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Abstract

Multimodal Sentiment Analysis (MSA) utilizes
multimodal data to infer the users’ sentiment.
Previous methods focus on equally treating the
contribution of each modality or statically using
text as the dominant modality to conduct inter-
action, which neglects the situation where each
modality may become dominant. In this pa-
per, we propose a Knowledge-Guided Dynamic
Modality Attention Fusion Framework (KuDA)
for multimodal sentiment analysis. KuDA uses
sentiment knowledge to guide the model dy-
namically selecting the dominant modality and
adjusting the contributions of each modality. In
addition, with the obtained multimodal repre-
sentation, the model can further highlight the
contribution of dominant modality through the
correlation evaluation loss. Extensive experi-
ments on four MSA benchmark datasets indi-
cate that KuDA achieves state-of-the-art perfor-
mance and is able to adapt to different scenarios
of dominant modality.1

1 Introduction

Since users’ sentiment expressions are reflected in
multiple modalities on social media, multimodal
sentiment analysis (MSA) has garnered rising at-
tention in recent years. It aims to mine and compre-
hend the sentiments of online videos (Soleymani
et al., 2017; Zeng et al., 2021; Kaur and Kautish,
2022). Most recent MSA methods can be grouped
into two categories: ternary symmetric-based meth-
ods (Zadeh et al., 2017; Liu et al., 2018; Zadeh
et al., 2018a; Tsai et al., 2019; Hazarika et al.,
2020; Yu et al., 2021; Sun et al., 2022; Huang et al.,
2024) and text center-based methods (Han et al.,
2021a,b; Wang et al., 2022; Li et al., 2022; Lin and
Hu, 2022; Wang et al., 2023; Zhang et al., 2023).
Ternary symmetric-based methods focus on equally

*Corresponding author. Email: ymlin@guet.edu.cn.
1Our code is publicly available at https://github.com/

MKMaS-GUET/KuDA
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Figure 1: Three video samples with vision, text, or audio
as the dominant modality from CH-SIMS dataset. In
the Ground Truth, V, T and A denote the vision, text
and audio, respectively. M is the overall sentiment label
of the video sample. The values of all labels are from -1
(negative) to 1 (positive).

treating the contribution of each modality and mod-
eling the bidirectional relationship of all modality
pairs. Text center-based methods focus on using
text as the dominant modality to guide the vision
and audio modalities to interact with it to adjust
the contributions of different modalities properly.
Thus, both ternary symmetric-based methods and
text center-based methods consider the distribution
of importance among modalities to be static and fix
the dominant modality.

However, as shown in Figure 1, we discovered
that in certain situations, vision, text, or audio could
be the dominant modality respectively. With the
first sample in Figure 1, since the vision label is
more consistent with the overall sentiment label,
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it is dominant. Based on an investigation of com-
monly used datasets in MSA, we find that these sit-
uations are not uncommon. Detailed statistics and
analysis can be found in Appendix A. Thus, when
the dominant modality is not fixed, the ternary
symmetric-based methods cannot effectively adapt
to the situation where any modality is dominant
because they do not consider the differences of im-
portance between modalities. The text center-based
methods statically set text as the dominant modal-
ity, and when other modalities are dominant, the
model’s attention is distracted by the text.

In this paper, we propose a Knowledge-Guided
Dynamic Modality Attention Fusion Framework
(KuDA), which improves the model performance
and makes it adaptable to more complex and wider
scenarios by dynamically selecting the dominant
modality and adjusting the contributions of each
modality according to different samples. Specifi-
cally, KuDA first uses the BERT model and two
Transformer Encoders to extract semantic features
of text, vision, and audio modalities. Then, KuDA
performs sentiment knowledge injection and senti-
ment ratio conversion by the adapters and decoders,
which can extract sentiment clues and guide KuDA
in selecting the dominant modality further. Next,
the dynamic attention fusion module is designed to
capture similar sentiment information and gradu-
ally adjusts the attention weights between modal-
ities by interacting sentiment knowledge with dif-
ferent levels of multimodal features. Based on
the correlation evaluation between the multimodal
features and the unimodal features, we use Noise-
Contrastive Estimation (Gutmann and Hyvärinen,
2010) to highlight the contribution of the domi-
nant modality further. Finally, KuDA predicts the
sentiment score through a multilayer perceptron.

The main contributions of our work can be sum-
marized as follows:

• We propose KuDA, a Knowledge-Guided Dy-
namic Modality Attention Fusion Framework
for multimodal sentiment analysis, which im-
proves the performance by dynamically se-
lecting the dominant modality, making model
adaptable to complex and wide scenarios.

• We design a Dynamic Attention Fusion mod-
ule, which utilizes sentiment knowledge to
guide different levels of multimodal features
and achieves dynamic fusion by adjusting the
contribution of each modality.

• Extensive experiments on four MSA datasets
show that KuDA achieves state-of-the-art per-
formance. We further analyze the experimen-
tal results to prove the effectiveness of KuDA.

