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Abstract

We propose VE-KD, a novel method that bal-
ances knowledge distillation and vocabulary
expansion with the aim of training efficient
domain-specific language models. Compared
with traditional pre-training approaches, VE-
KD exhibits competitive performance in down-
stream tasks while reducing model size and
using fewer computational resources. Addi-
tionally, VE-KD refrains from overfitting in
domain adaptation. Our experiments with dif-
ferent biomedical domain tasks demonstrate
that VE-KD performs well compared with mod-
els such as BioBERT (+1% at HoC) and Pub-
MedBERT (+1% at PubMedQA), with about
96% less training time. Furthermore, it outper-
forms DistilBERT and Adapt-and-Distill, show-
ing a significant improvement in document-
level tasks. Investigation of vocabulary size
and tolerance, which are hyperparameters of
our method, provides insights for further model
optimization. The fact that VE-KD consistently
maintains its advantages, even when the corpus
size is small, suggests that it is a practical ap-
proach for domain-specific language tasks and
is transferrable to different domains for broader
applications.

1 Introduction

Language models such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) have pro-
vided significant performance improvements in
solving natural language processing (NLP) tasks,
enabling many practical applications that have in-
creased productivity, understanding, and accessibil-
ity in diverse industries.

These traditional models still hold value in terms
of cost-effectiveness and ease of deployment, even
though large language models (LLMs) demonstrate
remarkable few-shot capabilities in NLP tasks. One
reason is that training or fine-tuning LLMs such
as GPT-3 requires an immense amount of data and

computational resources. Another reason is the
growing demand for artificial intelligence (AI) ap-
plications that run on local machines because some
applications require independence from network
connectivity or have concerns about information se-
curity and confidentiality when using LLM-based
application programming interface (API) services
such as GPT-4.

Many industrial and academic fields use special-
ized terminology and concepts that general lan-
guage models might not fully understand. These
potential gaps in understanding may result in less
effective or even erroneous solutions, making it
essential to adapt language models to specific do-
mains.

However, LLMs such as GPT-3 and GPT-4 are
difficult to use because it is expensive and chal-
lenging to obtain high-quality labeled data for addi-
tional pre-training and because domain knowledge
must be added through the API. In contrast, general
BERT models have the advantage of easy of fine-
tuning and specialization in different domains. For
example, BERT performs better in Named-entity
recognition tasks compared with GPT-family mod-
els such as BioGPT (Luo et al., 2022).

In industrial applications, operational efficiency
is often the primary concern. For example, high
latency can be detrimental for applications that
require real-time response or that process large
amounts of input data, such as monitoring systems
or predictive analytics. Larger models need more
powerful and thus more expensive hardware setups
but typically have capacity constraints imposed
to manage costs. This also limits the model size
that can feasibly be realized. Therefore, reducing
resource consumption by compressing a model im-
proves its deployment adaptability.

Although the need for domain adaptation and
model compression is particularly prominent in
industrial applications within a specific domain,
given the complexities inherent in these processes,
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Figure 1: Architecture of VE-KD. New and original tokens are processed separately during tokenization, masking,
and loss calculation. The student model soaks up two types of knowledge: common knowledge via original tokens
and domain-specific knowledge via new tokens.

a simplistic sequential approach may not yield the
best results. First, both tasks require high-quality
data, which can be difficult to obtain. Second, us-
ing general methods such as domain-adaptation
followed by distillation or distilling an already
domain-adapted model requires two or more steps
or training and hyperparameter tuning (Yao et al.,
2021), which makes the learning process difficult
to optimize.

During the domain-adaptation phase (secondary-
stage unsupervised pre-training), there is a sig-
nificant risk of losing general knowledge due to
overfitting when a small corpus is used. More-
over, 2-step training requires more computational
resources and time, possibly requiring further it-
erations to achieve the most effective outcomes.
Therefore, a method that can proficiently perform
domain adaptation and model compression simul-
taneously is needed to overcome these issues.

In this paper, we propose VE-KD, a novel
method that can simultaneously perform domain
adaptation and model compression from a teacher
model such as BERT. We also show that our
method significantly outperforms the teacher model
on related tasks with a corpus, is robust and easy
to optimize, and has lower requirements in terms
of computational resources and time.

2 Related Work

Large pre-trained models such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
become ubiquitous in the NLP field (Ramponi and

Plank, 2020). In terms of domain shifts, secondary-
stage unsupervised pre-training on a new domain
has proven to be advantageous. Contextualized
tokenizations are adapted to text from the target
domain through masked language modeling, as
introduced by Han and Eisenstein (2019) and Guru-
rangan et al. (2020). Meanwhile, Lee et al. (2020)
performed continual pre-training to adapt the BERT
model to the biomedical domain, utilizing both
PubMed abstracts and PMC full-text resources.
The use of contrastive learning also increases the
representation ability for specific domains. Xu
et al. (2023) investigated the use of contrastive
learning to develop discriminative entity represen-
tations in the field of cross-domain named entity
recognition.

