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Abstract

MBPP is a popular dataset for evaluating the
task of code generation from natural language.
Despite its popularity, there are three problems:
(1) it relies on providing test cases to generate
the right signature, (2) there is poor alignment
between instruction and evaluation test cases,
and (3) contamination of the exact phrasing
being present in training datasets. We adapt
MBPP to emphasize on generating code from
just natural language by (1) removing ambigu-
ity about the semantics of the task from the
descriptions, and (2) evaluating generated code
on multiple sets of assertions to account for
ambiguity in the syntax. We compare popular
open and closed weight models on the original
(MBPP) and adapted (MBUPP) datasets.

1 Introduction

Code generation from natural language (NL-to-
code) is a popular task to evaluate the capabilities
of language models (Abdin et al., 2024; Achiam
et al., 2023; Jiang et al., 2024). One of the most
popular NL-to-code datasets is the mostly basic
Python programs (MBPP) dataset (Odena et al.,
2021). In this dataset, each problem contains a
natural language description, a code solution and
three test cases in the form of assert statements.

We identify three main problems with MBPP.
First, it heavily relies on test cases to identify syn-
tactic properties of the code to generate, as the pro-
vided assertions require a specific signature. Sec-
ond, descriptions sometimes contain instructions
that the assertions are not testing for, like asking
to sort “using heap queue.” Third, being a popular
dataset distributed on many channels, data contam-
ination is a significant issue (Riddell et al., 2024).

In this paper, we introduce an adapted code gen-
eration benchmark, called MBUPP1, that allows

1The evaluation code and MBUPP are available
at https://github.com/microsoft/prose-benchmarks/
tree/main/MBUPP

for the description to be underspecified with re-
spect to syntactic properties of code. Each problem
consists of a text description as input to the model,
and a set of assertions to validate the output. We
generate both the descriptions and assertions from
MBPP problems using a combination of LLMs,
intuition and validation. Additionally, we provide
results of different open and closed weight models
on MBPP and MBUPP. We show which assertions
are more often picked, indicating data contamina-
tion. Further, we release the dataset and the model
generations to seed further research in this area.

We make the following contributions.

• MBUPP: an adapted version of MBPP that
allows code to be underspecified by defining
multiple sets of test cases (one-to-many test-
ing) to account for equivalent interpretations.

• An analysis of different models on MBPP
and MBUPP that highlights the need for an
improved code generation benchmark.

2 Motivating example

As an example, let us look at the problem “Write
a function to find sequences of lowercase letters
joined with an underscore using regex” and the
associated assertions are (with f = text_match)
assert f('aab_cbbbc ') == 'Found a match!'
assert f('aab_Abbbc ') == 'Not matched!'
assert f('Aaab_abbbc ') == 'Not matched!'

Based on just the text description, it is not clear if
the user expects a function str → bool (validation)
or str[] → str[] (filter) or str → str (extraction).
The tests also do not evaluate whether the function
actually uses a regular expression or not.

Our adapted benchmark puts all emphasis on
the “NL” part of NL-to-code. We assume that a
user is not specific about the syntax of the program
and does not care about it: they want to obtain any
function that does what they describe. The adapted
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Write a function to convert the given
binary number to its decimal equivalent.

def bin_to_dec(b):
    return int(b, 2)

assert f(100) == 4,
assert f(1011) == 11 def f(b):

    return int(b, 2)

Assertion set 1: number → number

Passes all tests within
any set of assertions?

Generator(user) input (model) output

Evaluation framework. . .

assert f("100") == 4,
assert f("1011") == 11

Assertion set 2: string → number

assert f(100) == "4",
assert f(1011) == "11"

Assertion set 3: number → string

Figure 1: Example of an MBUPP benchmark problem.
Given only the description, any code generator returns
a function. Instead of providing the signature, which
users will not likely do, we match the generated function
to the signature of our assertions and then verify if the
program satisfies any of the assertion sets.

description is “Write a function to find sequences of
lowercase letters joined with an underscore” with
the “using regex” part removed. This description
is the only input needed by the code generator. We
therefore introduce multiple sets of assertions

# validator
assert f('aab_cbbbc ') == True
...

# filter
assert f(['aab_cbbb ',

'aab_Abbbc ']) == ['aab_cbbb ']
...

