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Abstract

While machine translation (MT) systems are
achieving increasingly strong performance on
benchmarks, they often produce translations
with errors and anomalies. Understanding these
errors can potentially help improve the trans-
lation quality and user experience. This paper
introduces XTOWER, an open large language
model (LLM) built on top of TOWERBASE
designed to provide free-text explanations for
translation errors in order to guide the gener-
ation of a corrected translation. The quality
of the generated explanations by XTOWER are
assessed via both intrinsic and extrinsic eval-
uation. We ask expert translators to evaluate
the quality of the explanations across two di-
mensions: relatedness towards the error span
being explained and helpfulness in error un-
derstanding and improving translation quality.
Extrinsically, we test XTOWER across various
experimental setups in generating translation
corrections, demonstrating significant improve-
ments in translation quality. Our findings high-
light XTOWER’s potential towards not only pro-
ducing plausible and helpful explanations of au-
tomatic translations, but also leveraging them
to suggest corrected translations.1

1 Introduction

Neural machine translation (MT) systems have
made significant strides in recent years. How-
ever, despite their high performance on standard
benchmarks, these systems often produce trans-
lations that contain errors and anomalies. Com-
mon methods for evaluating MT quality, such as
BLEU (Papineni et al., 2002), and neural metrics
like COMET (Rei et al., 2020) and BLEURT (Sel-
lam et al., 2020), provide only a numerical score
reflecting overall translation quality. Recent met-
rics like XCOMET (Guerreiro et al., 2023a) and
AUTOMQM (Fernandes et al., 2023) highlight er-
ror spans to justify their scores but do not offer

1http://huggingface.co/sardinelab/xTower13B

explanations about the nature of these errors. In-
structScore, a recent work by Xu et al. (2023), lever-
ages large language models (LLMs) to provide a
quality score conditioned on built-in error detection
and explanations. However, InstructScore primar-
ily functions as a reference-based metric, using
explanations as a means to improve score estimates
via meta-feedback/finetuning.

In this paper, we introduce XTOWER (Figure 1),
a LLM specifically tailored to produce high-quality
explanations for translation errors and to utilize
these explanations to suggest corrections through
chain-of-thought prompting (Wei et al., 2023).
XTOWER is built on TOWERBASE 13B (Alves
et al., 2024), a strong open multilingual LLM for
MT-related tasks. Unlike InstructScore, XTOWER

can operate without the need for reference transla-
tions while also considering information contained
in the source sentence. Moreover, XTOWER is
designed to be agnostic about the source of error
spans, as they can be obtained manually via human
annotation or via automatic tools. In this work,
we experiment with both. For the automatic case,
we leverage XCOMET (Guerreiro et al., 2023a).
This modular approach offers flexibility to experi-
ment with span-level error annotations from vari-
ous sources, and easily incorporate future improve-
ments in span error detection tools without requir-
ing retraining.

We evaluate XTOWER’s explanations both in-
trinsically and extrinsically. Intrinsically, we em-
ploy human evaluation to score explanations on
two dimensions: relatedness to the error spans be-
ing explained (§4.2) and helpfulness in guiding
towards a better translation (§4.3). Extrinsically,
we assess XTOWER’s ability to suggest translation
corrections (§5), experimenting with different error
span sources (human vs. predicted). We compare
XTOWER’s performance against leading closed and
open LLMs, such as GPT-3.5 Turbo, Mixtral 8x7B,
and TOWERINSTRUCT 13B. Our findings demon-
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SOURCE (PT)

TRANSLATION (EN)

Durante minha viagem ao peru, 

experimentei um copo de suco de 

manga e fiquei com muita dor de 

cabeça.

During my trip to turkey, I tried a 

glass of sleeve juice and got a  

really bad head pain.

ERROR ANALYSIS XTOWERINPUT

MARKED TRANSLATION

Weak
QUALITY SCORE

EXPLANATIONS

During my trip to turkey, I tried a 

glass of sleeve juice and got a  

really bad head pain.

MINOR MAJOR

CORRECTION
During my trip to Peru, I tried a glass of mango juice and got a really bad headache.

The source mentions "Peru", which is a country in South America, while the 
translation misinterprets it as "turkey", which can mean a bird or another country.

The term "suco de manga" from the source translates to "mango juice". 
The word "manga" in Portuguese can mean "sleeve" or "mango" (fruit).

The translation used "head pain" to translate "dor de cabeça" from the source.
 The more conventional English term is "headache".

(XCOMET)

Figure 1: Illustration of our approach. In this example, the input consisting of a source and a translation is passed to
XCOMET, which annotates the translation with error spans and produces a (discretized) quality score. The full input,
marked translation, and quality score are passed to XTOWER, which, in turn, produces an explanation for each error
span along with a final suggestion for a new, corrected translation.

strate that XTOWER improves error interpretability
by providing explanations that effectively relate to
the marked errors. Expert translators endorse these
explanations as helpful for understanding transla-
tion errors and generally useful for improving trans-
lations, particularly for English-German. Further-
more, prompting XTOWER with these explanations
leads to improved translation corrections. Overall,
our main contributions are:

• We introduce XTOWER, a multilingual LLM that
generates free-text explanations for translation
errors and provides corrected translations.

• We conduct extensive human evaluations to
assess the relatedness and helpfulness of
XTOWER’s explanations, linking their results
with dedicated qualitative analyses.

• We evaluate XTOWER’s corrected translations
across multiple language pairs and experimen-
tal setups, showing significant improvements in
translation quality.

2 Background

In this section, we provide an overview of the key
components and concepts relevant to our work.

TOWER. Alves et al. (2024) developed a suite
of state-of-the-art multilingual LLMs via con-
tinued pretraining of LLaMA2 (Touvron et al.,
2023) — TOWERBASE— and supervised fine-
tuning for translation-related tasks — TOWERIN-
STRUCT. TOWER is trained to handle diverse tasks
such as MT, automatic post-editing, and gram-
matical error correction. However, it lacks sup-
port for error-annotated inputs and cannot produce
high-quality, span-level explanations for transla-
tion errors. XTOWER addresses these limitations

by extending TOWER—through distillation and
finetuning—enabling it to provide explanations for
translation errors and generate corrected transla-
tions.

MT Evaluation. Evaluating the quality of ma-
chine translations is a critical aspect of improving
MT systems. Traditional metrics like BLEU (Pap-
ineni et al., 2002) and CHRF (Popović, 2015) have
been widely used to measure the accuracy of trans-
lations by comparing them to reference translations.
However, these lexical metrics do not correlate well
with human judgments (Freitag et al., 2023). More
recent neural metrics, such as BLEURT (Sellam
et al., 2020) and COMET (Rei et al., 2020), offer im-
proved performance by finetuning pretrained neural
models to predict translation quality. Still, they lack
the ability to explain errors in human-interpretable
terms. To this end, Rei et al. (2023); Guerreiro et al.
(2023a) propose methods to highlight input words
relevant to the output. However, highlighting input
words offers a limited view of interpretability, as
the end-user often needs additional information to
understand what the error consists of and how it
can be fixed. Our approach with XTOWER aims to
bridge this gap by generating free-text explanations
for translation errors, thus offering more insightful
and detailed quality reports.

3 XTOWER

In this section, we provide details on the method-
ology behind XTOWER (Figure 1), a model built
on top of TOWERBASE via distilled supervised
finetuning (Tunstall et al., 2023).