However, many specialized domains contain
unique terms that are not included in the vocab-
ulary of pre-trained language models. Gu et al.
(2021) proposed a biomedical pre-trained model
called PubMedBERT in which the vocabulary was
constructed from scratch and the model was pre-
trained from scratch. Furthermore, in many special-
ized domains, sufficiently large corpora may not
be available to support pre-training from scratch.
General domain vocabulary can be extended with
in-domain vocabulary (Yao et al., 2021) in order to
solve this out-of-vocabulary issue.

Knowledge distillation (KD) (Hinton et al.,
2015) aims to transfer the knowledge from a large
teacher model to a small student model. Distil-
BERT (Sanh et al., 2019) uses soft labels and
embedding outputs to supervise the student model.
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TinyBERT (Jiao et al., 2020) and MobileBERT
(Sun et al., 2020) includes self-attention distribu-
tions and hidden-states for training the student
model. MiniLMv2 (Wang et al., 2021) avoids re-
strictions on the number of student layers and super-
vises the student model by using the self-attention
distributions and value relation of the teacher’s last
transformer layer. The AD-KD approach (Wu
et al., 2023) explores the token-level rationale be-
hind the teacher model based on Integrated Gra-
dients and transfers attribution knowledge to the
student model.

Several frameworks for general knowledge dis-
tillation using LLMs have also been proposed.
GKD (Tan et al., 2023) is a general-knowledge
distillation framework that supports distillation on
larger-scale PLMs using various distillation meth-
ods and f -DISTILL (Wen et al., 2023) formu-
lates sequence level knowledge distillation through
minimization of a generalized f-divergence func-
tion. Hsieh et al. (2023) and Li et al. (2023) have
proved that distillation using extracted rationales
from black box LLMs is effective.

In this paper, we focus on task-agnostic knowl-
edge distillation approaches, where a smaller dis-
tilled pre-trained model can be directly fine-tuned
on downstream tasks.

3 Methods

In this study, we propose VE-KD, a knowledge
distillation method with vocabulary expansion, as
shown in Figure 1. Unlike Adapt-and-Distill (Yao
et al., 2021), which requires 4-step training, our
approach simultaneously lightens the model and
resolves the adaptability issues of special domains,
which have been a problem in general-purpose
models pre-trained on large corpora. By contin-
ually distilling knowledge from the teacher model,
VE-KD effectively avoids overfitting, a common is-
sue that arises during the domain adaptation phase,
especially when working with small corpora.

In the knowledge distillation aspect of VE-KD,
a larger BERT model serves as the teacher model,
instructing a smaller student model. Through the
distillation process, the student model learns to
mimic the behavior of the larger teacher model in
general terms. Simultaneously, the vocabulary ex-
pansion aspect broadens the model’s vocabulary to
capture domain-specific terms, thereby enhancing
the method’s ability to adapt to domain-specific
tasks.

3.1 Vocabulary Expansion

We add domain-specific terms (which we call “new
tokens”) through vocabulary expansion, which dis-
tinguishes between general and domain knowledge
by separating the new tokens from the original
tokens. By processing them separately, such as
through different masking and loss functions, we
enable simultaneous learning of domain knowledge
from the corpus as well as general knowledge from
the teacher model via two separate pathways.

The vocabulary of the student model Vs is ex-
panded based on the teacher model’s vocabulary
Vt. We use tensor2tensor’s WordPiece generation
script1 to perform vocabulary expansion. Building
on the research of Yao et al. (2021), we chose a
vocabulary size of 60,000 words.

3.2 Tokenization and Separate Token
Masking

The process of separating two terms is accom-
plished through tokenization and token masking.
Typically, model distillation necessitates that both
the teacher and student models possess identical
dictionaries. However, because of vocabulary ex-
pansion, new tokens emerge that cannot be incor-
porated into the teacher model.

As shown in Figure 1, we employ text tokeniza-
tion with an expanded vocabulary Vs. There are
new tokens that cannot be accommodated in the
teacher model. To circumvent this, we designed
the unique mask method shown below.

We denote the input sequence as x =
[x1, x2, x3, ..., xn], where n is the sequence length
and each xi represents a token that has been tok-
enized by expanded vocabulary Vs. Let us suppose
that x1 and x3 are new tokens and thus not included
in Vt. We replace them with a [MASK] token as
new input, as follows:

xinput = [[MASK], x2, [MASK]..., xn].

We simultaneously acquire the position information
of new tokens Pnewtoken(i) = 1 if xi /∈ Vt else 0,
and use it to calculate the loss function.

In areas other than new tokens, tokens are
masked and swapped at random by the same rule,
similar to BERT’s MLM (masked language model)
task. The tokens used for replacement are picked
from the vocabulary of the teacher model.

1https://github.com/tensorflow/tensor2tensor
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3.3 Loss Functions
This section explains the mechanism of calculating
the loss function by separating new tokens from
general terms. In the right half of Figure 1, we
input the two entries into the teacher model (t) and
the student model (s) and obtain the hidden-state
vectors Ht,s from the final layer as well as the token
prediction logits Lt,s.

At the new token position, the output logits and
the hidden-state vectors of the teacher model con-
flict with the student model because the student
model has a bigger vocabulary and new knowl-
edge. To learn the knowledge of the teacher model
successfully, similarity calculations are made only
within the scope of general terms (without the new
token position). The new H ′

t,s and L′
t,s are formu-

lated as follows:

H ′
t,s = {Ht,s(i)|Pnewtoken(i) = 0},

L′
t,s = {Lt,s(i)|Pnewtoken(i) = 0}.