# extractor
assert f('01 aab_cbbbc 23') == 'aab_cbbbc '
...

and consider a success if the function generated by
the model (with any function name or execution
semantics) passes any of the above assertion sets.

3 MBUPP

An example of an evaluation in MBUPP is shown
in Figure 2. The only input to the code generator is
a text description. This text description is allowed
to be underspecified with respect to syntactic prop-
erties of the function, like argument order and types
(data structures) used to represent the output, and
we provide multiple sets of assertions that capture
this underspecification. Additionally, if multiple
functions are generated to solve the problem, we
verify if any of them satisfies the assertions to allow
the generator to use helper functions.

We adapt benchmarks in two phases: improving
the text descriptions and obtaining sets of assertions
to capture ambiguity on syntactic properties.

Write a function that matches the
beginning of a string to a word.

Write a function that matches if there is a
word at the beginning of a string.

Write a function that matches a word at
the beginning of a string.

Write a function that matches if there is a
word at the beginning of a string.

correct

Create a function that matches the word
at the start of a string.

paraphrase

Write a function that checks for the
presence of a word at the start of a string.

vote

Figure 2: Improving the clarity and diversity of code
generation tasks in three steps – correcting the original
utterance, paraphrasing to generate diverse candidates,
voting to select the most aligned candidate description.

3.1 Improving descriptions
First, the original description is corrected by re-
moving method specifiers (“using regex”) and am-
biguity. Next, we use gpt-4-turbo to generate three
paraphrased versions using the following strategies.

• Directly paraphrasing the text description.

• Extracting structured information about the
problem specification from the description
(task, input type, input property, output type,
output property, edge cases) in one model gen-
eration and generating a textual description
from those properties in another generation.

• Similar to the previous extraction, but first in-
structing the model to individually paraphrase
each of the pieces of task information.

Finally, we manually vote to select the best instruc-
tion. An example is shown in Figure 2.

3.2 Obtaining assertions
We now iteratively update the assertion sets using a
combination of intuition and suggestions provided
by a code generation model. Starting with the first
task, we ask the model to generate multiple com-
pletions and verify if they satisfy any of the current
assertions. We then inspect all failing programs
and select those where the code does the right thing
according to the descriptions, but not adhere to the
right signature. A new assertion set is added for
each mismatch. If we suspect the same mismatch
in other programs, like returning a tuple instead
of a list, we automatically find other assertions
that would be affected by this transformation and
verify if they should also be transformed.
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Table 1: An overview of common assertion transformations.

Description Before After

Ensure list comparisons for sequences. We
wrap the function in a list call to support
any iterable.

assert f(x) == [1,2,3] assert list(f(x)) == [1,2,3]

Permutation of arguments. assert f(a, b) == a - b assert f(b, a) == a - b
assert f(m, x, y) == m[x][y] assert f(x, y, m) == m[x][y]

Grouping of arguments. assert f(m, x, y) == m[x][y] assert f(m, (x, y)) == m[x][y]

Removing redundant arguments. assert f(a, b) == a + 1 assert f(a) == a + 1

Including selection criteria, like counts and
extrema, to allow functions that show their
work.

assert f([9,9,7]) == 9 assert f([9,9,7]) == (9, 2)

Dictionaries ↔ list of tuples assert f(a) == {1: 2} assert f(a) == [(1, 2)]

Validator ↔ filter assert f(a) == True assert f([a]) == [a]

Numbers ↔ strings assert f(2) == 10 assert f(2) == ‘10’
assert f(10) == 2 assert f(‘10’) == ‘2’

Table 2: Some examples of one-off assertions updates.

