
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15403–15418
November 12-16, 2024 ©2024 Association for Computational Linguistics

A Unified Framework for Model Editing

Akshat Gupta, Dev Sajnani, Gopala Anumanchipalli
UC Berkeley

{akshat.gupta, sajnanidev, gopala}@berkeley.edu

Abstract

ROME and MEMIT are largely believed to be
two different model editing algorithms, with
the major difference between them being the
ability to perform batched edits. In this pa-
per, we unify these two algorithms under a
single conceptual umbrella, optimizing for the
same goal, which we call the preservation-
memorization objective. ROME uses an equal-
ity constraint to optimize this objective to per-
form one edit at a time, whereas MEMIT em-
ploys a more flexible least-square constraint
that allows for batched edits. We general-
ize ROME and enable batched editing with
equality constraint in the form of EMMET -
an Equality-constrained Mass Model Editing
algorithm for Transformers, a new batched
memory-editing algorithm. EMMET can per-
form batched-edits up to a batch-size of 10,000,
with very similar performance to MEMIT
across multiple dimensions. With the intro-
duction of EMMET, we truly unify ROME
and MEMIT and show that both algorithms
are equivalent in terms of their optimization
objective, their abilities (singular and batched
editing), their model editing performance and
their limitations.

1 Introduction

As new facts emerge constantly, it is crucial to
keep models up-to-date with the latest knowledge.
Model editing (Yao et al., 2023) gives us the abil-
ity to edit facts stored inside a model as well as
update incorrectly stored facts. In this paper, we
focus on two of the most popular and best perform-
ing model editing methods - ROME (Rank-One
Model Editing) (Meng et al., 2022a) and MEMIT
(Mass Editing Memory in Transformer) (Meng
et al., 2022b). ROME and MEMIT directly up-
date specific "knowledge-containing" parts of the
model without requiring the need to train additional
models (De Cao et al., 2021; Mitchell et al., 2021;
Tan et al., 2023) and can be applied to any trans-

former based large language model (LLMs). This
makes these algorithms really attractive for prac-
tical use cases. MEMIT also uniquely allows for
batched edits (appendix 5.3).

ROME and MEMIT are largely considered dif-
ferent from each other, with one of their major dif-
ferences being that ROME allows for editing only
one fact at a time. In this paper, we present a unify-
ing conceptual framework for ROME and MEMIT
and show that both methods optimize the same
objective function. We call this the preservation-
memorization objective of model editing, where
new knowledge is injected or memorized such that
representations of certain vectors are preserved
through the editing process. We show that ROME
optimizes an equality-constrained version of the
objective whereas MEMIT optimizes a more re-
laxed least-squares version of the objective, which
allows for a simple closed-form solution for mak-
ing batched edits. We then highlight that MEMIT
consists of two separate steps - an optimization
objective and an algorithm that distributes the ed-
its into multiple layers. The power of MEMIT in
many cases comes from these edit-distribution
algorithms.

Finally, we present a closed-form solution for
making batched edits with equality-constraint un-
der the preservation-memorization objective in the
form of EMMET - an Equality-constrained Mass
Model Editing algorithm for Transformers. With
EMMET, batched edits can be performed for batch
sizes up to 10,000 with performance much similar
to MEMIT. We evaluate EMMET on three models
- GPT2-XL, GPT-J and Llama-2-7b on standard
model editing datasets - CounterFact and zsRE. En-
abling batched editing with equality-constraint in
the form of EMMET allows us to truly unify the
two algorithms and shows that both ROME and
MEMIT are essentially equivalent in terms of their
optimization objective, their abilities (performing
singular and batched editing), their model editing

15403

Figure 1: A diagrammatic representation of the preservation-memorization objective.

performance and their limitations. EMMET serves
as a cornerstone in completing this larger picture.
The code for EMMET can be found here1.

The main contributions of our paper are:

• We unify two popular model editing tech-
niques (ROME and MEMIT) under the
preservation-memorization objective and
show that these algorithms are equivalent in
terms of their optimization objective and in
practice.

• We disentangle the MEMIT objective from
the MEMIT algorithm which distributes edits
within multiple layers. This allows for a fair
comparison of MEMIT and ROME.

• We present a closed-form solution to equality-
constrained memorization in the form of EM-
MET, a batched version of ROME. EMMET is
a new batched-editing algorithm that achieves
symmetry in usage and performance between
the two algorithms and shows that batched
edits can be made using both objectives.

2 Background

Facts for model editing are usually represented in
a key-value format where the key vector has max-
imal correspondence to retrieval of a fact and the
value vector enables us to get the target output after
editing (Meng et al., 2022a; Geva et al., 2020). As
an example, let us say we are editing a new fact
into the model - "The president of USA is John
Cena". In this fact, ke is the vector representation

1https://github.com/scalable-model-editing/
unified-model-editing

of the phrase - "The president of USA is," and ve is
the vector representation of the output at the layer
being edited such that "John Cena" is produced as
output at the final layer of the model. This is picto-
rially represented in step 2 in Figure 1. For a more
detailed explanation of the creation of key-value
vectors, we refer readers to (Meng et al., 2022a).