Following DistilBERT (Sanh et al., 2019),
the loss function is calculated using measures
such as cosine similarity, Kullback-Leibler diver-
gence (KL), and mean squared error (MSE), which
are defined as follows:

LCosine(H
′
t, H

′
s) =

H ′
t ·H ′

s

∥H ′
s∥∥H ′

t∥
,

LKL(L
′
t, L

′
s) =

∑

i

L′
t(i) log

L′
t(i)

L′
s(i)

,

LMSE(L
′
t, L

′
s) =

1

n

n∑

i=1

(
L′
t(i)− L′

s(i)
)2

.

By doing so, we facilitate learning of the teacher
model’s knowledge.

Next, similar to BERT, we calculate the MLM
loss function LMLM in order to estimate the masked
words, using the student model’s Logits Ls and
labels Llabel.

The new token may lead to conflict between
the KD loss and MLM loss even if the calculation
range is split. . Knowledge about general terms
may differ between the teacher model and student
model because the meaning or grammar of general
terms around the new token may differ. Because
taking 100% of the knowledge from the teacher
model might have adverse effects on creating new
domain knowledge for the student model, we use
tolerance to control the KD loss as follows:

L′
KD(i) = max(WKD × LKD(i)− ε, 0).

Here, LKD refers to each KD loss, WKD represents
the weight for each KD loss, and ε denotes the toler-
ance for the KD loss. This implies that after being
multiplied by the weight, if the value is smaller
than ε, the model will consider the KD loss to be
0 and refrain from further optimization for lower
loss. If a conflict arises, the student model will first
optimize the MLM loss. Thereby ensuring that the
student model learns the new domain knowledge
the teacher model without straying too far from it.

The final loss Lfinal is obtained by calculating
the sum of the above individual losses, as follows:

Lfinal = L′
Cosine + L′

KL + L′
MSE + αLMLM.

Here, α is the positive weight parameter for the
loss in the MLM task and is used to control the
intensity of learning new tokens.

4 Experiment Details and Results

In this section, we conduct our experiments in the
biomedical domain.

4.1 Datasets
We collected a PubMed abstract corpus for distil-
lation, and used BLURB2 (see Appendix A) for
performance evaluation.

For the biomedical domain, we gathered a small
corpus from PubMed (1.3GB) abstracts and com-
pared it with PubMedBERT, which used a 21-GB
corpus for pre-training. We omitted any abstracts
containing fewer than 128 words in order to reduce
noise.

We evaluate downstream tasks by using 12 tasks
of the BLURB benchmark (excluding BIOSSES,
a sentence similarity task that employs the [CLS]
token, which is not well trained with this method).
We adhere to the same evaluation and hyperparam-
eter (see Appendix B) as those used by PubMed-
BERT following Yasunaga et al. (2022).

4.2 Implementation
We use the uncased version of BERTBASE

3 (12 lay-
ers, 768 dimensions) as the teacher model and the
baseline. We perform distillation of BERT to a
small student model4 (6 layers, 768 dimensions)
with vocabulary expansion. The weights of the stu-
dent model’s layers is initialized with those of the

2https://microsoft.github.io/BLURB/leaderboard.html
3https://github.com/google-research/bert
4Our models, evaluation data and training code are avail-

able at: https://github.com/pZvfkv3t8PA9vAc/VE-KD
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BERT-base BERT-base_DA5
DistilBERT

PubMed Adapt-and-Distill VE-KD
Layers Number 12 12 6 6 6

NER
BC5CDR-chem 89.25 90.96 88.81 89.40 89.83
BC5CDR-disease 81.44 82.90 78.94 82.25 81.65
NCBI-disease 85.67 85.64 84.07 85.01 86.50
BC2GM 80.90 80.91 79.94 79.61 80.03
JNLPBA 77.69 77.20 76.64 76.57 76.34

PICO extraction
ebmnlp 72.34 73.26 71.22 71.03 72.08

Relation extraction
chemprot 71.86 72.64 70.77 68.16 69.28
DDI 80.04 80.64 74.20 76.78 76.69
GAD 80.41 79.40 78.29 79.31 77.82

Document classification
HoC 80.20 81.37 80.76 81.64 83.21

Question answering
Pubmedqa 51.62 56.20 53.40 54.00 55.80
BioASQ 70.36 66.43 67.86 72.86 75.71

Average of all tasks 76.82 77.30 75.41 76.38 77.08
Macro-average 74.79 75.41 73.74 74.68 75.70

Table 1: Comparison with distillation models trained by the PubMed corpus. DistilBERTPubMed: using the same
method with DistilBERT, Adapt-and-Distill: using the same method with Yao et al. (2021), VE-KD: using our
method. Bold indicates the best performance of 6-layer models.

teacher model’s layers 0, 2, 4, 7, 9, and 11. Addi-
tionally, we perform distillation of BERT by follow-
ing the normal method which uses the same corpus
and hyperparameters as a DistilBERTPubMed (Sanh
et al., 2019) and a Adapt-and-Distill model (Yao
et al., 2021) (Appendix C). The mid product of
Adapt-and-Distill method, BERT-base_DA5 ob-
tained by domain adaptation from BERT-base is
also the baseline.