Utterance Description Before After

... splits a string at
lowercase letters

Original assertion
has error and is am-
biguous.

f(‘AbCd’) == [‘bC’, ‘d’] f(‘AbCd’) == [‘A’, ‘b’, ‘C’, ‘d’]
f(‘AbCd’) == [‘A’, ‘C’]

... calculate the
4 most frequent
words with their
counts.

Allow both lists
and strings as in-
put.

f([‘a’, ‘a’]) == [(‘a’, 2)] f(‘a a’) == [(‘a’, 2)]

Example 1 Consider the task to “Write a python
function to detect non-prime numbers.” One of the
generated programs is (gpt-4-turbo)

def is_not_prime(numbers ):
return [num for num in numbers

if not is_prime(num)]

def is_prime(num):
# omitted

We rename each function to f and verify whether
it satisfies the (default) assertion style assert f(2)

== True which fails. Since the description can be
interpreted as a filter function, we add

assert f([2]) == [2]
assert f([35]) == []

as new assertions. We then look for other problems
where the assertions test for bool outputs and add
the new assertion if relevant.

An overview of all common assertion transfor-
mations found in MBUPP is shown in Table 1.
Some one-off transformations are shown in Table 2.
Figure 3 shows the distribution of frequency of
length of updated test sets proposed in benchmark.
We observe problems with up to 16 updated test
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Figure 3: Distribution of number of assertion sets per
task in MBUPP, which showcases the ambiguity inher-
ently present in the original utterances.

sets, due to combinations of transformations of
both input and output arguments.

4 Results on MBUPP

We describe our evaluation setup, main results, and
further analysis on behaviour of different models.

4.1 Evaluation setup

We use a diverse set of open and closed weight
models from the GPT, phi and mistral series for eval-
uation. The input to the models is just the natural
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Model MBPP + NL + Tests MBUPP

gpt-4o 62.88 65.88 ( 4.78↑) 78.54 (24.91↑) 88.20 (40.27↑)
gpt-4-turbo 58.15 63.52 ( 9.23↑) 74.46 (28.04↑) 84.55 (45.39↑)
gpt-35-turbo 63.09 66.31 ( 5.10↑) 75.11 (19.05↑) 83.91 (32.99↑)
phi 54.72 61.37 (12.16↑) 69.53 (27.06↑) 81.12 (48.24↑)
mistral 41.42 47.00 (13.47↑) 54.94 (32.64↑) 63.95 (54.40↑)

Table 3: Evaluation of different language models on the proposed MBUPP benchmark. We report the percentage
of samples with pass@1 > 0 for n = 25 and t = 0.4 with each component. We also show the performance
improvement as a percentage over the original (shown in parenthesis). We find that all models have a higher
solvability on MBUPP. We use Bold and Underline to indicate the best and second best result.

language specification alone. During evaluation
we test multiple code generations (n = 25 and
t = 0.4) over the updated assertion sets and mea-
sure solvability which we define as any of these
generations being correct.

4.2 Results

In this section, we discuss the impact each com-
ponent of MBUPP benchmark on code generation
performance.

One-to-many evaluation Table 3 shows the com-
parison of the number of samples being solved in
MBPP versus the proposed MBUPP benchmark.
We find that with updating both language and as-
sertion sets, there is an average of 45% jump in
solvability of the benchmark. We find that the jump
in solvability is much higher for smaller models,
like phi (∼ 48) and mistral (∼ 54%), which might
be more sensitive to ambiguity in utterances and
generate more diverse responses.

Dataset contamination MBPP being a popular
and common dataset has made its way into train-
ing datasets used in larger models (Matton et al.,
2024; Riddell et al., 2024). This contamination
in the model training set makes the performance
on MBPP an unreliable indicator of model perfor-
mance. The problem of the current MBPP bench-
mark NL being already exposed to training in larger
GPT contributes to the models to perform better.

Table 3 shows that with changing the description
(MBPP + Updated NL) while keeping the seman-
tics consistent, there is an average of 9% increase
in solvability over multiple models, showing im-
pact of descriptions with intent aligned to target
being more useful.