The success of model editing is measured using
standard model editing metrics (Meng et al., 2022a;
Yao et al., 2023) described below:

• Efficacy Score (ES) indicates if an edit has
been successfully made to a model. It is
measured as the percentage of edits where
P (new fact) > P (old fact) for a query
prompt used to edit the model.

• Paraphrase Score (PS) represents the gen-
eralization ability of model under an edit.
It is measured as the percentage of edits
where P (new fact) > P (old fact) under para-
phrases of the query prompt.

• Neighborhood Score (NS) represents locality
of model editing. In other words, it measures
if editing of a fact affects other facts stored
inside a model. NS represents the percentage
of facts in the neighborhood of the edited fact
that remain unaltered post-edit.

• Generation Entropy (GE) represents the flu-
ency of a model post edit. It is calculated by
measuring the weighted average of bi-gram
and tri-gram entropies of text generated by an
edited model. This quantity drops if the gener-
ated text is repetitive, a common failure case

15404

https://github.com/scalable-model-editing/unified-model-editing
https://github.com/scalable-model-editing/unified-model-editing

Figure 2: Figure shows a diagrammatic representation of a transformer layer. The layer being edited by ROME,
MEMIT and EMMET is the projection weight matrix inside the MLP layer (Wproj).

of model editing (Meng et al., 2022a; Gupta
and Anumanchipalli, 2024).

• Score (S) is a quantify defined by (Meng et al.,
2022a) to represent a combination of edit suc-
cess, generalization and locality. It is the har-
monic mean of ES, PS, and NS.

3 Preservation-Memorization : A
Unifying Framework for ROME and
MEMIT

Both ROME and MEMIT base their work on view-
ing the weights of the feed-forward layer in a trans-
former as linear associative memories (Kohonen,
1972; Anderson, 1972). Under this paradigm, lin-
ear operations in a transformer (feed-forward lay-
ers) are viewed as a key-value store for information.
In this section, we re-introduce both ROME and
MEMIT in a new light - a unifying conceptual
framework of the preservation-memorization ob-
jective.

Let W represent the weights of the feed-forward
layer we want to edit2, and let k be a key-vector
representative of a fact that we are either editing or
preserving, and is the input vector to W . The layers
being edited are shown in an expanded diagram of
a transformer layer (Vaswani et al., 2017) in Figure
2. In the model editing process, the weights of an
intermediate layer of the model are changed from
W0 to Ŵ (W0 represents the original weights of
the Wproj matrix), where k0 is used to indicate a
key-vector representing facts we want to preserve
from the original model, and ke being key-vectors
representing facts we want to insert into the model.
Let ve be the desired output at the layer being edited
corresponding to input ke such that the correct fact
is recalled by the model when finally generating
text. A detailed explanation on creation of key-

2These layers are found by causal tracing methods (Meng
et al., 2022a,b)

vectors and value-vectors is given in Appendix A.2
and is also briefly depicted in Figure 1.

Our objective is then to preserve the represen-
tations of selected input vectors before and after
editing, or in other words, minimize the error be-
tween W0k0 and Ŵk0, while forcing the output
representation of the vector ke to be ve, or in other
words - memorizing the fact represented by (ke,
ve). This process is shown pictorially in Figure 1.

In ROME-style, this objective of model editing
is optimized by the following equation:

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥
2

F︸ ︷︷ ︸
preservation

s.t. Ŵke = ve︸ ︷︷ ︸
memorization

(1)
where K0 = [k01 |k02 | . . . | k0N] is a matrix con-

taining all the vectors whose representations we
want to preserve in a row.

We call this the preservation-memorization ob-
jective of model editing because it allows us to
retain existing knowledge or skills of a model by
keeping the same representations of selected key-
vectors before and after editing, while memorizing
a new fact ke, whose representation are forced to
be ve, where ve is by definition the output repre-
sentation for ke that generates the target answer at
final layer.

The solution for ROME can then be written as:

Ŵ = W0 +∆ where (2)

∆ = (ve −W0ke)
kTe C

−1
0

kTe C
−1
0 ke

(3)

Here, C0 = K0K
T
0 is assumed to be an invert-

ible matrix and the denominator kTe C
−1
0 ke is a

scalar.
MEMIT on the other hand optimizes a relaxed

version of the same objective:

15405

argmin
Ŵ

λ
∥∥∥ŴK0 −W0K0

∥∥∥
2

F︸ ︷︷ ︸
preservation

+
∥∥∥ŴKE − VE

∥∥∥
2

F︸ ︷︷ ︸
memorization

(4)
where KE = [ke1 |ke2 | . . . | keE] is a matrix con-

taining a row of vectors representing the edits we
are making in a batch and VE = [ve1 |ve2 | . . . | veE]
represents their target representations.

