@inproceedings{chen-etal-2024-unveiling-flaws,
title = "Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models",
author = "Chen, Jie and
Zhang, Yupeng and
Wang, Bingning and
Zhao, Xin and
Wen, Ji-Rong and
Chen, Weipeng",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.873",
pages = "14855--14865",
abstract = "Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs). Studies have shown that synthetic data can effectively improve the performance of LLMs on downstream benchmarks. However, despite its potential benefits, our analysis suggests that there may be inherent flaws in synthetic data. The uniform format of synthetic data can lead to pattern overfitting and cause significant shifts in the output distribution, thereby reducing the model{'}s instruction-following capabilities. Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws. The empirical results demonstrate the effectiveness of our approach, which can reverse the instruction-following issues caused by pattern overfitting without compromising performance on benchmarks at relatively low cost. Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-unveiling-flaws">
<titleInfo>
<title>Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yupeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bingning</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji-Rong</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weipeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs). Studies have shown that synthetic data can effectively improve the performance of LLMs on downstream benchmarks. However, despite its potential benefits, our analysis suggests that there may be inherent flaws in synthetic data. The uniform format of synthetic data can lead to pattern overfitting and cause significant shifts in the output distribution, thereby reducing the model’s instruction-following capabilities. Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws. The empirical results demonstrate the effectiveness of our approach, which can reverse the instruction-following issues caused by pattern overfitting without compromising performance on benchmarks at relatively low cost. Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.</abstract>
<identifier type="citekey">chen-etal-2024-unveiling-flaws</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.873</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>14855</start>
<end>14865</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models
%A Chen, Jie
%A Zhang, Yupeng
%A Wang, Bingning
%A Zhao, Xin
%A Wen, Ji-Rong
%A Chen, Weipeng
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F chen-etal-2024-unveiling-flaws
%X Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs). Studies have shown that synthetic data can effectively improve the performance of LLMs on downstream benchmarks. However, despite its potential benefits, our analysis suggests that there may be inherent flaws in synthetic data. The uniform format of synthetic data can lead to pattern overfitting and cause significant shifts in the output distribution, thereby reducing the model’s instruction-following capabilities. Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws. The empirical results demonstrate the effectiveness of our approach, which can reverse the instruction-following issues caused by pattern overfitting without compromising performance on benchmarks at relatively low cost. Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
%U https://aclanthology.org/2024.findings-emnlp.873
%P 14855-14865
Markdown (Informal)
[Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models](https://aclanthology.org/2024.findings-emnlp.873) (Chen et al., Findings 2024)
ACL