2 Related Work

In this section, we briefly overview related work in
ternary symmetric-based methods and text center-
based methods.

Ternary symmetric-based methods. Previ-
ous works in this category have primarily focused
on modeling bidirectional relationships in each
modality pair and treating the contribution of each
modality equally. For instance, some researchers
designed the fusion architectures of tensor-based
(Zadeh et al., 2017; Liu et al., 2018), LSTMs-based
(Zadeh et al., 2018a) and mlp-based (Sun et al.,
2022) to capture the commonalities between modal-
ities. While Tsai et al. (2019) designed MuLT,
which is a transformer-based model, to find simi-
lar information between each modality pair. Some
studies (Tsai et al., 2018; Hazarika et al., 2020;
Yang et al., 2022) project each modality into two
subspaces, separately learning the commonalities
and characteristics of the modalities to aid the fu-
sion process. Multi-label strategy (Yu et al., 2021)
and contrastive learning (Mai et al., 2023) are intro-
duced to improve the quality of unimodal features.
In addition, Huang et al. (2024) designed TMBL,
which can handle bimodal and trimodal features to
capture and utilize bound modal features.

Text center-based methods. Previous works
in this category mainly focus on improving the
quality of fuse representation through the text
modality to guide the vision and audio modalities.
For example, Delbrouck et al. (2020), Han et al.
(2021a) and Wang et al. (2023) use the transformer-
based method to integrate similar information from
other modalities by text modality. While some re-
searchers (Rahman et al., 2020; Wang et al., 2022)
enhance the text representations by integrating vi-
sion and audio information into a pretrained lan-
guage model. Moreover, to decrease the potential
sentiment-irrelevant and conflicting information,
some studies reduce additional noise by maximiz-
ing mutual information (Han et al., 2021b) or adap-
tive representation learning (Zhang et al., 2023).
Meanwhile, contrastive learning is introduced to
learn invariant and similar information between
text with other modalities (Li et al., 2022; Lin and
Hu, 2022).
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Figure 2: The overall architecture of KuDA. The green, purple, orange, and gray modules represent the relevant
operations of vision, text, audio and multimodal fusion.

Despite the promising results achieved for MSA,
the above approaches treat each modality in a bal-
anced way or statically set text as the dominant
modality. This causes the approach to be distracted
by the secondary modalities, hindering it from dy-
namically adjusting to diverse scenarios where the
dominant modality varies, which limits the perfor-
mance of MSA.

3 Methodology

3.1 Overall Architecture

As shown in Figure 2, which shows the overall
workflow of KuDA. Specifically, KuDA first ex-
tracts unimodal low-level features from the raw
multimodal input. Then, the adapters and encoders
extract unimodal high-level features and learn sen-
timent knowledge simultaneously. We utilize the
decoders to predict the unimodal sentiments and
convert them into sentiment ratios to guide dynamic
fusion. Next, we designed a dynamic attention fu-
sion module, which selects the dominant modality
according to different scenarios and dynamically
adjusts attention weights with sentiment ratios and
knowledge representations. Finally, the multimodal
representation is used to conduct the MSA task by
multilayer perceptron (MLP) and estimate correla-
tion with knowledge representations.

In addition, to guide the model in adjusting the
attention weights by sentiment knowledge, KuDA

adopts a two-stage training method.

3.2 Problem Definition and Notations

In MSA task, the input data consists of text (t),
vision (v) and audio (a) modalities. The se-
quences of three modalities are represented as
triplet (It, Iv, Ia), which include It ∈ RTt×dt ,
Iv ∈ RTv×dv , and Ia ∈ RTa×da , where Tm,m ∈
{t, v, a} is the sequence length and dm represents
the vector dimension. The prediction is the senti-
ment score ŷ, which is a discrete value between [-1,
1] and [-3, 3], with values greater than, equal to,
and less than 0 representing positive, neutral, and
negative, respectively.

3.3 Encoding with Knowledge Injection

We encode the input of each modality Im∈{t,v,a}
into the global semantic representations Hm ∈
RTm×dm and the knowledge-sentiment represen-
tations Km ∈ RTm×dm via the pretrained encoders
and adapters, respectively.

Global semantic representations. For the text
modality, to effectively extract from low-level to
high-level text semantic information and facilitate
subsequent knowledge inject with Adapter, we use
the BERT (Kenton and Toutanova, 2019) to encode
the input sentences It, and extract the hidden state
of the last layer as the global semantic representa-
tion Ht:
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Figure 3: The architecture of the BERT, transformer
encoder, adapter, and their connection. The vertical
gray rectangles denote the Transformer Encoder Layer.
Down-FC and Up-FC represent the fully connected lay-
ers (FC) used to decrease and increase the dimension.