The above optimization objective aims to mod-
ify the output representations of vectors in KE to
VE by minimizing the least square error between
them instead of requiring them to be equal with
an equality constraint. This is the major differ-
ence between the objectives of ROME and MEMIT,
where ROME poses the memorization part of the
objective as an equality constraint whereas MEMIT
relaxes the equality constraint to a least-square ob-
jective. This allows Meng et al. (2022b) to find
a closed-form solution for making E edits to the
model in a single update, represented by the matrix
KE . The solution for the MEMIT objective is:

Ŵ = W0 +∆ where

∆ =
(
VE −W0KE

)
KT

E

(
λC0 +KEK

T
E

)−1

(5)
We deliberately write the first term in both solu-

tions in a similar form. The first term in ∆ repre-
sents the residual error (represented by R) of the
new associations (KE , VE) when evaluated on the
old weights W0. R ≜ ve−W0ke is a vector in case
of ROME since we are only able to make singular
edits, whereas R ≜ VE − W0KE is a matrix for
MEMIT consisting of a row of vectors correspond-
ing to each edit in the batch.

To summarize, in this section we show that
ROME and MEMIT can be seen as two realiza-
tions of the preservation-memorization (PM) ob-
jective of model editing, where ROME enforces
memorization using an equality constraint whereas
MEMIT enforces memorization as a least square
objective. The least-square constraint in MEMIT
allows to reach a closed form solution for batch
updates.

4 Edit-Distribution Algorithms

The difference in objectives is not the only differ-
ence between ROME and MEMIT. MEMIT (Meng
et al., 2022b) also additionally distributes its ed-
its into multiple layers, which has been one of the

reasons for success of MEMIT at large batch sizes.
This distribution is done by using the formula:

∆l =

(
V L
E −W l

0K
l
E

)

L− l + 1
K lT

E

(
C l
0 +K l

EK
lT
E

)−1

(6)
where ∆l represents the change in weights at

layer l, where l ∈ {L−(n−1), L−(n−2), . . . L}
represents one of the n layers being edited. V L

E =
VE are the representations of the fact being edited
at the final edit layer, which is represented by L.
All other representations of KE and C0 are calcu-
lated at the layer l being edited. For n = 1, the
formula reduces to equation 5. We call this algo-
rithm a type of edit-distribution algorithm, which
is applied post-hoc after finding the closed-form
solutions to the PM-objective.

The edit-distribution algorithm is separate from
the solutions of the ROME and MEMIT objectives,
therefore, we can apply the edit-distribution algo-
rithm when using ROME, as well as use MEMIT
without distributing the edits into multiple layers.
The formula for using the MEMIT edit-distribution
algorithm on ROME is as follows:

∆l = (vLe −W l
0k

l
e)

kl
T

e C l−1

0

klTe C l−1

0 kle
(7)

Prior works on model editing do not differen-
tiate between the MEMIT-objective and the edit-
distribution algorithm, and as a consequence we
never see edits using ROME being distributed to
multiple layers or MEMIT being used on only
a single layer. The additional wrapping of edit-
distribution also makes MEMIT seem distant from
ROME. In the next section, we remove the wrap-
ping of edit-distribution from MEMIT and allow
for a fair comparison between the two algorithms.

4.1 Impact of edit-distribution Algorithms

The key advantage of the edit-distribution algo-
rithm is apparent when making batched edits. In
this section, we perform two experiments to ana-
lyze this. First, we compare single edits in ROME
and MEMIT with and without edit distribution
on 1k randomly selected facts from the Counter-
Fact datase (Meng et al., 2022a). Following that,
we compare batched editing in MEMIT with and
without edit distribution. Both experiments are
performed on three different models - GPT2-XL
(1.5B) (Radford et al., 2019), GPT-J (6B) (Wang

15406

ALGORITHM MODEL
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

ROME GPT2-XL (1.5B) 100.0 99.8 97.9 71.74 75.31 10.48 618.6 89.57

GPT-J (6B) 100.0 99.8 97.25 73.65 81.94 13.92 617.1 92.34

LLAMA-2 (7B) 100.0 99.9 96.7 68.65 80.79 20.62 585.96 91.69

MEMIT GPT2-XL (1.5B) 100.0 99.7 97.85 71.74 75.21 10.49 618.54 89.51

GPT-J (6B) 100.0 99.8 97.05 72.25 82.06 13.94 616.6 92.34

LLAMA-2 (7B) 99.6 97.4 91.7 57.8 82.83 21.68 593.04 90.86

Table 1: Comparison between ROME and MEMIT when editing only a single layer for CounterFact dataset.

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

Figure 3: Performance comparison of model editing using MEMIT when editing just one layer against multiple
layers using the MEMIT edit-distribution algorithm on the CounterFact dataset.

and Komatsuzaki, 2021) and Llama2-7B (Touvron
et al., 2023).