Additionally, we chose some small (6 layers)
BERT or distilled BERT models for general pur-
poses, including BERTL6H768

3(6 layers, 768 dimen-
sions), TinyBERT, MiniLMv2 and DistilBERTwiki.
For comparison with domain adaptation ability,
we additionally trained these models using the
PubMed corpus with an MLM task.

We also performed distillation experiments
across different dimensions, such as from BERT-
large to a smaller student model (6 layers, 384
dimensions) as shown in Appendix D.

We made additional attempts, applying the VE-
KD method to generative language models, such as
GPT2 (Radford et al., 2019) and T5 (Raffel et al.,
2020). Unfortunately, the results did not meet ex-
pectations, showing some performance drop com-
pared to traditional distillation methods. Detailed
data will be provided in the Appendix E.

5“DA” indicates that the model is under domain adaptation.

4.3 Comparison with BERT, DistilBERT and
Adapt-and-Distill

The results for the performance comparison of
the distillation model using the same PubMed
corpus are shown in Table 1. VE-KD outper-
formed teacher model BERT on 6 tasks, and
showed an improved performance of 0.3% on aver-
age and 0.9% on Macro-average. VE-KD outper-
formed DistilBERTPubMed on 10 tasks, showed an
increased absolute performance of 1.6% on aver-
age and 2.0% on Macro-average. VE-KD outper-
formed Adapt-and-Distill on 8 tasks, showed an
increased absolute performance of 0.7% on aver-
age and 1.0% on Macro-average. VE-KD obtained
the highest Macro-average score including BERT-
base_DA5 (+0.3%).

Moreover, we observed significantly larger im-
provements on document-level tasks compared
with BERT-base, document classification (+3%
on HoC) and question answering (+4% on Pub-
MedQA, +5% on BioASQ), as well as significant
improvements in document classification (+2%
on HoC) and question answering (+6% on Pub-
MedQA, +13% on BioASQ) compared with Distil-
BERT, document classification (+2% on HoC) and
question answering (+2% on PubMedQA, +3% on
BioASQ) compared with Adapt-and-Distill. Doc-
ument classification and question answering are
tasks that require a deep understanding of sen-
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BERTL6H768 TinyBERT MiniLMv2
DistilBERT

wiki
DistilBERT

PubMed VE-KD
Domain Adaptation o w o w o w o w o w

NER
BC5CDR-chem 88.64 90.51 87.98 90.34 88.93 90.13 88.81 90.34 88.97 89.83 89.83
BC5CDR-disease 80.27 81.90 79.20 80.60 80.04 80.24 78.94 80.60 80.84 80.74 81.65
NCBI-disease 85.53 85.54 84.16 84.77 83.81 84.37 84.07 84.77 86.05 84.52 86.50
BC2GM 79.64 80.22 79.56 80.17 80.09 80.18 79.94 80.17 79.96 79.83 80.03
JNLPBA 76.53 77.27 76.83 76.75 75.92 76.65 76.64 76.75 76.86 76.60 76.34

PICO extraction
EBM PICO 71.09 72.21 70.41 72.31 71.29 72.53 71.22 72.31 71.56 72.16 72.08

Relation extraction
ChemProt 69.74 69.97 69.87 70.09 69.50 70.64 70.77 70.09 69.68 71.11 69.28
DDI 75.91 77.57 75.01 75.95 74.91 76.92 74.20 75.95 75.96 75.48 76.69
GAD 78.79 79.60 76.87 78.98 79.05 79.74 78.29 78.98 76.66 79.53 77.82

Doc classification
HoC 81.73 82.66 73.98 81.21 77.72 81.41 80.76 81.21 81.41 82.20 83.21

Question answering
PubMedQA 50.40 51.80 54.00 51.80 52.60 54.60 53.40 51.80 50.00 53.80 55.80
BioASQ 75.71 80.00 80.00 67.86 67.14 76.43 67.86 67.86 62.86 72.14 75.71

Average of all tasks 76.16 77.44 75.66 75.90 75.08 76.99 75.41 75.90 75.07 75.98 77.08
Macro-average 74.56 75.91 73.37 74.18 73.03 75.51 73.74 74.18 73.26 75.04 75.70

Table 2: Comparison of small models, where w indicates domain adaptation and o indicates no domain adaptation.
Bold indicates the best performance, and underline indicates the second best.

tences. We propose that our method excels in tasks
that focus on understanding the meaning of sen-
tences, rather than tasks that involve token-level
information extraction.

BERT-base_DA5 which is the mid product of
Adapt-and-Distill potentially suffered from over-
fitting due to small corpora. Compare with
BERTL6H768_DA5 in Table 2, we observed that
the larger model yields worse performance. This
could be attributed to the fact that larger models
require larger corpora to avoid overfitting. Conse-
quently, when dealing with smaller corpora, the per-
formance of larger models may be compromised.
In contrast, VE-KD, offers improved stability be-
cause it does not require multiple phases like Adapt-
and-Distill. This stability enables VE-KD to bet-
ter address the challenges of overfitting in domain
adaptation scenarios.