Ht, Ot = BERT
(
It; θ

BERT) (1)

where Ot denotes the hidden states except the last
layers. Similar to text modality, for the vision and
audio modalities, we use stacked transformer en-
coder layers (Vaswani et al., 2017) to capture global
semantic representations Hm,m ∈ {v, a}:

Hm, Om = Encoderm
(
Im; θencoder

m

)
(2)

Since the obtained Om,m ∈ {t, v, a} mainly in-
clude the general knowledge, they are input into
the Adapter to inject the sentiment information.

Knowledge-sentiment representations. Since
the adapter is commonly used to enhance the knowl-
edge cognition of pretrained language models (Wei
et al., 2021), we use it to inject unimodal senti-
ment knowledge. In KuDA, the adapter is plugged
outside of the encoder and stacked with identical
blocks, and its detailed architecture is shown in Fig-
ure 3. We connect each transformer encoder layer
of the vision and audio modalities to the Adapter.
To prevent information redundancy, we select part
of the intermediate layers of BERT to connect. For
the first adapter block, we take the unimodal fea-
tures Im∈{t,v,a} as one of the inputs. The output of
adapter is denoted as knowledge-sentiment repre-
sentation Km,m ∈ {t, v, a}:

Km = Adapterm
(
Im, Om; θadapter

m

)
∈ RTm×dm

(3)
where θAdapter

m is denoted the pretrained parameters
of the adapter of m modality.

Unimodal sentiment scores. We combine the
above two representations to obtain the knowledge-
enhanced representation of each modality Um,m ∈
{t, v, a}. Then, we use this representation to pre-
dict the unimodal sentiment score ŷm by a decoder
consisting of MLP:

Um = [Km;Hm] ∈ RTm×2dm (4)

ŷm = Decoderm
(
Um; θdecoder

m

)
(5)

where [·; ·] denotes the concatenation. Due to
the difference between the unimodal and multi-
modal sentiment scores can indicate the effective
amount of information provided by the correspond-
ing modality, so we use the sentiment scores ŷm to
guide attention weights further.

3.4 Dynamic Attention Fusion

3.4.1 Unimodal Sentiment Ratio
Since the difference in sentiment score of unimodal
ym and multimodal y is inversely proportional to
the weight of unimodal, we choose the inverse pro-
portional function exp (−kx) and normalization
operation, and utilize the ground truth of MSA y
to convert the unimodal sentiment score ŷm into
sentiment ratio Rm,m ∈ {t, v, a} during training
to guide subsequent dynamic fusion:

Dm = exp
(
−k |ŷm − y|2

)

Rm =
Dm

Dt +Dv +Da

(6)

where k denotes the function’s slope, which can
scale the sentiment ratio. Due to the model ef-
fectively learned how to adjust the contribution
between modalities during training, we fixed the
sentiment ratio to 1 during the test stage to high-
light the model’s ability to adjust weights.

3.4.2 Dynamic Attention Block
In order to unify the length and dimension axis
of the unimodal knowledge-enhanced represen-
tation Um ∈ RTm×2dm for multimodal fusion,
we utilize three projectors to obtain the updated
knowledge-enhanced representation of each modal-
ity Um,m ∈ {t, v, a}. In addition, due to any one
or more of the text, vision, and audio modalities
may become the dominant modality, we first sum
the obtained representations Um as the input of the
first dynamic attention block F 0:
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Figure 4: Architecture of a single dynamic attention
block. The purple, green, and orange represent the in-
teraction of multimodal representation with text, vision,
and audio modalities, respectively.

Um = Projectorm (Um) ∈ RTf×df

F 0 = U t + Uv + Ua ∈ RTf×df
(7)

where Projectorm consists of two linear layers, Tf

and df denote length and dimension in fusion stage.
We then stack the dynamic attention blocks to

form a pipeline, which is shown in Figure 2. At
the same time, we use the output of the prior block
Fn−1, the knowledge-enhanced representation Um,
and the sentiment ratio Rm,m ∈ {t, v, a} as the
input of the next block and obtain its output Fn:

Fn = DAB
(
Fn−1, Um, Rm

)
∈ RTf×df (8)

where DAB is the dynamic attention block. This is
because the representations Um have richer senti-
ment clues, and the sentiment ratios Rm can indi-
cate the contribution of each modality. Finally, we
take the output of the last block as the final multi-
modal representation FL ∈ RTf×df and use it to
conduct the MSA task.