The results are shown in Table 1 for edits with-
out distribution and Table 3 (appendix) for edits
with distribution. We use the more stable version
of ROME called r-ROME as presented in (Gupta
and Anumanchipalli, 2024) that does not lead to
model collapse and improves generalization. We
see that solutions to both ROME and MEMIT ob-
jectives perform equally well at making singular
edits across different metrics, without needing to
distribute the edits to multiple layers. To highlight
the usefulness of edit-distribution algorithms, we
make batched edits with MEMIT comparing per-
formance with and without edit distribution. The
results are shown in Figure 3. When only editing a
single layer, we see that MEMIT is able to success-
fully make batched edits up to a batch size of 1024
for GPT2-XL, 256 for Llama-2-7b and a batch-size
as large as 4096 for GPT-J3. After this point, the
performance of model editing increases when mak-
ing edits on multiple layers, except for Llama-2-7b.
All hyperparameters for all models were chosen as
is from prior work (Meng et al., 2022a,b; Yao et al.,
2023; Zhang et al., 2024) (appendix A.1).

With these experiments, we want to highlight
two key points - firstly, when comparing the effec-

3In our experiments we find GPT-J to be an easier model
to edit compared to other models. This is both intriguing but
also not the best model to evaluate model editing success.

tiveness of two optimization objectives, the evalu-
ation should not be conflated with the edit distri-
bution algorithms. After removing the wrapping
of edit-distribution from MEMIT, we see that the
performance numbers for ROME and MEMIT have
an uncanny similarity. Secondly, the MEMIT edit-
distribution algorithm is not perfect and currently is
the only way to distribute edits into multiple layers,
where the residual in the update is distributed with
specific ratios through different layers. We hope
these experiments will bring more focus to edit dis-
tribution algorithms and boost further research in
these methods.

5 Introducing EMMET

In section 3, we show that ROME and MEMIT
are both algorithms optimizing the preservation-
memorization objective of model editing, where
ROME does memorization using an equality con-
straint wherease MEMIT uses a least-square objec-
tive for memorization. Thus, we ask the question -
can we perform batched-editing under an equality
constraint for memorization?

In this section, we provide a closed-form
solution for batched-editing where memoriza-
tion is done with equality constraints under
the presevation-memorization objective, and thus
present a batched-version of ROME, a method we
call EMMET - Equality-constrained Mass Model
Editing in a Transformer.

15407

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

(d) Generation Entropy (GE) (e) Score (S)

Figure 4: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the CounterFact dataset.

Let K0 = [k01 |k02 | . . . | k0N] represent N key-
vectors whose representations we want to pre-
serve. Additionally, let ke1, k

e
2 . . . k

e
E represent

key-vectors for E facts we want to edit in the
model at the same time. Then according to the
preservation-memorization objective, we want to
find new weights Ŵ for a weight matrix W0 such
that:

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥
2

F︸ ︷︷ ︸
preservation

s.t.

Ŵkei = vei ∀i ∈ [1, 2 . . . E]︸ ︷︷ ︸
memorization

(8)

As can be seen in the above equation, the preser-
vation of representations happens in the first term
whereas memorization of all the new facts are
forced using an equality constraint in the second
term. The above equation is solved using lagrange-
multipliers. The derivation of the above equation
for the generalized case of batched editing can be
found in Appendix A.3.

The closed form solution for batched editing
with equality-constraint or EMMET is shown be-
low:

Ŵ = W0 +∆ where

∆ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
KT

EC
−1
0

(9)

Here, C0 = K0K
T
0 has the usual meaning as

in the derivation of ROME and MEMIT, where
K0 contains the list of representations we want pre-
served during editing. We write the update equation
for EMMET in a familiar form, where the resid-
ual R = VE −W0KE is modified by some matrix
operations to update the models with new edits.
Additionally, when we put E = 1, the KE matrix
reduces to a single vector ke and equation 9 reduces
to the ROME update equation (equation 2). With
EMMET, we complete the unification of ROME
and MEMIT under the preservation-memorization
objective and achieve a symmetry with the usage
of these algorithms. EMMET allows for making
batched-edits as well as singular when using equal-
ity constraints for memorization, much similar to
MEMIT with least-square based memorization.

5.1 Stabilizing EMMET

There are two important matrices that are being
inverted in EMMET and MEMIT. The first one is
C0 = K0K

T
0 , which is defined identically in both

algorithms, whereas D = KT
EC

−1
0 KE is only in-

verted in EMMET. While the invertibility of both
matrices are assumed, they are not always guaran-
teed. Each of the matrices K0 or KE can be written
as a row of column vectors as explained in section
3, and thus C0 can be written as a sum of outer
products:

15408

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

(d) Generation Entropy (GE) (e) Score (S)

Figure 5: Performance comparison of EMMET and MEMIT when distributing the edit over multiple layers using
the MEMIT edit-distribution algorithm on the CounterFact dataset.