3.1 Distillation
Data. We use GPT-4 to generate explanations
for samples annotated with MQM spans and
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to generate a final translation correction.2 Our
dataset comprises English→German (EN-DE),
English→Russian (EN-RU), and Chinese→English
(ZH-EN) samples from the WMT 2022 Metric
shared task (Freitag et al., 2022). Each error span
is annotated by humans according to the MQM
framework, which includes a severity rating such
as minor or major. Detailed statistics about this
dataset are provided in Appendix A. Overall, our
distillation dataset consists of 33,442 samples con-
taining 63,188 human-annotated error spans.

Prompt. We use an XML format to obtain an
“annotated translation”, which includes the demar-
cations of error spans as tags alongside their sever-
ity as attributes. Following Farinha et al. (2022),
we discretize the MQM quality score into buck-
ets: weak, moderate, good, excellent, best. Table 1
shows a prompt example. As output, GPT-4 gener-
ates explanations for each marked error, followed
by a corrected translation in the following format:3

• Explanation for errorN : the explanation
given to the N th error span. Explanations for
each error span are separated by newlines.

• Translation correction: the translation re-
finement produced by the model. Corrections are
placed in a new line after the last explanation.

Notably, this ordering acts as chain-of-thought
prompting (Wei et al., 2023). We collect outputs for
referenceless and reference-based evaluation (by
providing a reference translation in the input).

3.2 Finetuning
We obtained XTOWER by finetuning TOWERBASE-
13B on a dataset that includes the GPT-4 generated
explanations described in §3.1, and machine trans-
lation data from TOWERBLOCKS, the dataset used
to train TOWERINSTRUCT.4 We combined all avail-
able data to train a single, multilingual model, in-
stead of training separate models for each language
pair. Moreover, following Longpre et al. (2023),
we employed a mixed prompt setting (zero-shot,
few-shot) during training. As a result, XTOWER

can handle both referenceless and reference-based
k-shot prompts. Our training hyperparameters and
configuration follows that used to train TOWERIN-
STRUCT (Alves et al., 2024).

2We use gpt-4-0125 available from the OpenAI API.
3We manually inspected a few outputs to ensure reliability.
4https://huggingface.co/datasets/Unbabel/

TowerBlocks-v0.1

Instruction:
You are provided with a Source, Translation, Translation qual-
ity analysis, and Translation quality score (weak, moderate,
good, excellent, best). The Translation quality analysis con-
tains a translation with marked error spans with different levels
of severity (minor or major). Given this information, generate
an explanation for each error and a fully correct translation.

Input:
English source: All were wearing avalanche beacons.
German translation: Alle trugen Lawinenschilder.
Translation quality analysis: Alle trugen <error1 sever-
ity=“major”>Lawinenschilder</error1>.
Translation quality score: weak

Output:
Explanation for error1: The term “Lawinenschilder” trans-
lates to “avalanche signs”, which is a significant mistransla-
tion of “avalanche beacons”. Avalanche beacons are specific
devices used to locate people trapped under snow after an
avalanche, not signs. This error changes the meaning of the
sentence and introduces confusion about the context.
Translation correction: Alle trugen Lawinensuchgeräte.

Table 1: Example of prompt used for generating expla-
nations and translation corrections.

4 Explaining Translation Errors

In this section, we provide a detailed human eval-
uation of the quality of the explanations produced
by XTOWER, which are obtained in a more realistic
setting via referenceless prompting.

4.1 Experimental Setup

Data. We evaluate our models on MQM an-
notations from the WMT 2023 Metrics shared
task test set (Kocmi et al., 2023), spanning
three language pairs: English→German (EN-DE),
Hebrew→English (HE-EN), and Chinese→English
(ZH-EN). This dataset contains 24,781 samples
with 69,564 human-annotated error spans. To
obtain a fully automatic approach, we use error
spans predicted by XCOMET-XL (Guerreiro et al.,
2023a).5 For a consistent evaluation, we also query
XCOMET without references for our experiments.
In total, we obtain a set of 108,507 spans, indicat-
ing that XCOMET has a higher tendency to predict
errors. Detailed statistics are shown in Appendix A.

Prompting. We use the same prompt template as
the one used in our distillation experiments, shown
in Table 1. We use 0-shot prompting for all experi-
ments involving XTOWER in this section.

Evaluation. While recent works propose frame-
works to assess free-text explanations for classifi-
cation tasks (Wiegreffe et al., 2021; Ramnath et al.,

5https://huggingface.co/Unbabel/XCOMET-XL
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EN-DE ZH-EN

LEVEL XCOMET HUMAN XCOMET HUMAN

Explanation 3.5±1.5 4.4±1.6 3.4±1.6 4.3±1.7
Document 3.4±1.5 4.3±1.7 3.3±1.6 4.3±1.7

Correlation 0.96 0.89 0.96 0.96

Table 2: Relatedness scores (6-Likert scale) computed
at explanation and document-level, along with the Spear-
man correlation between the two.

2023; Joshi et al., 2023; Chen et al., 2023), apply-
ing a similar evaluation for MT is challenging due
to the occurrence of multiple error spans with var-
ied impact on translation quality. Therefore, we
choose to assess our explanations through human
evaluation and qualitative analysis (§4.4). The eval-
uation comprises the following two dimensions:

• Relatedness: The extent to which the explana-
tion is related to the content of the error span.

• Helpfulness: The extent to which the explana-
tion helps in understanding the nature of the error
and in guiding towards a translation correction.

We present the setup and findings from both
evaluations next. Human evaluation details and
guidelines can be found in Appendix C.

4.2 Relatedness
A total of 6 annotators were employed for the
task, evaluating samples marked with XCOMET

and human-annotated error spans. 3 annotators as-
sessed explanations for EN-DE, and other 3 for ZH-
EN. For each language pair and error span source,
we randomly sampled 50 translations, resulting in
200 examples in total. Inspired by the direct assess-
ment and scalar quality metric (DA+SQM) scale
used in MT evaluation (Kocmi et al., 2022), we
asked annotators to rate explanations on a 6-point
Likert scale: nonsense/unrelated (0), somewhat
(2), mostly (4), and fully related (6).6 Moreover,
we asked annotators to rate the quality of explana-
tions individually (explanation-level) and by look-
ing at all explanations at once (document-level).
The annotations were carried out on the Upwork
platform.7 We obtain an overall inter-annotator
agreement, as measured via Spearman correlation
(Pavlick and Tetreault, 2016), of 0.51 (EN-DE) and
0.40 (ZH-EN) at the explanation-level, and of 0.50
(EN-DE) and 0.37 (ZH-EN) at the document-level,

6The full scoring rubric is provided in Appendix C.
7https://www.upwork.com
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Figure 2: Relatedness according to the number of spans
for XCOMET and human error spans.

suggesting a fair-to-moderate agreement among an-
notators, typical in explanations evaluation which
is a subjective task (Wiegreffe et al., 2022; Kunz
et al., 2022). Results are shown in Table 2.

Discussion. For human-annotated error spans,
the overall relatedness scores range around 4.3,
while for XCOMET spans the scores drop to around
3.2. This difference indicates that the quality of
error spans heavily impacts the quality of their
explanations. Nonetheless, for both cases, hu-
man ratings are in the 3-5 range, indicating that
XTOWER’s explanations are mostly related to
the error spans. We also note a very high correla-
tion between the quality of explanations assessed at
the explanation and document-level, especially for
human-annotated spans, indicating that the quality
of explanations is consistent across granularities.