Effect of temperature Table 4 shows the task
solvability for gpt-4-turbo with varying generation

Temperature MBPP + NL + Tests MBUPP

0.1 52.36 59.87 68.24 80.04
0.2 54.51 61.16 71.67 81.97
0.4 58.15 63.52 74.46 84.55
0.6 60.52 66.09 77.47 86.91
0.8 62.02 67.17 78.33 87.34

Table 4: Effect of temperature on responses with GPT-
4-TURBO for n = 25 and different temperatures.

temperature. We find that performance on MBUPP
increases with temperature because with updated
assertion sets the generation diversity improves per-
formance. For lower temperature (t = 0.1) the
overall increase in success of model on MBUPP is
as high as +52%, over results from MBPP. With in-
creasing temperature, the performance differential
drops as the model generates more diverse candi-
dates and is more likely to satisfy the original asser-
tion set. This validates the need for a diverse test
set allow for equivalent programs. With higher tem-
perature (t = 0.8) we see performance of system
to be all time high of 87.34%. Less contamina-
tion allows for more diversity, which benefits from
additional assertions. Figure 4 shows that higher
temperatures (slightly) increases the diversity in
test sets that are satisfied.

4.3 Analysis
Qualitatively looking at the generations, we find
that on MBUPP, the tasks that gpt-4-turbo still fails
on are mainly attributed to 2 categories: (1) logic
and (2) knowledge errors. Both of these point to the
efficiency of updating the test sets, ensuring that
it captures all possible responses of semantically
acceptable code functions.

Logical or semantic errors occur when the model
is able to correctly interpret the task but makes
a mistake in the implementation of the program.
For instance, when asked to “Write a function to
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Figure 4: Distributions of unique updated assertion sets
used during evaluation by gpt-4-turbo at n = 25 and
t = 0.4. On the utterances from MBUPP, there is more
variety, reduced failed cases, which hints towards less
contamination. Furthermore, this behavior is magnified
at higher (t = 0.8) temperature.

compute the nth rectangular number”, the model
makes an arithmetic error in the formula, missing
a division by 2, resulting in an incorrect solution,
even though the task was interpreted correctly.

Knowledge errors occur when the program gen-
erated by the model is not aligned semantically
with the user intent. For instance, when asked to

“Write a function to convert snake case string to
camel case string.” the model incorrectly generates
code that uses the generates mixed case outputs
("pythonProgram" instead of "PythonProgram").
Other examples are asking to check if “a number is
Woodall number” or to “find the nth smart number.”
The description is complete, but it requires specific
knowledge to understand.

5 Related work

Evaluating the coding abilities of large language
models is a hot topic. MBPP (Odena et al., 2021)
and HumanEval (Chen et al., 2021) were among
the first benchmarks and are still the most widely
used. They have been translated to different lan-
guages (Cassano et al., 2023; Zheng et al., 2023;
Peng et al., 2024). Newer benchmarks like Natural-
CodeBench (Zhang et al., 2024) and PythonSaga
(Yadav et al., 2024) consist of harder programming
problems. All of these benchmarks consist of test
sets used to evaluate the performance of models
on these. EvalPlus (Liu et al., 2024) improves the
functional testing of code generation benchmarks
by generating more test cases. These benchmarks
and evaluations contain a function signature and/or
test cases. We focus on code generation from only
natural language and adapt the tests to account for
any ambiguity.

6 Conclusion

In this paper, we introduce MBUPP, an adaptation
of MBPP which addresses three main challenges
with the original dataset: (1) ambiguity and under-
specification in the descriptions, (2) contamination
of the dataset by being present in common train-
ing corpora of models, (3) poor alignment of the
assertions with the description. We show results
of popular open and closed weight models on the
original and adapted dataset. We also present anal-
ysis on different properties of MBUPP, diversity
and temperature of the generations.

7 Limitation

This work focuses on the scenario where the user
does not care about syntactic properties of the code,
like generating a list of tuples instead of a dictio-
nary to represent counts of items. A version of
MBPP with explicit overspecificaion (MBOPP) re-
mains future work, as well as extending MBUPP
to multiple languages.
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