C0 = K0K
T
0 =

∑

i

k0i k
0T

i (10)

where k0i represents a key-vector we want to
preserve. For an LLM of dimension d, the dimen-
sionality of a key-vector is usually 4d (Figure 2),
which is the dimensionality of the square matrix
C0. If C0 is a 4d-dimensional square matrix which
is a summation of rank-1 matrices, it is invertible
as long as there are atleast 4d-independent vectors
in the summation, or 4d-independent vectors in
K0. For example, for GPT2-XL with hidden di-
mension of 1600, the dimensionality of key vectors
are 6400. So as long as representations of atleast
6400 independent key-vectors are being preserved
while editing, C0 will be an invertible matrix. In
practice, we preserve representations of a much
larger number of vectors, and hence this condition
is always satisfied.

The matrix D = KT
EC

−1
0 KE is a square matrix

of dimensionality equal to the number of edits. If
given that C0 is invertible, D is invertible as long
as KE is full-rank, which means all key-vectors
corresponding to facts being memorized are inde-
pendent of each other. While this is not guaranteed,
it can be verified before editing and facts corre-
sponding to non-independent keys can be removed
from a batch. In practice, we do not find invert-
ibility of D being an issue. However, we find that
D is often ill-conditioned, which means that the
ratio of the largest and smallest eigenvalues of D

explodes. This doesn’t necessarily mean that the
matrix is singular (non-invertible), but it does mean
that numerical computations involving the matrix
inverse are unstable and can lead to large numer-
ical errors. To counter this, we set D = D + αI ,
where α is set to 0.1 after an ablation over multiple
batch sizes. This allows for stable batched edits
using EMMET and also ensures that the D matrix
is always invertible.

5.2 Batch Editing with EMMET

We begin by experimenting with EMMET for
model editing with varied batch sizes on GPT2-
XL, GPT-J and Llama-2-7b on the CounterFact
and zsRE (Levy et al., 2017) datasets. The ex-
act implementation details can be found in section
A.1. We compare the performance of EMMET and
MEMIT on batch sizes up to 10,000 while edit-
ing both single (to directly compare the optimiza-
tion objectives) and multiple layers. The single
layer editing comparison between EMMET and
MEMIT can be found in Figure 4. We see that
both methods have almost identical performance in
practice across different metrics. MEMIT performs
slightly better than EMMET for Llama-2-7b, as in-
dicated by ES, PS and S metrics. We then apply the
MEMIT edit-distribution on EMMET and compare
it with MEMIT. The results are shown in Figure 5.
We see that in this case, EMMET performs slightly
better than MEMIT for Llama-2-7b. The results
on the zsRE dataset tell a similar story and can be

15409

(a) EMMET (b) MEMIT

Figure 6: Downstream performance of post-edit Llama2-
7b model for EMMET and MEMIT on four GLUE tasks.
Batch index 0 refers to downstream performance before
editing, with the performance of 5 independent edits of
batch size 256.

seen in Figure 7 and 8. The experiments for differ-
ent hyperparameter values are shown in Appendix
A.4. These results present EMMET as a viable new
batched-editing algorithm.

Previous work (Gu et al., 2024; Gupta et al.,
2024) has shown that model editing is often accom-
panied by model degradation. This was shown
by evaluating the edited model on downstream
tasks from the popular GLUE benchmark (Wang
et al., 2018). Once we identified that memoriza-
tion in MEMIT is happening using an approximate
least-square constraint rather than an equality con-
straint, we hypothesised that a possible reason for
model degradation could be the use of the least-
square constraint. Thus, using an equality con-
straint, which by definition requires the edit to be
exact, may not degrade other knowledge or skills
of the model. This was also the motivation behind
generalizing ROME to batched edits in the form of
EMMET. To test this hypothesis, we adopt the eval-
uation setting of Gupta et al. (2024) and evaluate
both EMMET and MEMIT on four downstream
tasks - sentiment analysis (SST2) (Socher et al.,
2013), paraphrase detection (MRPC) (Dolan and
Brockett, 2005), natural language inference (NLI)
(Dagan et al., 2005; Haim et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2009) and linguistic
acceptability classification (Warstadt et al., 2019)
for doing downstream evaluation. The results are
shown in Figure 6 for a batch size of 256. The re-
sults for other batch sizes can be found in Appendix
A.1. We find that both EMMET and MEMIT also
degrade the model similarly.

The fact that both EMMET and MEMIT perform
editing and degrade the model with an uncanny sim-
ilarity shows that a "stronger" equality constraint
does not enable more accurate model editing. We
believe reason behind this is the construction of the

key-vector, which is created by taking the average
of representations of multiple phrasings of a fact
(appendix A.2). This is done to make edits that
generalize beyond a single phrasing of a fact. As
the key-vector is an averaged representation over
randomly selected phrasings, it is an approxima-
tion of the ideal vector representation of a fact. We
believe that such an approximate representation
does not require the additional accuracy of mem-
orization enforced due to the equality constraint.
Our findings also indicate that we may be reaching
the limit of model editing capabilities under the
preservation-memorization objective.