In Figure 2 we show how relatedness scores vary
according to the number of error spans. We observe
that, while the number of spans does not affect the
relatedness of explanations produced for human-
annotated error spans, they lead to a slight decrease
of the relatedness scores when the spans are pre-
dicted by XCOMET. We hypothesize this is due to
XCOMET overpredicting error spans (see Table 7).

4.3 Helpfulness
To quantify the idea of how helpful explanations are
to the end user, we carried a new human evaluation
with 4 of the same annotators from the previous
task, and asked them to rate explanations based on
two questions:

• Q1: How helpful is the explanation in improving
the understanding of the nature of the error?

• Q2: How helpful is the explanation in guiding
towards writing a better translation?

The rating is again performed on a 6-point Likert
scale, ranging from less to more helpful. Moreover,
we focus on studying the helpfulness of correct
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QUESTION EN-DE ZH-EN

Q1: error understanding 4.6±1.7 4.4±2.1
Q2: translation guidance 3.9±1.6 3.3±2.1

Correlation 0.85 0.72

Table 3: Helpfulness scores (6-Likert scale) for Q1 (un-
derstanding the nature of the errors) and Q2 (guiding
towards better translations), along with the Spearman
correlation between the two.

error spans only, in order to isolate the effect of
providing accurate information towards improving
error understanding. To this end, we filter out sam-
ples with an overall relatedness score lower than
4 and only use error spans labeled by humans. Ta-
ble 3 shows the results.

Discussion. We find that annotators mark the
explanations as being on average helpful (scores
range in 4.4-4.6) in improving error understand-
ing for both language pairs. Here, scores over 4
imply that “the explanation clearly identifies the
error and provides relevant details about its nature”.
Furthermore, the usefulness of these explanations
in guiding towards a potential correction ranges on
average between 3.3-3.9, demonstrating that the
explanations do hint towards a potential solution
for correction, but they can be made more specific.
For example, one of our expert annotators quoted:

Many cases had a very clear explanation of the nature
of the error, but in terms of helpfulness in guiding
towards writing a correction, it was a bit less clear
than the above-mentioned examples as they do not
suggest a correction. Nonetheless, the explanation
still correctly guides the editor to a post-edition.

4.4 Qualitative Analysis
Based on the annotators’ feedback for the previous
experiments, and by manually inspecting the anno-
tated examples, we present a qualitative analysis of
the explanations generated by XTOWER in Table 4.
Our analysis reveals several interesting scenarios
that highlight XTOWER’s strengths and weaknesses.
We categorize our findings into four main groups:

• Correct Spans: For error spans that correctly
correspond to an error in the translation, explana-
tions are accurate when they effectively detail
the nature of the error, and inaccurate when they
are unattached to the error, possibly suggesting
wrong modifications.

• Incorrect Spans: Despite incorrect spans, ex-
planations can still be valuable by pointing out

that there are no errors in the translation. In other
cases, they are mislead by the incorrect span and
become worthless by being nonsensical to the
error, possibly including a boilerplate suggestion
for stylistic improvement.

We also estimate the prevalence and compute the
average relatedness score of each category. Specif-
ically, we consider explanations as accurate/valu-
able when their average relatedness score is larger
or equal to 4, otherwise we consider them as in-
accurate/worthless. This analysis indicates that
XTOWER is not only capable of generating high-
quality explanations when the error spans are cor-
rectly identified, but can also provide valuable ex-
planations for incorrect spans, amounting to 59.1%
of the cases with an average relatedness score of
5.3. However, over a quarter of all explanations
(26.8%) either misidentify the nature of the error
or provide generic, boilerplate suggestions. These
findings suggest that while XTOWER has the po-
tential to be a useful tool for automatic translation
error analysis, there is still significant room for im-
provement, especially for cases where translation
errors spans are incorrectly identified.

5 Correcting Translations

Having established that XTOWER can provide help-
ful and useful explanations, we turn to prompting
it towards obtaining translation corrections.

5.1 Experimental Setup

Our setup for correcting translations follows the
same design choices used for explaining transla-
tion errors in §4, including the test data (WMT23),
source of error spans (human vs. XCOMET), and
prompting format. In addition, we employ auto-
matic metrics for measuring translation quality and
use robust baselines, which we describe next. We
focus on referenceless prompting in the main text.8

Evaluation. To assess the overall quality of the
translation correction produced by LLMs, we
rely on neural-based metrics, which obtain the
strongest results in the WMT23 Metrics shared
task (Freitag et al., 2023). Specifically, we re-
port COMET (Rei et al., 2022a) as our primary
metric, alongside BLEURT (Sellam et al., 2020),
and COMETKIWI (Rei et al., 2022b).9 Notably,

8In Appendix D.2 we carefully investigate the impact of
providing reference translations to XTOWER.

9wmt22-comet-da and wmt22-cometkiwi-da.
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CATEGORY EXAMPLE

Correct Span with
Accurate Explanation

Prevalence: 31.3%
Relatedness: 5.3

Source: Indian govt withdraws appeal to hug cows on Valentine’s Day after criticism
Reference: Indische Regierung zieht Aufruf zur Umarmung von Kühen am Valentinstag nach Kritik zurück
Translation: Indian Govt zieht Berufung zurück, Kühe am Valentinstag nach Kritik zu umarmen
Explanation: The term "Indian Govt" is a direct transliteration of "Indian govt" from English to German, which is grammatically
incorrect in German. The correct form should use the German spelling for "government" to match German grammatical rules,
which would be "Indische Regierung."

Correct Span with
Inaccurate Explanation

Prevalence: 14.1%
Relatedness: 1.6

Source: Is it so ephemeral then? Merely a "catchphrase" with no clear originator?
Reference: Ist es also so vergänglich? Lediglich ein „Sprichwort“ ohne eindeutigen Urheber?
Translation: Ist er also so kurzlebig? Lediglich ein " Schlagwort" ohne klaren Urheber?
Explanation: The quotation marks around "Schlagwort" are correctly placed, but the analysis might be pointing out a minor
stylistic preference or a typographical inconsistency. In German, the use of quotation marks can vary, but the provided translation
is not incorrect in this regard.

Incorrect Span with
Valuable Explanation

Prevalence: 27.8%
Relatedness: 5.3

Source: To agonize over personal failure & guilt in a world where "success" is so often bestowed on people responsible for the
most reprehensible acts...
Reference: Sich in einer Welt, in der „Erfolg“ so oft Menschen zuteilwird, die für die schlimmsten Taten verantwortlich sind,
mit persönlichem Versagen und Schuldgefühlen herumzuquälen ...
Translation: Sich über persönliches Versagen und Schuld zu quälen in einer Welt, in der "Erfolg" so oft Menschen zuteilwird,
die für die verwerflichsten Taten verantwortlich sind...
Explanation: The phrase "Schuld zu quälen" is a direct translation of "agonize over guilt." The error marking might suggest
a preference for a different phrasing or structure to convey the depth of emotional distress. However, "Schuld zu quälen" is a
correct and idiomatic way to express the idea of being tormented by guilt in German.