VE-KD did not perform as well in the relation-
extraction task as the other 6-layer models did,
experiencing an average performance decrease of
3% compared with BERT-base. This might be at-
tributable to the divergence between the datasets
used in tasks such as DDI and GAD (which
were not built from the PubMed corpus), and the
PubMed corpus we used to train VE-KD. There-
fore, we postulate that the performance of VE-KD
is significantly influenced by the gap between the
training corpus and the downstream task.

4.4 Comparison with Models Having the
Same Layer Size

Table 2 shows the results of performance compari-
son versus the small model having the same layers
and hidden-state size as VE-KD. Compared with
small models without domain adaptation, VE-KD
achieves the highest performance on average. Even
after domain adaption, VE-KD is still the second-
highest model just behind BERTL6H768. Compared
with DistilBERTPubMed_DA5, which uses the same
corpus, VE-KD also attains a 1.1% performance in-
crease on average and 0.7% on Macro-average, and
in particular obtains a 2% increase for PubMedQA
and 3.6% in BioASQ tasks. Our results suggest
that a vocabulary expansion distillation method us-
ing one-time training can achieve or exceed the
performance of adaptation followed by distillation.

5 Analysis

In this section, we analyze the impact of training
time and various settings on performance.

5.1 Impact of Training Time

Pre-training and fine-tuning typically require sub-
stantial computational resources. We benchmark
our model against BioBERT and PubMedBERT,
using the HoC and PubMedQA tasks. To facili-
tate a fair comparison, we equate the training time
of BioBERT and PubMedBERT to the duration it
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would potentially take with the same computational
resources used in this study (8 A100 GPUs).

As shown in Table 3 for the HoC and Pub-
MedQA tasks, VE-KD outperforms BERT in the
HoC task after 3 h of training and surpasses
BioBERT and PubMedBERT after 6 and 9 h of
training, respectively. For the PubMedQA task,
VE-KD outperforms BERT and PubMedBERT af-
ter 6 and 9 h of training, respectively. These ob-
servations highlight the efficiency of our method,
which can match or surpass the performance of
models pre-trained from scratch, all while using
less than 10% of the computational resources and
corpus.

The training time for VE-KD is mostly analo-
gous to the distillation phase time of the Adapt-and-
Distill method. Compared with fine-tuned Distil-
BERT and BERT, VE-KD achieves a higher per-
formance while using only about half the training
time. In comparison with Adapt-and-Distil, VE-
KD achieves a higher performance while using only
about 15% the training time.

Model Training
Time

Corpus
Words HoC PubMed

QA

VE-KD
3 h 0.2B 81.64 54.00
6 h 0.2B 81.74 55.30
9 h 0.2B 82.64 56.60

DistilBERT 9 h 0.2B 80.76 53.40
DistilBERT_DA5 19 h 0.2B 81.21 53.80
BERT_DA5 25 h 0.2B 81.37 56.20
Adapt-and-Distil 62 h 0.2B 81.64 54.00
BERT 0 h 3.3B 80.20 51.62
BioBERT 240 h 4.5B 81.54 60.24
PubMedBERT 240 h 3.1B 82.32 55.84

Table 3: Results with different model training. Bold
and underline indicate the first best and the second best,
respectively.

5.2 Impact of Vocabulary Size

To understand the impact of vocabulary size, we
conduct several experiments using varying vocab-
ulary sizes in the biomedical domain. We use the
same experimental conditions with two types of
models: with or without tolerance setting. Figure 2
shows the performance of the model for different
vocabulary sizes.

We observe that both types of models deliver
the best results with a vocabulary size of 60,000
words in our study. Interestingly, models with
larger vocabularies of 70,000 and 80,000 words
do not exhibit better performance but instead ex-

hibit a significant performance loss. A reasonable
explanation for these results is that a larger vocabu-
lary set might potentially include more complex but
less common tokens, which cannot be sufficiently
learned through continuous pre-training, especially
in a small-scale corpus.

Figure 2: Average performance of VE-KD with different
vocabulary sizes.

5.3 Impact of Tolerance

To understand the impact of tolerance, we con-
ducted several experiments in which the tolerance
is adjusted within a 60,000-word vocabulary by
utilizing HoC, PubMedQA, and BioASQ and then
averaged across all 12 tasks.

As shown in Figure 3, there is a noticeable
change in performance between the model with-
out tolerance setting and each task, and the average
over the 12 tasks exhibits a peak performance when
the tolerance is set to 0.5. We observe that as the
tolerance increases up to 1.0 and 2.0, the perfor-
mance continually decreases compared with the
model without tolerance setting. This implies that
when the tolerance is excessively high, the instruc-
tional knowledge from the teacher model may not
be effectively assimilated by the student model.
Given that the current tolerance setting might be
too restrictive for this method, we are considering
modifying as a softer approach in the future.

Figure 3: HoC, PubMedQA, BioASQ and the average
performance of VE-KD with different tolerances.
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5.4 Smaller Corpus

To understand the potential of our method on
smaller corpora, we conducted several experiments
on VE-KD (with 40,000 and 60,000-word vocabu-
laries) and DistilBERT trained on various percent-
ages of the PubMed corpus.