5.3 Related Work

Model editing methods can be broadly classified
into two types - methods that add information in-
context (Mitchell et al., 2022; Zhong et al., 2023;
Cohen et al., 2023), and methods that modify the
parameters of underlying model (De Cao et al.,
2021; Mitchell et al., 2021; Meng et al., 2022a,b;
Tan et al., 2023). Various model editing techniques
have been proposed in the past that tackle this prob-
lem in different ways. (Dai et al., 2021) first iden-
tify knowledge containing neurons in a model us-
ing integrated gradients (Sundararajan et al., 2017)
and then modify the selected neurons to edit facts
in a model. This method is not scalable with in-
creasing model sizes as it requires us to find ac-
tivations for each neuron in the model. (De Cao
et al., 2021) and (Mitchell et al., 2021) train a hy-
pernetwork (Chauhan et al., 2023) that generates
the new weights of the model being edited. While
these methods have been optimized to scale with
a square-root dependence on the size of the edited
model, it still requires training of additional edit-
ing models dependent on each source model being
edited. Other methods add the most relevant up-
dated knowledge in context (Mitchell et al., 2022;
Cohen et al., 2023; Zhong et al., 2023). While such
methods provide a viable alternative to model edit-
ing, in this paper, we focus on parameter-modifying
model editing methods, namely ROME (Meng
et al., 2022a) and (Meng et al., 2022b).

6 Conclusion

In this paper we unite two popular model
editing techniques, ROME and MEMIT, under
the preservation-memorization objective, with
ROME performing equality-constrained edits and
MEMIT operating under a least-square constraint.

15410

We disentangle the edit-distribution algorithm pro-
posed in MEMIT from the optimization objec-
tive, presenting them as separate entities. We also
present EMMET, a new batched-editing algorithm
based on the preservation-memorization objective,
where memorization happens under an equality
constraint. Our experiments show that EMMET
has similar performance to MEMIT across multi-
ple dimensions and metrics.

Enabling batched editing with equality-
constraint in the form of EMMET allows us to
truly unify ROME and MEMIT and shows that
both these algorithms are essentially equivalent in
terms of their (i) optimization objective, (ii) their
abilities (singular and batched editing, a symmetry
enabled by EMMET), (iii) their model editing
performance and (iv) their limitations (similar
model degradation). EMMET is a cornerstone
in completing this larger picture. These results
suggest that EMMET (or ROME) and MEMIT
not only have very similar theoretical roots but
also perform similarly in practice. The unified
framework presented in our work along with the
disentanglement of edit distribution algorithm has
also enabled a fair comparison between the two
algorithms, which was not possible before our
work. We hope that this framework facilitates ease
of comparison, consistency of implementation,
and a much deeper understanding of these model
editing methods.

7 Limitations

While our technique may streamline error correc-
tion processes, it does not address deeper struc-
tural limitations within models, such as edited
models inadvertently amplifying existing errors or
introducing new inaccuracies. Furthermore, the
effectiveness of our method varies depending on
the complexity of the model architecture and the
nature of the edited knowledge as evidenced by
our experiments. Despite having a theoretically
‘stronger’ memorization objective, EMMET is not
able to outperform MEMIT, which also indicates
that we might have reached a saturation point for
model editing using naive implementations of the
preservation-memorization objective, underscoring
the fact that significant progress is yet to be made in
understanding edit distribution and its implications.

8 Ethical Considerations

While our model editing method allows users to
effectively correct for errors or update facts in mod-
els, caution is warranted. Our technique also intro-
duces concerns for potential misuse such as mali-
cious actors inserting harmful or false knowledge
in LLMs that is absent from the original training
data. As such, we warn readers that LLMs should
not be considered reliable knowledge bases.

References
James A Anderson. 1972. A simple neural network

generating an interactive memory. Mathematical
biosciences, 14(3-4):197–220.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7:8.

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-
heila Molaei, and David A Clifton. 2023. A brief
review of hypernetworks in deep learning. arXiv
preprint arXiv:2306.06955.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2023. Evaluating the ripple effects
of knowledge editing in language models. arXiv
preprint arXiv:2307.12976.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024.
Model editing can hurt general abilities of large lan-
guage models. arXiv preprint arXiv:2401.04700.

15411

Akshat Gupta and Gopala Anumanchipalli. 2024. Re-
building rome: Resolving model collapse dur-
ing sequential model editing. arXiv preprint
arXiv:2403.07175.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024. Model editing at scale leads to
gradual and catastrophic forgetting. arXiv preprint
arXiv:2401.07453.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7, pages 785–794.