Incorrect Span with
Worthless Explanation

Prevalence: 26.8%
Relatedness: 1.3

Source: Balenciaga boss calls holiday campaign ’stupid mistake’
Reference: Balenciaga-Chef nennt Feiertagskampagne ‚dummen Fehler‘
Translation: Balenciaga -Chef nennt Weihnachtskampagne „dummer Fehler“
Explanation: The use of a hyphen between "Balenciaga" and "Chef" is not incorrect but could be seen as stylistically awkward
in German. The hyphen here might make the name of the position seem less formal or less integrated into the sentence.

Table 4: Examples of explanations according to our qualitative analysis. Error spans are highlighted in red .

while the first metrics rely on a reference transla-
tion, COMETKIWI yields an overall score without a
reference. We cover lexical metrics in Appendix D.

Baselines. We adopt three strong models as base-
lines: TOWERINSTRUCT 13B (Alves et al., 2024)—
TOWER’s translation-oriented LLM—, Mixtral
8x7B, and GPT 3.5 Turbo.10 We use them in a
translation-only mode: we pass a source sentence
and ask for a translation in a 0-shot manner. We
also prompt Mixtral 8x7B and GPT 3.5T for a trans-
lation correction given error spans and explanations.
Since they are not trained to receive this informa-
tion, we provide a 1-shot example for in-context
learning.11 Appendix B has more prompt details.

5.2 Results

We show results in Table 5 for each language pair.

Is XTOWER effective at refining translations?
We observe that XTOWER’s corrections improve
the translation quality of the original translations
for all language pairs. Interestingly, XTOWER

obtains similar results with human-annotated and
XCOMET error spans. For the latter, COMET deltas
vary from 1 to 3 points, leading to significant

10We move from GPT 4 to 3.5T due to financial constraints.
11We experiment with 5-shot in Appendix D, but the results

are on par with 1-shot, while also being more costly. TOW-
ERINSTRUCT with 1 and 5-shot fails to produce outputs in the
desired format.

quality improvements for EN-DE and ZH-EN.12

How does XTOWER compare to prompting
LLMs? Comparing the best scores obtained by
XTOWER—either from XCOMET or human spans—
and TOWERINSTRUCT, we find that XTOWER out-
performs TOWERINSTRUCT on HE-EN and ZH-EN,
with a delta of 9 COMET points on the former.13

Interestingly, however, XTOWER has a gap of only
0.2 to the original MT for HE-EN, suggesting that
XTOWER is only slightly editing the original trans-
lation. Mixtral presents the lowest scores overall,
while GPT 3.5T achieves the highest scores overall,
outperforming XTOWER on all language pairs in
terms of BLEURT and COMET. However, in con-
trast to XTOWER, we find that GPT 3.5T displays
a consistent drop of performance when refining
translations, suggesting that it may not utilize error
spans and explanations as effectively.

Are the error spans being fixed? To assess
how effectively the models address the errors high-
lighted in the prompt, we computed the percent-
age of fixed error spans with a string matching ap-
proach. Overall, XTOWER fixes 80% of the errors
for EN-DE, 83% for HE-EN, and 84% for ZH-EN,
while GPT 3.5T fixes 75% of the errors for EN-DE,
82% for HE-EN, and 80% for ZH-EN. These results
indicate that both GPT-3.5T and XTOWER can, to

12As per (Kocmi et al., 2024), COMET deltas of ∼1.0 denote
improvements with a 90% accuracy with human judgments.

13TOWER models were not trained to support Hebrew.
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EN-DE HE-EN ZH-EN

MODEL BLEURT COMET CKIWI BLEURT COMET CKIWI BLEURT COMET CKIWI

Original MT 48.4 78.4 75.5 59.8 77.5 75.5 55.2 78.0 76.7

Translation-only LLMs:
Mixtral 8x7B 46.4 ↓ 2.0 80.4 ↑ 2.0 76.6 ↑ 1.1 53.9 ↓ 5.9 71.6 ↓ 5.9 69.3 ↓ 6.2 53.5 ↓ 1.7 77.7 ↓ 0.3 77.3 ↑ 0.6

GPT 3.5T 51.3 ↑ 2.9 82.7 ↑ 4.3 78.6 ↑ 3.1 65.5 ↑ 5.8 80.9 ↑ 3.4 77.8 ↑ 2.2 57.1 ↑ 1.8 79.9 ↑ 2.0 79.2 ↑ 2.5

TOWERINST 13B 50.0 ↑ 1.6 82.2 ↑ 3.8 78.7 ↑ 3.2 50.7 ↓ 9.1 68.7 ↓ 8.8 66.5 ↓ 9.0 56.5 ↑ 1.3 79.1 ↑ 1.1 78.4 ↑ 1.7

With predicted error spans:
Mixtral 8x7B 42.9 ↓ 5.5 64.9 ↓ 13.5 58.7 ↓ 16.8 58.1 ↓ 1.6 76.4 ↓ 1.0 73.2 ↓ 2.3 51.2 ↓ 4.1 74.4 ↓ 3.6 73.4 ↓ 3.3

GPT 3.5T 53.4 ↑ 5.0 81.6 ↑ 3.2 77.5 ↑ 2.1 63.9 ↑ 4.1 80.9 ↑ 3.5 77.9 ↑ 2.4 56.2 ↑ 1.0 79.1 ↑ 1.1 77.9 ↑ 1.1

XTOWER 13B 52.7 ↑ 4.3 81.3 ↑ 2.9 77.0 ↑ 1.5 60.9 ↑ 1.1 78.5 ↑ 1.0 75.6 ↑ 0.1 56.0 ↑ 0.7 79.0 ↑ 1.0 78.4 ↑ 1.7

+ Hybrid 52.4 ↑ 4.0 82.2 ↑ 3.8 80.1 ↑ 4.6 62.4 ↑ 2.6 80.0 ↑ 2.5 78.7 ↑ 3.2 55.4 ↑ 0.2 79.1 ↑ 1.1 78.8 ↑ 2.1

With human-annotated error spans:
Mixtral 8x7B 42.1 ↓ 6.2 66.8 ↓ 11.7 61.3 ↓ 14.2 57.7 ↓ 2.0 76.0 ↓ 1.5 73.1 ↓ 2.4 52.8 ↓ 2.5 75.7 ↓ 2.2 74.1 ↓ 2.7

GPT 3.5T 50.2 ↑ 1.8 80.6 ↑ 2.2 76.5 ↑ 1.0 62.6 ↑ 2.8 80.0 ↑ 2.5 77.4 ↑ 1.9 56.5 ↑ 1.3 79.2 ↑ 1.2 77.9 ↑ 1.2

XTOWER 13B 50.2 ↑ 1.8 81.3 ↑ 2.9 77.3 ↑ 1.8 60.0 ↑ 0.2 77.7 ↑ 0.2 75.0 ↓ 0.5 56.4 ↑ 1.2 79.4 ↑ 1.4 78.6 ↑ 1.9

+ Hybrid 52.7 ↑ 4.3 82.5 ↑ 4.1 79.9 ↑ 4.4 63.6 ↑ 3.8 80.8 ↑ 3.4 79.4 ↑ 3.9 56.2 ↑ 1.0 79.7 ↑ 1.7 79.2 ↑ 2.5

Table 5: Results for correcting translations with XCOMET-predicted or human-annotated error spans. We also show
absolute differences from the original translation, where red and blue denote negative and positive deltas.
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Figure 3: At the top, we show the quality of the original
translation versus the corrected translation on EN-DE
with human spans. At the bottom, we show how often
the latter is higher than the former per quality bin.

some degree, leverage error spans and explanations
to fix a large portion of the errors, with XTOWER

showing a consistent edge over GPT-3.5T.