As shown in Figure 4, to adjust the weights
of each modality, we designed a dynamic atten-
tion block. Specifically, we first introduce the
cross-modal attention (CAttn), which gradually de-
termines the dominant modality by capturing the

amount of similar information between unimodal
representations Um,m ∈ {t, v, a} and multimodal
representation Fn−1. Since Q of attention is used
to specify the location of attention, we take the mul-
timodal features as Q, and the unimodal features
as K and V , and perform the Layer Norm (LN):

F̃n
m→f = LN

(
Fn−1 + CAttn

(
Fn−1, Um, Um

))

(9)
Next, since the sentiment ratio Rm can further

guide the dynamic fusion, we multiply it with the
middle representation F̃n

m→f ,m ∈ {t, v, a}. We
then sum the obtained representations and the mul-
timodal representation of input Fn−1 to fine-tune
the contributions of different modalities:

Fn
m→f = LN

(
F̃n
m→f +

(
Rm × F̃n

m→f

))
(10)

Fn
f = Fn−1 + LN


 ∑

m∈{t,v,a}
Fn
m→f


 (11)

At last, we input the Fn
f into the multi-head

attention and feedforward neural network to get the
output of dynamic attention block Fn ∈ RTf×df .

3.5 Output and Training Objectives

To further improve the utilization of the dominant
modality, we estimate the correlation of the mul-
timodal representation FL and the unimodal rep-
resentations Um,m ∈ {t, v, a} through the Con-
trastive Predictive Coding (Oord et al., 2018), and
integrated it into the Noise-Contrastive Estima-
tion framework (Gutmann and Hyvärinen, 2010) to
form the correlation estimation (CE) loss Lcor:

Lcor =
∑

m∈{t,v,a}
LNCE

(
FL, Um

)
(12)

In the Output, we input the representation FL

into a MLP to predict sentiment score ŷ. Given the
predictions ŷ and the ground truth y, we calculate
the MSA task loss Lreg by mean absolute error.
Finally, we training KuDA by the union loss Ltask:

ŷ = MLP
(
Mean

(
FL

))
(13)

Lreg =
1

N

N∑

i=1

|yi − ŷi| (14)

Ltask = Lreg + αLcor (15)
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Dataset #Train #Valid #Test #Total Language
CH-SIMS 1368 456 457 2281 Chinese
CH-SIMSv2 2722 647 1034 4403 Chinese
MOSI 1284 229 686 2199 English
MOSEI 16326 1871 4659 22856 English

Table 1: The statistics of CH-SIMS, CH-SIMSv2, MOSI
and MOSEI.

where Mean (·) denotes the average operation in
length axis. α is a parameter that balances the con-
tribution of different losses. The specific training
algorithm of KuDA can be found in Appendix B.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct experiments on four publicly bench-
mark datasets of MSA, including CH-SIMS (Yu
et al., 2020), CH-SIMSv2 (Liu et al., 2022), MOSI
(Zadeh et al., 2016) and MOSEI (Zadeh et al.,
2018b). The statistic details of four datasets are
shown in Table 1.

Following previous works (Hazarika et al., 2020;
Yu et al., 2021; Zhang et al., 2023), we used the
accuracy of 3-class (Acc-3) and 5-class (Acc-5)
on CH-SIMS and CH-SIMSv2, the accuracy of
7-class (Acc-7) on MOSI and MOSEI, and the
accuracy of 2-class (Acc-2), Mean Absolute Er-
ror (MAE), Pearson Correlation (Corr), and F1-
score (F1) on all datasets. Moreover, on MOSI and
MOSEI, Acc-2 and F1 used two calculation ways:
negative/non-negative (has-0) and negative/positive
(non-0). Except for MAE, higher values indicate
better performance for all metrics.

4.2 Baselines

To validate the KuDA’s performance, we conduct
a fair comparison with several competitive and
state-of-the-art (SOTA) baselines, including the
ternary symmetric-based methods: TFN (Zadeh
et al., 2017), LMF (Liu et al., 2018), MuLT (Tsai
et al., 2019), MISA (Hazarika et al., 2020), Self-
MM (Yu et al., 2021), CubeMLP (Sun et al., 2022)
and TMBL (Huang et al., 2024), and the text center-
based methods: MMIM (Han et al., 2021b), BBFN
(Han et al., 2021a), CENet (Wang et al., 2022),
TETFN (Wang et al., 2023) and ALMT (Zhang
et al., 2023).

4.3 Experimental Settings

To ensure fairness with other baselines, we follow
recent competitive and SOTA methods to set the

Descriptions CH-SIMS CH-SIMSv2 MOSI MOSEI
Batch Size 32 32 32 64
Initial Learning Rate 3e-5 3e-5 3e-5 4e-5
Knowledge Injection of Bert 3,6,9,11 3,6,9,11 6,9 6,9
Dynamic Transformer Block 3 3 2 4
Vector Dimension F i 256 256 256 256
k 0.1 0.3 2.0 5.0
α 0.01 0.01 0.01 0.1
Epochs 50 50 50 50
Optimizer AdamW AdamW AdamW AdamW

Table 2: Hyper-parameters settings on different datasets.

proposed method. The training stages consist of
the unimodal stage and the multimodal stage. In
addition, we adopt BERT to extract the features
of text modality where “bert-base-chinese”2 is em-
ployed for CH-SIMS and CH-SIMSv2 and “bert-
base-uncased”3 is employed for MOSI and MO-
SEI. In the vision and audio modalities, we directly
use the features provided by the original datasets.
Moreover, we develop the KuDA using a single
NVIDIA RTX 3090 GPU for all datasets. The de-
tailed setting of the best hyper-parameters can be
referred to in Table 2.