Teuvo Kohonen. 1972. Correlation matrix memories.
IEEE transactions on computers, 100(4):353–359.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extrac-
tion via reading comprehension. arXiv preprint
arXiv:1706.04115.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive
editing for large language models via meta learning.
arXiv preprint arXiv:2311.04661.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation
and fine-tuned chat models, 2023. URL https://arxiv.
org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

A Appendix

Batch Size Num Batches Total Edits
4 25 100
16 10 160
64 5 320
256 5 1280
1024 3 3072
4096 2 8192

10,000 1 10,000

Table 2: Statistics for batch size and number of batches
used to create the numbers for this paper.

15412

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

(a) Efficacy Accuracy (EM) (b) Paraphrase Accuracy (PM) (c) Neighborhood Accuracy (NM)

Figure 7: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the zsRE dataset.

ALGORITHM MODEL
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

ROME GPT2-XL (1.5B) 100.0 99.79 97.78 71.75 76.16 10.93 617.56 89.93

GPT-J (6B) 100.0 99.8 97.95 72.07 81.46 13.42 615.9 92.35

LLAMA-2 (7B) 99.68 92.29 98.1 73.34 77.59 19.07 589.44 90.6

MEMIT GPT2-XL (1.5B) 100.0 99.79 97.57 71.75 76.14 10.96 617.9 89.87

GPT-J (6B) 100.0 99.79 97.1 72.86 81.96 14.24 615.97 92.31

LLAMA-2 (7B) 99.58 91.34 97.99 72.18 77.8 19.27 589.39 90.63

Table 3: Comparison between ROME and MEMIT when editing multiple layers for the CounterFact dataset.

A.1 Implementation Details for ROME,
MEMIT and EMMET

We use the standard implementation of ROME and
MEMIT based on (Meng et al., 2022a) and (Meng
et al., 2022b). The range of layers edited for GPT2-
XL is [13, 17] (Meng et al., 2022b), for GPT-J is
[3 − 8] (Meng et al., 2022b) and for Llama-2-7b
is [4 − 8] (Yao et al., 2023; Zhang et al., 2024).
In single layer editing experiments, layer 17 was
edited for GPT2-XL (Meng et al., 2022a), layer
5 was edited for GPT-J (Meng et al., 2022a), and
layer 5 was edited for Llama-2-7b (Yao et al., 2023;
Zhang et al., 2024). These choices are directly
taken from (Meng et al., 2022a) and (Meng et al.,
2022b) for GPT2-XL and GPT-J. We follow the
work of (Yao et al., 2023) for choices of layers and
hyperparameters for llama-2-7b.

We use the multi-counterfact dataset proposed
in Meng et al. (2022b) which is created by remov-
ing conflicting facts from the counterfact dataset
(Meng et al., 2022a). We then select a random sam-
ple of 10,000 facts so that the edits are influenced
by the order in which the examples are presented
in the dataset. To create the batched editing plots,
we create multiple samples for each batch size and
average over all the edits made in that set. We
use batch sizes of 4, 16, 64, 256, 1024, 4096 and
10k. For each batch size, we use multiple batches
and average the evaluation over the total number of

batches. The statistics are shown in Table 2. For
example, for a batch size of 1024, we first create 3
batches without replacement of size 1024, and per-
form batched edits on the 3 batches. The numbers
are then reported by averaging the performance
over 3*1024 facts which were edited in the model.
We sample over a few batches so the results are
not biased towards a single edited batched. We
decrease the number of batches used in the sam-
ple due to computational reasons, as the amount of
time for each experiment increases with the batch
size. The same steps are followed for the zsRE
dataset.

A.2 Key-Value creation in ROME/MEMIT

We create key and value vectors for editing using
the subject, relation, object framework presented
in ROME (Meng et al., 2022a).

Sample queries under this formulation include:

Subject Prompt Object
France "The capital of {S} is {O}" Paris

Model editing involves manipulating the model
such that we’re able to alter the object that is asso-
ciated with a given input subject and prompt. In
the table provided, the transformation from "Paris"
to "London" exemplifies a potential application of
model editing under the (s, r, o) formalization.

15413

(a) Efficacy Accuracy (EM) (b) Paraphrase Accuracy (PM) (c) Neighborhood Accuracy (NM)

Figure 8: Multi layer editing performance of EMMET as a function of batch size when compared to MEMIT on the
zsRE dataset.

The subject and prompt together represent the
key vector, which is found by averaging over a set
of texts that end with the subject s in the prompt p:

ke =
1

N

N∑

j=1

k(xj + p)

where k(x) = NL(Wfca(x) + bfc)

and a(x) = LN(Att(hl−1(x)) + hl−1(x))

(11)

p is the prompt containing the subject and rela-
tion, and xj are 50 generated random sequences
with lengths varying from 2 to 10 tokens to make
the representation of the key vector more robust to
paraphrasing. This also ensures that key vectors for
different prompts are distinct enough as two base
key vectors (with no random prefix) that have very
similar representations move further apart when
their representations with a prefix are averaged.
LN represents layer normalization and NL is the
non-linearity applied to the stream.