Figure 4 shows the performance-evaluation re-
sults for the average score and the PubMedQA
task. We observe that when VE-KD_40k6 and VE-
KD_60k6 trained on more than 20% of the corpus,
the VE-KD_40k had larger fluctuations in average
score compared with VE-KD_60k at the same time.
Interestingly, for the PubMedQA task, VE-KD_60k
performed worse than VE-KD_40k up until reach-
ing 100% of the dataset. One potential explanation
for this is that the VE-KD_60k has more param-
eters, implying that it requires additional training
to achieve comparable performance. However, a
model that implements a smaller vocabulary expan-
sion may offer greater potential when applied to a
small corpus.

(a) Average score of 12 tasks

(b) PubMedQA score

Figure 4: Performance on varying percentages of the
PubMed corpus.

5.5 Inference Speed and Model Size

We compare the parameter size and inference speed
of VE-KD with the BERT model and DistilBERT,
and the results are shown in Table 4. Compared
with BERT-base, the half-layers of DistilBERT and

6VE-KD_40k and VE-KD_60k denote VE-KD with
40,000 and 60,000-word vocabulary sizes, respectively.

VE-KD are about 0.5 times faster. We find that
vocabulary expansion delivers only marginal im-
provements on the model’s inference speed, in line
with the results of Yao et al. (2021).

For the VE-KD_40k and VE-KD_60k yields
about 8 million and 22 million parameters, respec-
tively, in the tokenization weights. The model light-
ening effect is thus smaller. For further model light-
ening, it may be necessary to have smaller hidden
dimensions, few layers, or lower numbers of atten-
tion heads.

Model Parameters Speedup

BERT 110 M ×1.00
DistilBERT 67 M ×1.48
VE-KD_40k 75 M ×1.50
VE-KD_60k 90 M ×1.56

Table 4: Comparison of parameter size and inference
speed. The inference speed was tested by the EBM
PICO task and evaluated on a single RTX 6000 GPU.

6 Conclusion

In this paper, we proposed VE-KD, a novel method
that merges vocabulary expansion and knowledge
distillation. We also showed that our method
achieves competitive performance on various down-
stream tasks. Our experimental results demonstrate
that VE-KD is effective; Its performance is com-
petitive with well-known models such as BioBERT
and PubMedBERT, and its training efficiency is
noteworthy. It outperforms DistilBERT and Adapt-
and-Distill method, especially in document-level
tasks. Furthermore, VE-KD is more robust com-
pared to general domain adaptation. VE-KD using
distillation mechanism which can avoid overfitting,
especially work with small corpora.

We thoroughly investigated the effects of vo-
cabulary size and tolerance and obtained insights
that can help us configure more efficient models.
Because of its efficiency across various domain-
specific NLP tasks, VE-KD lays the groundwork
for further research in task-specific model optimiza-
tion and application across diverse domains.

One limitation of our study is that we did not
evaluate the model’s generalization abilities on out-
of-domain tasks. Another limitation is that we have
not yet fully explored the applicability of the VE-
KD method to other model structures. For instance,
we are looking for more efficient and fitting meth-
ods of knowledge segmentation and aggregation
for generative language models.
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A Fine-tuning Dataset

BLURB benchmark consists of five named-
entity-recognition tasks (BC5-Chemical, BC5-
Disease, NCBI-disease, BC2GM and JNLPBA),
a PICO (population, intervention, comparison,
and outcome) extraction task (EBM PICO), three
relation-extraction tasks (ChemProt, DDI and
GAD), a document-classification task (HoC), and
two question-answering tasks (PubMedQA and
BioASQ). We adhere to the same fine-tuning
method and evaluation metrics as those used by
PubMedBERT, following Yasunaga et al. (2022).
We list the statistics of those tasks in Table 5.

Dataset Train Dev Test

BC5-chem (2016) 5,203 5,347 5,385
BC5-disease (2016) 4,182 4,244 4,424
NCBI-disease (2014) 5,134 787 960
BC2GM (2008) 15,197 3,061 6,325
JNLPBA (2004) 46,750 4,551 8,662
EBM PICO (2018) 339,167 85,321 16,364
ChemProt (2010) 18,035 11,268 5,745
DDI (2013) 25,296 2,496 5,716
GAD (2004) 4,261 535 534
HoC (2016) 1,295 186 371
PubMedQA (2019) 450 50 500
BioASQ (2015) 670 75 140

Table 5: numbers of instances included in the BLURB
biomedical NLP benchmark datasets we used.

B Hyperparameter Details

For all distillations, including the baseline with the
same default training seed, we train for 5 epochs
by using batch size of 240 and a peak learning rate
of 5× 10−4, which is warmed up in the first 10%
of steps and then is decayed linearly.

For all domain adaptation, including the base-
line with same defaults training seed, we train for
100,000 steps by using batch size of 80 and a peak
learn rate of 5× 10−4, which is warmed up in the
first 10% of steps and then is decayed linearly.