4.4 Performance Comparison

Table 3 and Table 4 present the comparison results
of the baselines and the proposed method on CH-
SIMS, CH-SIMSv2, MOSI and MOSEI.

Since the distribution of modality importance in
the CH-SIMS and CH-SIMSv2 is more uniform,
they are more complex than MOSI and MOSEI.
As shown in Table 3, the proposed method out-
performs all baselines on all metrics. It is worth
noting that our method achieves superior perfor-
mance on the CH-SIMSv2 dataset. For example,
compared with ALMT (text center) and TMBL
(ternary symmetric), our method achieves 8.32%
and 9.19% improvement on the Acc-5 and also
achieves significant improvement on the Acc-3.
Therefore, achieving superior performance in the
more challenging scenario indicates that KuDA can
adjust the distribution of modality weights to com-
plete dynamic fusion. It also shows that adjusting
the dominant modality is crucial for MSA. Further-
more, although the importance of modalities is not
evenly distributed in MOSI and MOSEI, and the
text modality plays an important role, it can be
seen from Table 4 that KuDA still obtained SOTA
performance in almost all metrics. At the same
time, KuDA surpasses some text-center training
methods, such as BBFN and ALMT.

2https://huggingface.co/bert-base-chinese
3https://huggingface.co/bert-base-uncased
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Methods CH-SIMS CH-SIMSv2
MAE Corr Acc-5 Acc-3 Acc-2 F1 MAE Corr Acc-5 Acc-3 Acc-2 F1

TFN† 0.432 0.591 39.30 65.12 78.38 78.62 0.303 0.707 52.55 72.21 80.14 80.14
LMF† 0.441 0.576 40.53 64.68 77.77 77.88 0.367 0.557 47.79 64.90 74.18 73.88
MulT† 0.453 0.564 37.94 64.77 78.56 79.66 0.291 0.738 54.81 73.19 80.68 80.73
BBFN∗ 0.430 0.564 40.92 61.05 78.12 77.88 0.300 0.708 53.29 71.47 78.53 78.41
Self-MM† 0.425 0.595 41.53 65.47 80.04 80.44 0.311 0.695 52.77 72.61 79.69 79.76
CubeMLP∗ 0.419 0.593 41.79 65.86 77.68 77.59 0.334 0.648 52.90 71.95 78.53 78.53
CENet† 0.471 0.534 33.92 62.58 77.90 77.53 0.310 0.699 53.04 73.10 79.56 79.63
TETFN† 0.420 0.577 41.79 63.24 81.18 80.24 0.310 0.695 54.47 73.65 79.73 79.81
ALMT∗ 0.408 0.594 43.11 65.86 78.77 78.71 0.308 0.700 52.90 71.86 79.59 79.51
TMBL∗ 0.429 0.592 41.58 65.43 79.12 78.75 0.313 0.706 52.03 73.02 80.46 80.36
KuDA 0.408 0.613 43.54 66.52 80.74 80.71 0.271 0.759 61.22 76.21 82.11 82.04

Table 3: Performance comparison on CH-SIMS and CH-SIMSv2. Note: the best result is marked in bold; † means
the result is from (Mao et al., 2022); ∗ denotes the results are reproduced from code provided by their authors.

Methods MOSI MOSEI
MAE Corr Acc-7 Acc-2 F1 MAE Corr Acc-7 Acc-2 F1

TFN† 0.947 0.673 34.46 77.99/79.08 77.95/79.11 0.572 0.714 51.60 78.50/81.89 78.96/81.74
LMF† 0.950 0.651 33.82 77.90/79.18 77.80/79.15 0.576 0.717 51.59 80.54/83.48 80.94/83.36
MulT† 0.879 0.702 36.91 79.71/80.98 79.63/80.95 0.559 0.733 52.84 81.15/84.63 81.56/84.52
MISA† 0.776 0.778 41.37 81.84/83.54 81.82/83.58 0.557 0.751 52.05 80.67/84.67 81.12/84.66
BBFN∗ 0.796 0.744 43.88 80.32/82.47 80.21/82.44 0.545 0.760 52.88 82.87/85.73 83.13/85.56
MMIM∗ 0.744 0.780 44.75 82.51/84.30 82.38/84.23 0.550 0.761 51.88 83.75/85.42 83.93/85.26
Self-MM† 0.708 0.796 46.67 83.44/85.46 83.36/85.43 0.531 0.764 53.87 83.76/85.15 83.82/84.90
CubeMLP∗ 0.755 0.772 43.44 80.76/82.32 81.77/84.23 0.537 0.761 53.35 82.36/85.23 82.61/85.04
ALMT∗ 0.712 0.793 46.79 83.97/85.82 84.05/85.86 0.530 0.774 53.62 81.54/85.99 81.05/86.05
KuDA 0.705 0.795 47.08 84.40/86.43 84.48/86.46 0.529 0.776 52.89 83.26/86.46 82.97/86.59

Table 4: Performance comparison on MOSI and MOSEI. Note: the best result is highlighted in bold; in Acc-2 and
F1, the left of the / corresponds to “negative/non-negative” and the right corresponds to “negative/positive”; † means
the result is from (Mao et al., 2022); ∗ denotes the results are reproduced from code provided by their authors.