Can we design an effective hybrid approach?
We have established above that XTOWER’s correc-
tions can lead to significant improvements in trans-
lation quality. Here, we analyse where it is most
effective in regards to the translation quality of the
original translation. The scatter plot in Figure 3
illustrates the relationship between COMET scores

for original and the corrected translations on EN-
DE samples. It shows that XTOWER is most effec-
tive for low-quality original translations (COMET

score ≤ 80), while for high-quality translations
(COMET score > 80) retaining the original trans-
lation may be better.14 This is because the test
dataset (WMT23) includes translations from di-
verse MT systems, including strong models like
GPT-4 and (private) commercial systems (Freitag
et al., 2023). Given these findings, we propose a hy-
brid approach that selects the best method based
on the original translation’s COMET score. Instead
of a fixed threshold, we find the optimal threshold
τ on 10% of the samples and use the following rule
to obtain the final translation y:

y =





yoriginal if m(yoriginal) > τ

ycorrection elif m(ycorrection) > m(yoriginal)

yoriginal otherwise,

(1)

where m is a metric. We use COMETKIWI, a ref-
erenceless metric, as m. Results in Table 5 (under
"Hybrid") show that this approach consistently im-
proves translation quality across all language pairs,
with boosts as high as 2 COMET points for HE-
EN. These results suggest that a hybrid approach
can significantly improve translation performance,
especially for the more realistic scenario of us-
ing XCOMET spans, while also reducing inference
costs by only querying XTOWER sporadically.15

14This is consistent for all language pairs (cf. Figure 7).
15Portion of original translations kept: {46%, 41%} for

EN-DE, {49%, 48%} for HE-EN, and {30%, 32%} for ZH-EN
using XCOMET and human spans, respectively.
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MODEL EN-DE HE-EN ZH-EN

Original MT 78.4 77.5 78.0

With predicted error spans:
Mixtral 8x7B 80.3 ↑ 1.9 80.0 ↑ 2.5 78.1 ↑ 0.1

GPT 3.5T 82.0 ↑ 3.6 80.8 ↑ 3.3 78.9 ↑ 0.9

XTOWER 82.2 ↑ 3.8 80.0 ↑ 2.5 79.1 ↑ 1.1

With human-annotated error spans:
Mixtral 8x7B 80.8 ↑ 2.4 80.9 ↑ 3.5 79.0 ↑ 1.0

GPT 3.5T 82.3 ↑ 3.9 81.6 ↑ 4.0 79.5 ↑ 1.5

XTOWER 82.5 ↑ 4.1 80.8 ↑ 3.4 79.7 ↑ 1.7

Table 6: COMET scores using the hybrid strategy.
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Figure 4: Delta between COMET scores for corrected
and original translations according to how related expla-
nations are to error spans.

For a fair comparison of XTOWER +Hybrid with
other models, we also evaluate Mixtral 8x7B and
GPT-3.5T using the same hybrid approach. The
COMET scores across different language pairs are
summarized in Table 6. While the hybrid strat-
egy improves COMET for both Mixtral and GPT-
3.5T, XTOWER consistently achieves the top scores
across language pairs, except for HE-EN. The
lower performance in HE-EN is expected, as He-
brew is a zero-shot language for TOWERBASE (and
XTOWER). These results also highlight the effec-
tiveness of the hybrid approach in improving trans-
lation quality across models, further validating its
practical use.

How does explanation quality affect correc-
tions? In Figure 4 we show that the largest qual-
ity gains are typically associated with explana-
tions that have a high relatedness score (§4.2).
Furthermore, we find a negative Pearson correla-
tion (r = −0.15) between explanations’ related-
ness and original translations’ COMET scores, high-
lighting that higher quality explanations are often
associated with poorer quality original translations.
This suggests that high-quality explanations lead
to significant improvements primarily for con-

texts where the initial translation quality is poor,
as hinted by Figure 3.

We further validate our results by comparing our
approach against using randomly generated expla-
nations when prompting XTOWER. We produce a
subset of 1000 explanations for each language pair
using XTOWER with human-annotated error spans.
XTOWER is then prompted to generate a translation
correction using a random explanation from this
subset. The delta in COMET between this and the
original approach are -2.5 (EN-DE), -4.9 (HE-EN),
and -6.5 (ZH-EN), while for human spans we ob-
tained deltas of -1.7 (EN-DE), -3.9 (HE-EN), and
-6.4 (ZH-EN). These results show that including
fluent yet nonsensical explanations significantly
degrades performance, highlighting the impor-
tance of meaningful explanations.

6 Related Work

Here, we discuss key related works in the domains
of free-text explanations, automatic post-editing,
span-level error detection, and the use of LLMs for
translation and error explanation.

Free-text Explanations. Recent work has ex-
plored methods for generating free-text expla-
nations either by utilizing human-written exam-
ples (Marasovic et al., 2022; Wiegreffe et al., 2022)
or by prompting LLMs (Wei et al., 2022; Jung et al.,
2022; Atanasova et al., 2023; Joshi et al., 2023).
However, these explanations are typically produced
to understand a model’s decision rather than being
constrained to justify marked spans in the input.
In a similar vein, Feldhus et al. (2023) propose
leveraging dense saliency maps to improve the ver-
balization of explanations by LLMs. In contrast,
XTOWER focuses on producing explanations that
are tied to specific error spans (§4.2) and helpful to
humans (§4.3), within the context of MT.

Span-level Error Detection and Correction.
In the context of span-level error detection,
AUTOMQM (Fernandes et al., 2023), In-
structScore (Xu et al., 2023), and XCOMET (Guer-
reiro et al., 2023a) have demonstrated the effec-
tiveness of using neural models to identify errors
in machine translations. For correcting errors in
translations, a task more generally known as au-
tomatic post-editing (APE; Simard et al. 2007;
Bhattacharyya et al. 2023), recent works prompt
LLMs to produce suggestions for a new transla-
tion, such as TOWERAPE (Alves et al., 2024) and
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prompting GPT-4 (Raunak et al., 2023). We ex-
periment with error spans annotated by humans
or predicted by XCOMET for correcting transla-
tions in §5. Finally, incorporating detailed error
feedback into post-editing prompts has been con-
currently explored by Ki and Carpuat (2024); Xu
et al. (2024b). In particular, LLMRefine (Xu et al.,
2024b) casts fine-grained error feedback as “suc-
cinct explanations,” guiding the model towards im-
proved translations through iterative refinements.
While effective, their approach sidestep compre-
hensive explanations, which, as shown in §5, can
further improve the translation correction process.

LLMs for Translating and Explaining Trans-
lation Errors. LLMs have been increasingly
employed for translation tasks. TOWER (Alves
et al., 2024) and ALMA (Xu et al., 2024a) are no-
table examples of models designed specifically for
translation-related tasks. InstructScore, a recent
work by Xu et al. (2023), uses LLMs to provide
explanations for translation errors. However, in
contrast to XTOWER, InstructScore relies on refer-
ence translations, sidesteps the information in the
source sentence, and produces explanations only
as a by-product to improve quality score predic-
tions. Additionally, while InstructScore focuses
on producing a single quality score to reflect over-
all translation quality, XTOWER not only provides
plausible and helpful explanations for humans, but
also generates translation corrections.