For BLURB fine-tuning, including the base-
line with same defaults training seed, we set
max_seq_length to 512 and choose learning rates
from 1 × 10−5, 2 × 10−5, 3 × 10−5, 5 × 10−5,
6× 10−5, batch sizes from 16, 32, 64 and epochs
from 1 to 120.

C Experiment Using Adapt-and-Distill
Method

To comparison with Adapt-and-Distill (Yao et al.,
2021) method, we conducted a comparative exper-
iment using same method. The Adapt-and-Distill
method comprises four steps:

1. perform domain adaptation for the teacher
model T to T ′.

2. perform distillation from the teacher model T
to the student model S,

3. perform domain adaptation for the student
model S to S′.

4. perform distillation from the teacher model T ′

to S′′, using the intermediate student model
S′ as initialization.

D Distillation with Different Dimensions

When the output dimensions of the teacher model
and the student model differ, we add a learnable
transformation Wh ∈ Rd′×d to convert hidden-
state vectors to the same dimensions as

H ′
s = H ′

sWh.

But initialization from teacher to student is not
available because of different dimensions. We ran-
domly initial student model.

D.1 Distillation from BERT-large
To investigate the effect of this method on larger
models, we also conducted a comparative experi-
ment on BERT-large.

BERT-large has 24 layers of 1,024 hidden dimen-
sions. We distilled it to 6 layers of 768 and 384
dimensions, respectively. using VE-KD method
and DistilBERT method.

The results for the performance comparison us-
ing the same PubMed corpus are shown in Ta-
ble 6, which shows that VE-KD768 outperforms
teacher model BERT-large only on 2 tasks. VE-
KD768 outperforms DistilBERT on 8 tasks, achiev-
ing an increased absolute performance of 1.5% on
average. VE-KD768 obtained the highest Macro-
average score. VE-KD384 exhibited a considerable
drop in performance, possibly due to the simplicity
of the transformation method that was used.

Compared with the performance of BERT-base,
BERT-large is harder to distill, implying that it
requires a larger corpus to achieve comparable per-
formance.
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BERT-large DistilBERT VE-KD VE-KD

Hidden dimension 1024 768 768 384

NER
BC5CDR-chem 90.45 88.43 88.75 87.18
BC5CDR-disease 82.17 79.27 79.10 78.09
NCBI-disease 85.57 84.09 82.64 82.37
BC2GM 81.23 77.75 77.64 76.27
JNLPBA 77.89 75.26 75.27 72.96

PICO extraction
ebmnlp 72.23 70.51 70.98 70.10

Relation extraction
chemprot 72.52 65.73 68.28 64.08
DDI 82.35 70.28 72.96 67.97
GAD 75.00 79.09 78.99 76.68

Document classification
HoC 78.37 80.54 80.62 77.14

Question answering
Pubmedqa 50.80 53.60 52.80 50.00
BioASQ 67.14 65.71 80.00 62.86

Average of all tasks 76.31 74.19 75.67 72.14
Macro-average 73.93 72.67 74.42 70.52

Table 6: Comparison of models distilled from BERT-large. Bold indicates the best performance, and underline
indicate the second best.

D.2 Distillation to Smaller Hidden
Dimensions

We investigated the effect of this method on smaller
models, and conducted a comparative experiment
to 6 layers of 384 hidden dimensions from BERT-
base, using VE-KD method, DistilBERT method,
and Adapt-and-Distill method.

Table 7 shows the results for the performance
comparison using the same PubMed corpus. Com-
pared with BERT-base with 768 dimensions, the
model with 384 dimensions presents a significant
challenge to surpass. Both our 1-step VE-KD
method and the 4-step Adapt-and-Distill method
outperforms DistilBERT.

The Adapt-and-Distill method outperforms VE-
KD by about 1% on average, and by 0.5% on
Macro-average. This difference in performance
could potentially be attributed to the initialization
of the student model. Further investigation into the
initialization process may help shed light on this
performance difference between the two methods.

By incorporating an additional domain adapta-
tion to VE-KD using same hyperparameter with
third step of Adapt-and-Distill method, we ob-
tain VE-KD_DA5 (2-step), which achieved perfor-
mance comparable to the Adapt-and-Distill model
with less training time and fewer computational
resources. It suggesting that VE-KD may be under-
fitting across different dimensions. Further explo-
ration and analysis could provide insights into the

underlying factors contributing to this underfitting
in VE-KD.

E Distillation on Models with Having
Different Architecture

To investigate the effect of this method on models
having different architecture, we also conducted
comparative experiments involving GPT27 and T5-
small8. We used the same tasks as in the pre-
training phase:

• GPT2: predict-the-next-word task

• T5: fill-in-the-blank task

E.1 Separate Token Masking
As we did for BERT, we separated the knowledge
by using separate token masking. The absence of
the [MASK] token in the vocabulary of GPT2 and
T5 necessitates replacing it with other tokens.