Methods CH-SIMSv2 MOSI
MAE Corr Acc-5 MAE Corr Acc-7

KuDA 0.271 0.759 61.22 0.705 0.795 47.08
w/o KIP 0.288 0.729 56.87 0.731 0.798 44.61
w/o Adapter 0.286 0.735 57.54 0.714 0.787 46.79
w/o EKI 0.293 0.733 56.48 0.742 0.778 44.46
w/o SR 0.281 0.736 58.12 0.729 0.798 45.19
w/o DAF 0.309 0.716 54.06 0.754 0.779 43.73
w/o CE Loss 0.277 0.752 59.38 0.712 0.799 44.31

Table 5: Ablation results of KuDA’s components on
CH-SIMSv2 and MOSI. Note: “KIP” is the Knowledge
Inject Pretraining; “EKI” is denoted the Encoding with
Knowledge Injection module; “SR” denotes the Sen-
timent Ratio; “DAF” denotes the Dynamic Attention
Fusion module; the best result is highlighted in bold.

4.5 Ablation Study and Analysis

4.5.1 Effects of Different Components

We conducted ablation studies to validate the effec-
tiveness of each component, as shown in Table 5.
By comparing the “w/o DAF” and KuDA, we ob-
serve that removing the DAF can seriously reduce
performance. This means that KuDA dynamically
adjusts the attention weights between modalities
for different scenarios to select the dominant modal-

ity. In addition, the performance decreases in “w/o
EKI”, which shows that sentiment knowledge can
further guide dynamic fusion. The performance
decreases after removing other modules, showing
their effectiveness. Since improving the utilization
of vision and audio on MOSI introduces noise, Corr
has improved.

4.5.2 Importance of Different Modalities

To validate the impact of text, vision and audio
modalities, we performed ablation studies that re-
moved each modality on KuDA, ALMT and Cube-
MLP, as shown in Table 6.

In CH-SIMSv2, which has more complex scenes,
we can see that KuDA can reach the SOTA when
each modality is removed. Meanwhile, when per-
formance degrades, KuDA can still achieve accept-
able results. In contrast, the other baselines will
have a significant performance degradation, which
proves that our method can adaptive focus on the
suboptimal modality to capture sentiment features.
For the MOSI dataset, which is mainly text, we can
see that CubeMLP has dropped significantly when
each modality is removed. Furthermore, ALMT
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Methods CH-SIMSv2 MOSI
MAE Corr Acc-5 MAE Corr Acc-7

V+A 0.362 0.562 47.20 1.370 0.235 17.20
T+V 0.298 0.721 54.93 0.769 0.770 43.29
T+A 0.335 0.645 52.13 0.733 0.795 42.27

KuDA 0.271 0.759 61.22 0.705 0.795 47.08
V+A 0.451 0.449 39.94 1.437 0.201 15.74
T+V 0.346 0.623 48.26 0.772 0.778 43.15
T+A 0.368 0.586 46.03 0.736 0.788 43.88

ALMT 0.308 0.700 52.90 0.712 0.793 46.79
V+A 0.452 0.361 38.97 1.453 0.137 15.45
T+V 0.354 0.615 48.94 0.796 0.745 41.98
T+A 0.362 0.623 47.87 0.816 0.739 41.54

CubeMLP 0.334 0.648 52.90 0.755 0.772 43.44

Table 6: Importance of different modalities on KuDA,
ALMT (text center) and CubeMLP (ternary symmetric).
T, V, and A represent text, vision, and audio modalities.
Note: the best result is highlighted in bold.

Fusion Methods MAE Corr Acc-5 Acc-3 Acc-2 F1

Concatenation 0.296 0.728 79.98 72.53 54.64 79.93
Addition 0.304 0.721 78.14 72.24 54.55 78.02

Tensor Fusion (TFN) 0.282 0.754 80.75 75.05 55.80 80.64
Low-rank Fusion (LMF) 0.321 0.711 79.50 72.24 53.09 79.48
CMT (BBFN, ALMT) 0.282 0.745 81.43 74.08 57.16 81.33

KuDA 0.271 0.759 82.11 76.21 61.22 82.04

Table 7: The performance of different fusion methods
on CH-SIMSv2. Note: the CMT denotes Cross-modal
Transformer.

drops sharply after removing text and is lower than
KuDA. Notably, observing the performance degra-
dation trend after removing a certain modality in-
dicates that the importance of each modality is
evenly distributed in the CH-SIMSv2, while the
importance of text modality is higher in MOSI.