Next, we choose a ve vector such that the new
object o∗ is output for our ke vector. We set ve to
minimize the loss as shown:

argmin
ve

1

N

N∑

j=1

− logPG(hl=ve)[o
∗ | xj + p]

+DKL

(
PG(hl=ve)[x | p′] || PG(hl)=ve [x | p′]

)

(12)
The first term tries to maximize the probability

of the target objective o∗ for a prompt of the form
xj + p where p is once again our desired prompt
that was also used to generate the key vector. G(v)
represents the output of generation s.t. the hidden
layer hl = v. The second term tries to minimize
the KL divergence when an unrelated prompt p′ is

input to the model since we want our edit to keep
unrelated knowledge unchanged.

We refer readers to the original ROME paper
for more details on how key and value vector pairs
(ke, ve) for editing are generated.

A.3 EMMET Derivation

Let K0 = [k01 |k02 | . . . | k0N] represent N key-
vectors whose representations we want to pre-
serve. Additionally, let ke1, k

e
2 . . . k

e
E represent

key-vectors for E facts we want to edit in the
model at the same time. Then according to the
preservation-memorization objective, we want to
find new weights Ŵ for a weight matrix W0 such
that:

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥
︸ ︷︷ ︸

preservation

s.t.

Ŵkei = vei ∀i ∈ [1, 2 . . . E]︸ ︷︷ ︸
memorization

(13)

As can be seen in the above equation, the preser-
vation of representations happens in the first term
whereas memorization of all the new facts are
forced using an equality constraint in the second
term. The above equation is solved using lagrange-
multipliers. The Lagrangian for the above equation
for multiple equality constraints requires a summa-
tion of lagrange multipliers and equals:

L(Ŵ , λi) =
1

2
ŴK0K

T
0 Ŵ

T − ŴK0K
T
0 W

T
0

+
1

2
W0K0K

T
0 W

T
0 −

E∑

i=1

λT
i (Ŵkei − vei)

(14)
To solve the system of equations, we put δL

δŴ
= 0

15414

to get:

ŴK0K
T
0 = W0K0K

T
0 +

E∑

i=1

λik
eT

i (15)

which is same as:

(Ŵ −W0)K0K
T
0 =

E∑

i=1

λik
eT

i = ΛKT
E (16)

where Λ = [λ1 |λ2 | . . . | λE] and KE =
[ke1 |ke2 | . . . | keE]. Here, Λ and KE are matrices
created using a row of vectors. We set K0K

T
0 =

C0 (assuming that C0 is invertible4) to get the up-
date equation of EMMET:

Ŵ = W0 + ΛKT
EC

−1
0 (17)

where Λ = [λ1 |λ2 | . . . | λE], KE =
[ke1 |ke2 | . . . | keE] and C0 = K0K

T
0 .

The unknown matrix of lagrange multipliers (Λ)
can be found using the constraint ŴKE = VE in
the previous equation. It comes out to be:

Λ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
(18)

Replacing the above equation in equation 17
gives us the update equation for EMMET:

Ŵ = W0 +∆ where

∆ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
KT

EC
−1
0
(19)

A.4 EMMET - MEMIT Hyperparameter
Comparison

Figures 9 - 16 present the comparison between
EMMET and MEMIT for different hyperparam-
eter values. The hyperparameter corresponds to
the preservation term in the preservation memo-
rization objective (equation 4). The figures show
that both algorithm reach the same peak perfor-
mance (Figure 9) across all models, but at different
hyperparameter values. MEMIT reaches peak per-
formance at lower hyperparameter values, whereas
EMMET needs a larger weight for preservation to
reach similar performance. This makes sense as
EMMET works with a much stronger memoriza-
tion constraint and thus requires larger weight to
preserve the model by the same amount.

4In practice, we find that C0 is always invertible as long
as the number of key-vectors in K0 are large enough

A.5 EMMET and MEMIT Downstream
Performance Comparison

15415

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 9: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of Score.
Hyperparameter controls the weight of preservation term over memorization term.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 10: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of Efficacy
Score.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 11: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of Efficacy
Magnitude.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 12: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Paraphrase Score.

15416

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 13: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Paraphrase Magnitude.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 14: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Neighborhood Score.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 15: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Neighborhood Magnitude.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 16: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Generation Entropy.

15417

(a) EMMET (b) MEMIT

Figure 17: Model - Llama2-7b. Batch size 4.

(a) EMMET (b) MEMIT

Figure 18: Model - Llama2-7b. Batch size 16.

(a) EMMET (b) MEMIT

Figure 19: Model - Llama2-7b. Batch size 64.

(a) EMMET (b) MEMIT

Figure 20: Model - Llama2-7b. Batch size 1024.

(a) EMMET (b) MEMIT

Figure 21: Model - Llama2-7b. Batch size 4096.

(a) EMMET (b) MEMIT

Figure 22: Model - Llama2-7b. Batch size 10k.

15418