7 Conclusions

In this paper, we introduced XTOWER, a mul-
tilingual LLM designed to provide free-text ex-
planations for translation errors and generate cor-
rected translations. By leveraging the strengths
of TOWER and integrating specialized error detec-
tion from XCOMET, XTOWER can improve the
interpretability of machine translation outputs in
an automatic process. Our evaluations demonstrate
that XTOWER not only produces high-quality and
helpful explanations, as assessed by human evalua-
tion, but can also significantly improves translation
quality, especially when combined with accurate
error spans. Furthermore, we propose a hybrid
approach that dynamically selects between using
the original translation or querying XTOWER for
a correction, resulting in overall improvements in
translation quality for all language pairs.
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Limitations

While XTOWER significantly advances machine
translation interpretability, it has various limita-
tions. Even though the model’s dependence on
external error span detector tools like XCOMET

brings modularity and flexibility, it also introduces
pipeline complexity. Our evaluation, focused on
the few language pairs which have MQM anno-
tations available, may not generalize across all
languages and domains. Additionally, the com-
putational resources required for distillation and
finetuning are substantial, limiting reproducibil-
ity for some users. The generated explanations,
though helpful, may not always faithfully represent
the model’s reasoning or effectively guide users.
Lastly, potential biases in the training data could
affect translation and explanation quality, requiring
further work to ensure fairness and reliability.

Potential Risks

The use of XTOWER may carry potential risks. One
concern is the possibility of the model generating
fluent but misleading explanations, which could
affect user trust. There are also fairness considera-
tions; as discussed above, the model might inadver-
tently reinforce biases present in the training data,
potentially disadvantaging historically marginal-
ized groups. Lastly, the focus on certain languages
and datasets could lead to the underrepresentation
of less commonly spoken languages. Careful mon-
itoring and ongoing evaluation, such as detecting
and overcoming hallucinations (Guerreiro et al.,
2023b; Dale et al., 2023), can help mitigate these
risks and ensure the model’s responsible use.
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EN-DE HE-EN ZH-EN EN-RU

WMT 2022
# Samples 8,815 - 13,631 10,996
# Error Spans 14,174 - 26,506 22,508
Avg. Input Length 42.2 - 72.3 40.5
Avg. Span Length 1.8 - 2.4 1.6

WMT 2023
# Samples 4,111 5,325 15,690 -
# Error Spans 17,439 8,476 43,649 -
Avg. Input Length 190.0 18.1 52.9 -
Avg. Span Length 3.0 1.0 2.5 -

XCOMET spans (without references):
# Error Spans 33,774 16,816 57,917 -
Avg. Span Length 2.4 1.1 2.0 -

XCOMET spans (with references):
# Error Spans 30,856 16,434 53,602 -
Avg. Span Length 2.5 1.1 2.0 -

Table 7: Datasets statistics.

A Datasets Statistics

We show statistics for all datasets used in this work
in Table 7.

B Prompting

Prompting explanations and translation correc-
tion. For 1-shot, we pass a unique example as
input: for EN-DE we pass a single EN-DE example,
whereas for HE-EN and ZH-EN we pass a ZH-EN

example. For 5-shot, we pass a list of 5 examples
containing 3 EN-DE, 1 EN-RU, and 1 ZH-EN sam-
ples. For all models, we sample new tokens using
a temperature set to zero. We provide an exam-
ple of our prompt template used for 1-shot EN-DE

experiments in Table 1.

Prompting translation-only LLMs. For the
translation LLMs baselines, we use the prompt
shown in Table 8 to obtain translations.

Translate the following English source text to German:

English source: This is a great product and suitable for all
bikes, cars and commercial applications.

German translation: Dieses großartige Produkt eignet
sich für alle Motorräder, Autos und gewerbliche Anwen-
dungen.

Table 8: 0-shot prompt for generating translations.

C Human Evaluation

Detailed Task Instructions. We present the de-
tailed task instructions provided to the annotators
in Figures 5 (relatedness) and 6 (helpfulness). The

EN-DE ZH-EN

SPAN LEVEL r ρ r ρ

Human Explanation 0.56 0.51 0.34 0.20
Human Document 0.50 0.38 0.21 0.17
XCOMET Explanation 0.47 0.46 0.54 0.46
XCOMET Document 0.39 0.40 0.50 0.46

Average Explanation 0.52 0.48 0.44 0.33
Average Document 0.45 0.39 0.35 0.32

Table 9: Inter-annotator agreement at explanation and
document-level, according to Pearson’s r and Spear-
man’s ρ correlation coefficients.

interface was created using Appraise (Federmann,
2018).

Inter-annotator agreement. We ask human an-
notators to assess the translations at both the expla-
nation and document levels. The inter-annotator
agreement was measured using two statistical met-
rics: Pearson correlation coefficient (r) and Spear-
man rank correlation coefficient (ρ). Specifically,
following Pavlick and Tetreault (2016), for each in-
stance either at explanation or document-level, we
randomly choose one annotator’s scores to be the
scores provided by Annotator 1, and take the mean
scores of the other two annotators to be the scores
given by an Annotator 2. We then compute the
correlation for these two simulated annotators. Ta-
ble 9 presents the results. The results indicate that
while human annotators exhibit higher consistency
for EN-DE translations, the agreement is generally
lower for ZH-EN translations. For XCOMET spans,
however, annotators agree more consistently across
both language pairs.

Sample size. For relatedness experiments, we
evaluated a total of 282 explanations for EN-DE

and 279 for ZH-EN (561 in total). For helpfulness,
we evaluated 83 explanations EN-DE and 99 for
ZH-EN (182 in total).

Participants Details. We hired native speakers
of Chinese and German (fluent in English) for this
task (four females and two males). They were
compensated at $24 per hour.

D Translation Correction

D.1 Referenceless

K-shot prompt. In Table 10, we present results
with k-shot for samples with human-annotated
translation error spans in terms of COMET, cover-
ing both referenceless and reference-based setups.
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Figure 5: Screenshot of the relatedness task interface presented to annotators.

Note that only xTower was evaluated with k = 0,
as it was finetuned on explanations, and thus it can
sidestep the in-context learning examples. Mixtral
8x7B seems to benefit more with k = 5 than other
models for HE-EN and ZH-EN, but looses more
around 4 COMET points for EN-DE. On the other
hand, GPT 3.5T performs better with k = 1 than
with k = 5 for referenceless experiments, with
k = 1 results also being very close to k = 5 for
reference-based experiments. Finally, xTower with
k = 5 usually obtains slightly better results than

with k ∈ {0, 1} (delta within 0.2-0.4), but it in-
troduces substantial runtime and memory costs as
the prompt grows ∼5 times its original size. These
findings motivated us to select k = 1 for Mixtral
and GPT, and k = 0 for xTower, for all experiments
in the paper.

Is xTower better than TowerInstruct at APE?
A critical question arises regarding the effective-
ness of applying automatic post-editing (APE) di-
rectly, as TOWERINSTRUCT does, versus leverag-
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Figure 6: Screenshot of the helpfulness task interface presented to annotators.