4.5.3 Effects of Different Fusion Methods
To analyze the effects of different fusion tech-
niques, we conducted some experiments shown
in Table 7. Obviously, when faced with complex
scenes, using either ternary symmetric-based (TFN,
LMF) or text center-based (BBFN, ALMT) fusion
methods will result in performance decline. This
indicates that not focusing on the dominant modal-
ity or statically setting the dominant modality will
limit the performance of MSA. However, the use
of our Dynamic Attention Fusion to dynamically
fuse unimodal features is the most effective.

4.5.4 Effects of Correlation Estimation
As shown in Figure 5, we discuss the impact of
CE loss on CH-SIMSv2 and MOSI by modifying
the α. We compare the MAE, Acc-5 and Acc-7
as these metrics indicate the method’s ability to

(a) change on CH-SIMSv2 (b) change on MOSI

Figure 5: Visualization of performance with change α
on CH-SIMSv2 and MOSI.

(a) CubeMLP (b) ALMT

(c) KuDA

!"#$%!&'(#
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Figure 6: The t-SNE visualization (van der Maaten and
Hinton, 2008) of the unimodal features (text, vision,
and audio) and multimodal features in (a) CubeMLP;
(b) ALMT; (c) KuDA.

predict fine-grained sentiment.
Compared to removing CE loss, i.e. α=0, the

model’s performance achieves STOA when using
CE loss and setting α=0.01. This shows that CE
loss can highlight the contribution of the dominant
modality further. However, the performance shows
a downward trend when α increases, indicating that
KuDA will enhance the retention of non-dominant
modality features in the multimodal representation
when CE loss increases, limiting its performance.

4.5.5 Visualization of Features Distribution

To verify KuDA can dynamically select dominant
modality, we use t-SNE to visualize the features of
text, vision, audio and multimodal on CH-SIMSv2,
as shown in Figure 6. We then selected two typi-
cal methods, CubeMLP (ternary symmetric) and
ALMT (text center), to compare with KuDA.
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Cases Case (a) Case (b) Case (c)

Vision

Text Aren’t you almost bankrupt? He deserves it, he must be very sleepy! You have been struggling for two weeks.

Audio

Ground
Truth

V: 1.0 T: -0.8 A: -0.8
M = 0.6

V: 0.6 T: -1.0 A: 0.6
M = -0.8

V: 0.8 T: -0.8 A: 0.0
M = 0.0

Output 0.4 -1.0 0.0

Attention
Weight
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Table 8: Three cases from CH-SIMS. Ground Truth consists of unimodal labels (V, T, and A) and the multimodal
label (M). Output shows the multimodal prediction from KuDA. Attention Weight shows the distribution of attention
weights from the multimodal features with the features of vision, text, and audio modalities. In Attention Weight,
the left, middle, and right figures of each case represent the multimodal and vision, text, and audio modality weights,
respectively. The partial attention of the dominant modality is marked with a dashed box.

In Figure 6a, we can see that since CubeMLP
treats contributions of each modality equally, all
unimodal features are averaged around the multi-
modal features. In addition, as shown in Figure 6b,
due to ALMT is a text center-based method, we
can observe that the text features is in the middle of
the audio and vision, and all unimodal features are
distributed on the other side of multimodal features.
However, as can be seen from Figure 6c, the differ-
ence is that KuDA’s multimodal features is divided
into three clusters and is close to the text, audio,
and vision features respectively. This indicates that
KuDA dynamically selects the dominant modality
to make the multimodal features closer to it.

4.5.6 Case Study

To better prove that the our method can dynami-
cally adjust contributions of different modalities,
we selected three challenging cases for further anal-
ysis, as shown in Table 8.

We can observe that in case (a), although the text
and audio express stronger negative sentiments,
KuDA can still output the correct prediction. This
case shows that by adjusting vision as the dominant
modality, KuDA effectively captures the speaker’s
information of expression and action, which also
guides the fusion of text and audio modalities. In
cases (b) and (c), the similar distributions of labels
also occurred. KuDA still makes correct predic-
tions, which indicates that it captures the semantic
information of text in case (b) and the intonation

information of audio in case (c) by adjusting the
attention weights. Meanwhile, it can be seen in the
Attention Weight of Table 8 that attention weight
for the dominant modality (there are denser dark
blocks) is higher than that for the other modalities.
This once again proves the importance of dynamic
attention fusion for the MSA task.

5 Conclusion

In this paper, we propose a Knowledge-Guided
Dynamic Modality Attention Fusion Framework
(KuDA) to simultaneously solve the MSA task of
the modality importance being equally or unequally
distributed. Since KuDA dynamically adjusts the
contribution of each modality for different scenar-
ios, it effectively improves the utilization of the
dominant modality. This enables our model to
be more effective and generalized on four popu-
lar MSA benchmark datasets. At last, we perform
comprehensive ablation studies to analyze this phe-
nomenon.

