM-
generated ranked paper titles are exactly the same
as the original ranking of papers. Similarly, all
models’ KTau values are close to zero, indicating
no association between the LLM-generated paper
ranks and the original leaderboard ranks. Finally,
we present CP, indicating the percentage of concor-
dant pairs in the LLM-generated titles and original
leaderboard titles. Note that LLM-generated titles
absent from the original prompt input are ignored
while computing CP. GPT-4 has the highest CP
with 51.93% concordant title pairs, followed by
Gemini with 46.06% concordant title pairs. The
best performing open-source LLMs, Llama 2 Chat
7B and Vicuna 7B lag behind GPT-4 with around
16 points. Instruction-tuned models perform bet-
ter than their regular counterparts across all the
open-source LLMs.

Manual analysis of generated ranks revealed that
Gemini follows the prompt instruction efficiently
by generating a well-formatted ranked paper list.
Most open-source models such as Falcon, Llama,
Vicuna, and Mistral generate titles absent in the
prompt and often also repeatedly generate the same
title. Manual inspection of the results indicates that
most models are unable to follow the instructions
and often end up generating paper titles that were
not provided for ranking in the input. These titles
are often hallucinated and no papers with such titles
exist in the public domain. Falcon 7B, Llama 2 7B,
and Llama 2 13B often keep generating the same
paper title multiple times in the ranked list, how-
ever, the instruction-tuned counterparts of these
models generally did not face this issue. The major-
ity of the Galactica-generated answers have HTML
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tags (specifically <s>, <p>, and sometimes <li>),
or the first generated title is repeated in the entire
generated text. Galactica model also often ends up
generating long text in the format of a paper title
and abstract instead of paper title ranks. We also
observe that the Vicuna 13B model is chattier in
comparison to the Vicuna 7B model despite the in-
struction clearly stating to only generate the ranked
titles and skip any additional text. We posit this as
the reason for the slightly better performance of the
Vicuna 7B model compared to the 13B model.

Model CIS BEM KTau CP
7 B Models

Falcon 1.24 0.20 -0.17 1.65
Falcon Instruct 7.46 0.23 0.00 16.38
Galactica 0.50 - - 0.00
LLama 2 0.25 - - 1.36
LLama 2 Chat 16.17 0.11 0.02 35.87
Mistral 1.74 0.29 -0.04 3.25
Mistral Instruct 3.48 0.07 -0.05 7.97
Vicuna 16.92 0.10 0.05 36.87
Zephyr Beta 7.21 0.10 -0.14 13.25

13 B Models
LLama 2 0.25 - - 0.46
LLama 2 Chat 10.20 0.07 0.01 29.71
Vicuna 14.18 0.09 0.07 34.66

Closed Models
Gemini Pro 18.91 0.09 0.06 46.06
GPT-4 21.89 0.08 0.10 51.93

Table 9: Performance of LLMs on the RPLM task.

A.5 Acronyms and Abbreviations used in the
paper

We present acronyms and abbreviations used in the
paper in Table 10.
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Dataset
APC arXiv Papers’ Collection
AP-FT arXiv Papers’ Full Text
AP-TABS arXiv Papers’ Title & Abstract
AP-CN arXiv Papers’ Citation Network
AP-PCN arXiv Papers’ Performance Comparison Network
AP-LDB arXiv Papers’ Leaderboard
PwC-LDB Papers with Code Leaderboard

Task
RPG Ranking Papers based on Content and Graph
RPG[CN-TABS] Ranking Papers in the Citation Network with Titles and Abstracts
RPG[CN-FT] Ranking Papers in the Citation Network with Full Text
RPG[PCN-TABS] Ranking Papers in Performance Comparison Network with Title & Abstract
RPG[PCN-FT] Ranking Papers in the Performance Comparison Network with Full Text
RPLM Ranking Papers by Prompting Language Models
LGPLM Leaderboard Entries Generation by Prompting Language Models

Metrics
BEM Binary Exact Match
CIS Complete Inclusion Score
CP Concordant Pairs
KTau Kendall’s Tau
MR Method Recall
MP Method Precision
SP Score Precision

Misc
DTMA Dataset, Task, Metric, Algorithm/Method/Model
FT Full Text (in the context of research papers)
PwC Papers with Code
TABS Title & Abstract (in the context of research papers)

Table 10: List of acronyms and abbreviations used in the paper.
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