Referenceless Reference-based

MODEL k en-de he-en zh-en en-de he-en zh-en

Mixtral 1 66.8 76.0 75.7 69.9 84.5 80.0
Mixtral 5 63.1 77.1 76.6 65.4 85.3 81.4
GPT 3.5T 1 80.6 80.0 79.2 83.7 87.6 82.9
GPT 3.5T 5 79.9 79.9 79.0 81.4 87.9 83.2
xTower 0 81.3 77.7 79.4 84.1 88.2 83.6
xTower 1 81.4 77.6 79.3 84.3 88.7 83.9
xTower 5 81.2 77.9 79.2 84.4 88.6 84.0

Table 10: Results for translation refinement with k-shot
prompting in terms of COMET.

ing error spans and explanations, as implemented in
XTOWER. To investigate this, we evaluated TOW-
ERINSTRUCT 13B as a zero-shot APE model and
compared its performance with XTOWER’s. The
results are presented in the Table 11. Although
XTOWER and TOWERINSTRUCT show similar per-
formance, it’s important to note that XTOWER was
trained on significantly less data and was not orig-
inally intended for APE. Instead, it is meant to
provide helpful explanations for guiding transla-
tion corrections. Our human evaluation confirms
that the explanations are closely related to the error

spans and can contribute to generating meaningful
corrections.

D.2 Reference-based
For many use cases, users can provide an initial
translation draft and then query XTOWER with the
goal of obtaining an improved version. Here, we in-
vestigate the impact of providing a reference trans-
lation to the input on the quality of corrected trans-
lations.

D.2.1 Experimental Setup
Distillation data. Since references might play
an important role in understanding and explaining
translation errors, for example by offering context
and highlighting specific areas where the transla-
tion deviates from the ideal, we include the refer-
ence in our prompts in 50% of the cases during
distillation. Consequently, after finetuning, this
approach allows us to balance between leveraging
references for better explanations and ensuring the
model engages in genuine error correction.

Prompting with XCOMET spans. Since we in-
troduce the reference translation as an additional
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EN-DE HE-EN ZH-EN

MODEL BLEURT COMET CKIWI BLEURT COMET CKIWI BLEURT COMET CKIWI

TOWERINSTRUCT 13B 50.6 81.4 78.2 60.6 78.1 75.9 56.9 78.9 77.7
XTOWER 13B (pred. spans) 52.7 81.3 77.0 60.8 78.5 75.6 56.0 79.0 78.4

Table 11: Comparison of XTOWER and TOWERINSTRUCT performance on APE.

EN-DE HE-EN ZH-EN

SPANS C S ∆ C S ∆ C S ∆

Without references:
XCOMET .01 .42 .44 .01 .41 .39 .01 .17 .77
HUMAN .01 .43 .49 .00 .40 .39 .01 .18 .77

With references:
XCOMET .10 .57 .49 .18 .72 .51 .08 .33 .79
HUMAN .06 .57 .55 .15 .69 .53 .07 .33 .78

Table 12: Portion of samples where the corrected trans-
lation is same as the reference (C ↓), their normalized
Levenshtein similarity (S ↓), and how often the former
is judged better than the latter by COMETKIWI (∆ ↑).

signal to our prompt, we rerun XCOMET with
source-translation-reference triplets as input, ob-
taining a total of 99,892 spans.

Hybrid strategy. We use the same hybrid ap-
proach use for reference-less experiments, as de-
fined in Equation 1. However, here we use COMET

as m, a reference-based metric.

D.2.2 Results
We present our results in Table 13. Next, we discuss
out main findings.

What’s the gap to referenceless? Comparing
the results with and without references, we find that
reference-based models consistently outperform
referenceless ones across all metrics and language
pairs. For example, we obtain COMET boosts of
roughly 3 points for EN-DE, 11 for HE-EN, and 5 for
ZH-EN. Moreover, we note that human-annotated
spans yield again similar results with XCOMET

spans across the board. These findings indicate that
XTOWER effectively leverages references, leading
to significant improvements for the task of correct-
ing translations.

Is XTOWER simply copying the reference?
Since we are now providing a reference transla-
tion to XTOWER, it is not clear whether the quality
gap that we have measured is not just an effect of
copying the provided reference. To address this
question, we computed two additional metrics: the

percentage of translation corrections that are iden-
tical to the reference, and their closeness using
normalized Levenshtein similarity. The results, pre-
sented in Table 12, indicate that XTOWER does not
simply copy the reference. While the translation
corrections become more similar to the reference,
this is beneficial as it shows the model relies on the
reference to generate improved translations. Fur-
thermore, to determine the quality of these improve-
ments, we compared the COMETKIWI scores of the
corrected translations and the original references
relative to the source. The results show that this per-
centage is generally above 50%, demonstrating that
XTOWER effectively produces translations that are
on par with or better than the original references.

Is the hybrid approach effective? Our hy-
brid approach, which dynamically alternates be-
tween utilizing high-quality original translations
and high-quality corrections, yields significant im-
provements, particularly in terms of COMET and
BLEURT scores, just as observed in referenceless
experiments in §5. Overall, these findings highlight
the full potential of XTOWER towards improving
translation quality.

D.3 Additional Results

Lexical metrics. For completeness, we include
lexical metrics for referenceless and reference-
based experiments for the translation refinement
task in Table 14. Specifically, we include BLEU
and ChrF.16

TOWERBASE vs XTOWER. To verify whether
XTOWER maintains the original TOWERBASE

translation capabilities after extending it, we also
report its performance as a translation-only LLM
in Table 14. That is, we prompt XTOWER with
the 0-shot template shown in Table 8. The table
shows that XTOWER performs on par or slightly
surpass TOWERINSTRUCT for all language pairs
in terms of BLEURT, COMET, and COMETKIWI.
This suggests that XTOWER not only keeps the orig-
inal translation capabilities of TOWERBASE, but

16SacreBLEU signature: |1|mixed|no|13a|exp|.
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EN-DE HE-EN ZH-EN

MODEL BLEURT COMET CKIWI BLEURT COMET CKIWI BLEURT COMET CKIWI

Original MT 48.4 78.4 75.5 59.8 77.5 75.5 55.2 78.0 76.7

Translation-only LLMs:
Mixtral 8x7B 46.4 ↓ 2.0 80.4 ↑ 2.0 76.6 ↑ 1.1 53.9 ↓ 5.9 71.6 ↓ 5.9 69.3 ↓ 6.2 53.5 ↓ 1.7 77.7 ↓ 0.3 77.3 ↑ 0.6

GPT 3.5T 51.3 ↑ 2.9 82.7 ↑ 4.3 78.6 ↑ 3.1 65.5 ↑ 5.8 80.9 ↑ 3.4 77.8 ↑ 2.2 57.1 ↑ 1.8 79.9 ↑ 2.0 79.2 ↑ 2.5

TOWERINST 13B 50.0 ↑ 1.6 82.2 ↑ 3.8 78.7 ↑ 3.2 50.7 ↓ 9.1 68.7 ↓ 8.8 66.5 ↓ 9.0 56.5 ↑ 1.3 79.1 ↑ 1.1 78.4 ↑ 1.7

With predicted error spans:
Mixtral 8x7B 49.4 ↑ 1.0 70.0 ↓ 8.4 62.8 ↓ 12.7 74.1 ↑ 14.4 85.6 ↑ 8.2 77.2 ↑ 1.7 62.4 ↑ 7.1 80.6 ↑ 2.6 75.2 ↓ 1.5