• GPT2: using the [UNK] token as the [MASK]
token:

xinput = [[UNK], x2, [UNK], ..., xn]

xlabel = [x1, x2, x3..., xn]

• T5: using sentinel tokens [extra_id_0] ~[ex-
tra_id_99] as the [MASK] token:

7https://huggingface.co/openai-community/gpt2
8https://huggingface.co/google-t5/t5-small
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BERT-base DistilBERT VE-KD VE-KD_DA5 Adapt-and-Distill

Hidden dimension 768 384 384 384 384

NER
BC5CDR-chem 89.25 86.95 87.39 88.05 89.00
BC5CDR-disease 81.44 77.42 78.53 79.36 80.49
NCBI-disease 85.67 82.75 83.19 82.09 83.58
BC2GM 80.90 76.47 77.12 77.28 77.93
JNLPBA 77.69 73.88 72.92 74.16 75.16

PICO extraction
ebmnlp 72.34 69.02 69.72 70.62 70.75

Relation extraction
chemprot 71.86 62.04 64.03 65.29 66.67
DDI 80.04 67.80 67.10 68.95 68.24
GAD 80.41 76.60 76.14 78.99 77.60

Document classification
HoC 80.20 75.90 79.40 78.69 78.56

Question answering
Pubmedqa 51.62 50.40 53.60 52.60 49.00
BioASQ 70.36 66.43 67.86 67.86 70.71

Average of all tasks 76.82 72.14 73.08 73.66 73.97
Macro-average 74.79 70.33 71.75 72.16 72.25

Table 7: Comparison of models with smaller hidden dimensions. Bold indicates the best performance, and underline
indicate the second best.

xinput = [[extra_id_0], x2, [extra_id_1], ..., xn].

xlabel_s = [[extra_id_0], x1, [extra_id_1], x3].

xlabel_t = [[extra_id_0], x1[0], x1[1],

[extra_id_1], x3].

Because of the differences between the tokeniz-
ers used by the teacher and the student, the length
of the labels varies between them. For instance, a
domain-specific token such as x1, which is recog-
nized by the teacher’s tokenizer, may be divided
into multiple tokens, such as x1[0], x1[1].

Masked tokens for GPT2 and T5 constructed
with the 50% to 50% proportion from the general
and domain-specific terms.

E.2 Experimental Setting

For domain-specific terms (domain knowledge), we
used pre-training tasks to extract knowledge from
the corpus. For general terms (and general knowl-
edge), we used the same similarity loss function
with Distil-BERT. As with VE-KD for BERT, simi-
larity calculations were made only within the scope
of general terms (without the new token position
for GPT2, and without the new token or sentinel
token for T5).

E.3 Result and Analysis

Regrettably, the defined usage of the VE-KD
method for the generation of language models did

not enhance the performance of our student models,
as Table 8 and Table 9 show.

Compared with GPT2, GPT2Distillation achieved
nearly identical performance. However,
GPT2VE-KD experienced a 4% degradation
in performance, suggesting that the [UNK] token
may not be adequately trained to handle masked
token problems. Hence, a more optimal model
design or the use of distinct alternate tokens is
needed. This would allow GPT-2 to improve
its learning capacity, both from the teacher’s
knowledge and corpus, concurrently.

Similarly, compared with T5, T5Distillation
achieved nearly the same performance levels. Nev-
ertheless, T5VE-KD saw only a minor reduction in
performance of about 1%. This result indicates that
T5’s fill-in-the-blank task might be more suitable
for VE-KD’s concept than for GPT2’s predict-the-
next-word task. A potential explanation for this
decrease in performance is the dissimilarity in la-
bel length, which leads to different position em-
beddings, thereby causing confusion for the model.
However, to surpass the performance of the teacher
model, more in-depth exploration may be neces-
sary.
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GPT2 GPT2 GPT2
distillation VE-KD

NER
BC5CDR-chem 75.69 75.05 68.55
BC5CDR-disease 64.34 65.59 60.24
NCBI-disease 67.94 67.44 61.00
BC2GM 57.68 56.62 53.67
JNLPBA 59.60 61.01 57.84

PICO extraction
ebmnlp 66.87 67.24 64.28

Relation extraction
chemprot 68.71 66.31 63.03
DDI 68.55 68.07 62.47
GAD 80.13 75.59 74.52

Document classification
HoC 80.48 81.03 76.76

Question answering
pubmedqa 53.80 53.00 50.60
BioASQ 64.29 68.57 70.00

Average of all tasks 67.34 67.13 63.58
Macro-average 68.78 68.84 65.66

Table 8: Comparison of GPT2 models using different
methods. Bold indicates the best performance.

T5 T5 T5
distillation VE-KD

NER
BC5CDR-chem 84.68 83.22 81.03
BC5CDR-disease 67.21 71.45 67.83
NCBI-disease 81.16 77.69 77.25
BC2GM 75.48 71.20 70.29
JNLPBA 62.34 66.67 63.98

PICO extraction
ebmnlp 59.86 62.16 59.08

Relation extraction
chemprot 57.47 54.84 54.43
DDI 58.46 58.60 55.51
GAD 77.54 76.42 78.49

Document classification
HoC 75.48 75.58 74.66

Question answering
pubmedqa 55.20 56.40 56.20
BioASQ 67.14 70.71 77.14

Average of all tasks 68.50 68.74 67.99
Macro-average 67.04 67.73 67.06

Table 9: Comparison of T5 models using different meth-
ods Bold indicates the best performance.
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