Limitations

Although the KuDA proposed in this paper has
yielded exceptional outcomes, there remain sev-
eral limitations that offer opportunities for further
enhancement. First, KuDA suffers from an error
propagation problem due to its two-stage training
method. When the pretrained sentiment knowledge
incorrectly predicts the sentiment score, the sen-
timent ratio will introduce noise when the model
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adjusts the weights. Second, KuDA needs to be
pretrained using the sentiment knowledge of each
modality, which increases the resource consump-
tion of model training. In future work, we will
further try to explore fine-tuning the pretrained
knowledge injection module in the prediction stage
to solve the above limitations.
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A Data Statistics and Analysis

To explore the sample distribution that each modal-
ity as dominant and verify our idea, we investigated
four MSA benchmark datasets (MOSI, MOSEI,
CH-SIMS, and CH-SIMSv2). The statistical and
analytical results are as follows.

For MOSI and MOSEI, some researchers (Yu
et al., 2020; Liu et al., 2022) have shown that the
text modality is of higher importance and dominant.
At the same time, some ablation studies (Hazarika
et al., 2020; Lin and Hu, 2022; Yu et al., 2023) re-
port about a 30% binary accuracy drop in these two
datasets when removing the text modality (80%+
with text, while about 50%+ without text). Thus,
the majority of samples in MOSI and MOSEI use
text as the dominant modality.
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Figure 7: The distribution where any modality as domi-
nant.
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Figure 8: The distribution where the sample contains
the noise modality.

For CH-SIMS and CH-SIMSv2, we used the
unimodal labels provided by the dataset to statistic
the number of samples, as shown in Figure 7. We
can observe that the number of samples dominated
by vision, text, and audio modalities accounts for
45%-60% of the total, and the distribution of each
modality is even. This indicates that each modality
will be dominant, and this situation is not uncom-
mon. It also shows that it is necessary to adjust
the dominant modality dynamically. Notably, the
sum of the proportions of three modalities in the
same dataset is more than 100% because there may
be multiple modalities that dominate in the same
sample. Then, we statistic the number of samples
containing noise modality (the sentiment polarity
of this unimodal is different from that of the multi-
modal), as shown in Figure 8. We can see that the
proportion of samples containing noise modality is
around 50%, which further shows that the inabil-
ity to dynamically adjust the contribution of each
modality will limits the performance of MSA.

Algorithm 1: Training Process of KuDA
Stage 1: Knowledge Inject Pretraining
Input: External dataset φ with the unimodal features

Im and labels ym,m ∈ {t, v, a}
Output: Pretrained adapters and decoders

{θadapterm , θdecoderm |m ∈ {t, v, a}}
for each training epoch do

for batch
{(

Iit , I
i
v, I

i
a

)}N

i=1
from φ do

Encode Iim to U i
m as Eq. (1)-(4)

Predict ŷi
m using decoders as Eq. (5)

Compute Lreg of each modality with ŷi
m

and yi
m as Eq. (14)

Update parameters of encoding with
knowledge injection module
{θknow

m |m ∈ {t, v, a}}
end
Save {θadapterm , θdecoderm |m ∈ {t, v, a}} when

achieves the best validate results
end
Stage 2: Downstream Training
Input: Target dataset D with the features

Im,m ∈ {t, v, a} and labels y; Pretrained
adapters and decoders

Output: Predictions ŷ
for each training epoch do

for batch
{(

Iit , I
i
v, I

i
a

)}N

i=1
from D do

Encode Iim to U i
m as Eq. (1)-(4)

Predict ŷi
m using decoders and calculate

Ri
m as Eq. (5), (6)

Process dynamic attention fusion as
Eq. (7)-(11)

Predict ŷi using MLP as Eq. (13)
Compute Lcor , Lreg , Ltask as

Eq. (12), (14), (15)
Update the model parameters except
{θadapterm , θdecoderm |m ∈ {t, v, a}}

end
end

B Training Process

KuDA uses a two-stage training method, which
details are shown in Algorithm 1. In Stage 1, we
pretrained the Encoding with Knowledge Injection
module using external data. For CH-SIMS and CH-
SIMSv2, we use the unimodal labels of the dataset
itself for pretraining. For MOSI and MOSEI, con-
sidering the data scale, we translate the texts of
CH-SIMS and CH-SIMSv2 into English and inject
the sentiment knowledge of CH-SIMS into MOSI
and that of CH-SIMSv2 into MOSEI. Notably, to
compare fairly with the baselines, we only pretrain
the task of unimodal sentiment prediction on all
datasets and do not involve the MSA task. In Stage
2, to prevent the pretrained knowledge from being
overwritten, we froze the Adapter and Decoder of
each modality and performed the MSA task based
on the pretrained knowledge.
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