GPT 3.5T 63.3 ↑ 15.0 85.2 ↑ 6.8 78.6 ↑ 3.1 80.2 ↑ 20.5 88.8 ↑ 11.4 79.3 ↑ 3.8 66.5 ↑ 11.2 83.3 ↑ 5.3 77.7 ↑ 0.9

xTower 13B 62.9 ↑ 14.6 84.6 ↑ 6.2 77.7 ↑ 2.2 80.5 ↑ 20.8 89.0 ↑ 11.5 79.3 ↑ 3.8 66.8 ↑ 11.6 83.7 ↑ 5.7 78.2 ↑ 1.5

+ Hybrid 62.4 ↑ 14.0 85.8 ↑ 7.4 79.4 ↑ 3.9 80.2 ↑ 20.4 88.4 ↑ 10.9 79.5 ↑ 4.0 66.5 ↑ 11.2 83.8 ↑ 5.8 78.0 ↑ 1.3

With human-annotated error spans:
Mixtral 8x7B 46.3 ↓ 2.1 69.9 ↓ 8.5 63.5 ↓ 12.0 72.1 ↑ 12.3 84.5 ↑ 7.1 76.5 ↑ 0.9 60.7 ↑ 5.4 80.0 ↑ 2.0 75.3 ↓ 1.4

GPT 3.5T 58.5 ↑ 10.2 83.7 ↑ 5.3 77.9 ↑ 2.5 77.7 ↑ 18.0 87.6 ↑ 10.2 78.7 ↑ 3.2 65.3 ↑ 10.0 82.9 ↑ 4.9 77.9 ↑ 1.2

xTower 13B 59.1 ↑ 10.7 84.1 ↑ 5.7 77.8 ↑ 2.4 78.8 ↑ 19.1 88.2 ↑ 10.8 78.7 ↑ 3.2 66.5 ↑ 11.2 83.6 ↑ 5.6 78.5 ↑ 1.8

+ Hybrid 61.7 ↑ 13.3 86.0 ↑ 7.6 79.7 ↑ 4.2 79.6 ↑ 19.8 88.6 ↑ 11.1 80.1 ↑ 4.5 67.1 ↑ 11.9 84.3 ↑ 6.3 78.5 ↑ 1.8

Table 13: Reference-based results for correcting translations conditioned on explanations and error spans predicted
via XCOMET or obtained via human annotation. We also show the absolute difference to the original translation,
with red and blue denoting negative and positive deltas, respectively.

also holds potential to improve them.

COMET scores for original vs corrected transla-
tions. In Figure 3 (in §5), we show how XTOWER

behaves depending on the quality of the original
translation for EN-DE samples. Now, in Figure 7
we show plots for HE-EN and ZH-EN. Overall, we
observe that the same trend remains: XTOWER is
particularly helpful for cases where the original
translation obtains weak-moderate COMET scores
(from 0 to 80%).

E Computational Details

All experiments involving XTOWER and Mixtral
8x7B were carried on Nvidia RTX A6000 GPUS
with 48GB VRAM. For GPT 4 and GPT 3.5T,
we used the official API from OpenAI. We used
VLLM17 for efficient generation.

F AI Assistants

We have used Github Copilot18 during code devel-
opment, and ChatGPT19 during paper writing for
grammar correction.

17https://github.com/vllm-project/vllm
18https://github.com/features/copilot
19https://chat.openai.com/
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Figure 7: COMET of the original translation versus the corrected translation with human-annotated spans for HE-EN
(left) and ZH-EN (right). At the bottom, we show how often the COMET for the corrected translation is higher than
for the original per quality bin.

EN-DE HE-EN ZH-EN

MODEL chrF bleu bleurt comet ckiwi chrF bleu bleurt comet ckiwi chrF bleu bleurt comet ckiwi

Original MT 64.8 39.0 48.4 78.4 75.5 56.5 33.5 59.8 77.5 75.5 49.6 23.8 55.2 78.0 76.7

Translation-only LLMs:
Mixtral 8x7B 61.5 32.4 46.4 80.4 76.6 50.9 24.5 53.9 71.6 69.3 46.5 17.0 53.5 77.7 77.3
GPT 3.5T 68.2 41.9 51.3 82.7 78.6 64.5 43.9 65.5 80.9 77.8 50.2 22.0 57.1 79.9 79.2
TOWERINST 13B 66.3 40.1 50.0 82.2 78.7 45.9 22.6 50.7 68.7 66.5 48.3 21.6 56.5 79.1 78.4
XTOWER 13B 66.5 40.0 50.5 82.2 78.6 45.8 22.2 50.6 69.4 67.3 48.7 21.6 56.8 79.5 78.5

Referenceless
With predicted error spans:
Mixtral 8x7B 29.9 10.4 42.9 64.9 58.7 53.5 31.6 58.1 76.4 73.2 41.5 18.1 51.2 74.4 73.4
GPT 3.5T 62.8 37.5 53.4 81.6 77.5 60.0 38.2 63.9 80.9 77.9 48.6 22.1 56.2 79.1 77.9
XTOWER 13B 59.5 34.1 52.7 81.3 77.0 57.1 34.5 60.9 78.5 75.6 48.5 20.8 56.0 79.0 78.4
+ Hybrid 64.8 38.4 52.4 82.2 80.1 59.9 37.4 62.4 80.0 78.7 51.4 24.1 55.4 79.1 78.8

With human-annotated error spans:
Mixtral 8x7B 37.7 16.4 42.1 66.8 61.3 54.0 30.7 57.7 76.0 73.1 43.3 19.4 52.8 75.7 74.1
GPT 3.5T 63.1 37.6 50.2 80.6 76.5 58.6 36.1 62.6 80.0 77.4 48.8 22.3 56.6 79.2 77.9
XTOWER 13B 61.3 35.3 50.2 81.3 77.3 56.3 33.3 60.0 77.7 75.0 49.2 21.3 56.4 79.4 78.6
+ Hybrid 64.7 38.4 52.7 82.5 79.9 60.3 38.2 63.6 80.8 79.4 51.7 24.6 56.2 79.7 79.2

Reference-based
With predicted error spans:
Mixtral 8x7B 36.9 16.1 49.4 70.0 62.8 71.2 54.2 74.1 85.6 77.2 53.2 31.0 62.4 80.6 75.2
GPT 3.5T 74.1 55.4 63.3 85.2 78.6 79.1 65.3 80.2 88.8 79.3 58.8 36.6 66.5 83.3 77.7
XTOWER 13B 70.0 50.8 62.9 84.6 77.7 81.0 66.2 80.5 89.0 79.4 60.1 35.9 66.8 83.7 78.3
+ Hybrid 73.4 52.7 62.4 85.8 79.4 82.3 69.5 80.2 88.4 79.5 63.6 39.8 66.5 83.8 78.1

With human-annotated error spans:
Mixtral 8x7B 40.3 18.7 46.3 69.9 63.5 69.0 50.4 72.1 84.5 76.4 51.6 29.1 60.7 80.0 75.3
GPT 3.5T 71.6 50.9 58.5 83.7 77.9 75.9 60.8 77.7 87.6 78.7 57.7 35.0 65.3 82.9 77.9
XTOWER 13B 70.6 50.7 59.1 84.1 77.9 78.9 62.5 78.8 88.2 78.7 59.8 35.6 66.5 83.6 78.5
+ Hybrid 73.5 52.5 61.7 86.0 79.7 80.6 67.1 79.6 88.6 80.1 63.3 39.7 67.1 84.3 78.5

Table 14: Full results for translation correction experiments in terms of lexical and neural metrics.
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