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Abstract

Authors seeking to communicate with broader
audiences often share their ideas in various doc-
ument formats, such as slide decks, newsletters,
reports, and posters. Prior work on document
generation has generally tackled the creation of
each separate format to be a different task, lead-
ing to fragmented learning processes, redun-
dancy in models and methods, and disjointed
evaluation. We consider each of these docu-
ments as templatic views of the same under-
lying knowledge/content, and we aim to unify
the generation and evaluation of these templatic
views. We begin by showing that current LLMs
are capable of generating various document
formats with little to no supervision. Further,
a simple augmentation involving a structured
intermediate representation can improve per-
formance, especially for smaller models. We
then introduce a novel unified evaluation frame-
work that can be adapted to measuring the qual-
ity of document generators for heterogeneous
downstream applications. This evaluation is
adaptable to a range of user defined criteria
and application scenarios, obviating the need
for task specific evaluation metrics. Finally,
we conduct a human evaluation, which shows
that people prefer 82% of the documents gener-
ated with our method, while correlating more
highly with our unified evaluation framework
than prior metrics in the literature.

1 Introduction

Sharing information is vital for communication and
discourse across domains, as it allows for knowl-
edge to be disseminated to a wider audience. This
is often done by users through documents in multi-
ple formats that nevertheless share some underlying
knowledge. A product manager may need to cre-
ate a requirements spec, a product pitch deck, and
an announcement newsletter for the same project.

∗This work was conducted by the first author during an
internship at Microsoft Research.

Likewise, a person on the job market may create a
resume, a cover letter, and a personal website. We
consider these documents to be templatic views of
the same underlying knowledge.

This is equally true for the scientific domain,
in which researchers create documents in multiple
formats to effectively communicate and showcase
their work, – such as through academic papers,
conference talks, social media posts, poster pre-
sentations, and non-technical blog posts. Sharing
knowledge in multiple formats broadens the au-
dience and can help bridge the information gap
between domain experts, researchers in adjacent
fields, and even the general public, leading to
greater understanding, collaborations and acceler-
ated progress (Bornmann and Mutz, 2014).

Past work on document generation has focused
on developing generation and evaluation methods
specific to a single document type (Fu et al., 2021;
Qiang et al., 2016; Chandrasekaran et al., 2020).
Narrow, custom methods tailored to individual doc-
ument types are, nevertheless, time consuming to
engineer and manage over the long term. For exam-
ple, in an enterprise setting, it’s common to have
dozens of occupation- and task-specific documents,
each with their own template.

Additionally, specific trained methods require
data that may be expensive to acquire, or even be
unavailable entirely. Meanwhile, LLMs have re-
cently shown great success in long document gen-
eration (Radford et al., 2019; Brown et al., 2020),
indicating that this fragmentation of methods may
no longer be necessary. Thus, our goal is to unify
methods for both generating and evaluating tem-
platic views of documents, allowing system design-
ers and engineers to manage and adapt to a range of
document types and domains easily and efficiently.

We begin by showing that LLMs are capable of
diverse, structured document generation, requiring
very little instructional guidance to do so effec-
tively. Additionally, a few minor augmentations
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Figure 1: Visualization of our method to unify the generation and evaluation of templatic views of documents. Given
an input document, we prompt the LLM to generate an intermediate representation. We can use the representation
to prompt the model to generate a templatic view of the input document. We then evaluate the generations using our
unified evaluation framework. The LLM represented in the figure is the same model.

to the prompt – such as a structured, intermediate
representation, and simple stylistic descriptions –
can further improve downstream performance, es-
pecially for smaller, less resource intensive models.
These findings have important implications on the
deployment and scaling of unified, real-world AI-
assisted document authoring systems.

In similar vein, we then introduce Template
Adaptable Evaluation (TAE), departing from prior
work’s task specific evaluation methods (Zhang*
et al., 2020; Qiang et al., 2016; Wang et al.,
2015). TAE is a unified precision-recall style frame-
work for automatic evaluation that is highly cus-
tomizable, allowing users to easily integrate ex-
isting text-based metrics from the literature into
its formulation and tailor it to their specific use
case.Additionally, this framework allows develop-
ers to compare performance across document types,
without needing to develop an evaluation metric
for each individual template.

We evaluate our unified approach for templatic
view generation and evaluation on 3 types of doc-
uments: slides, posters, and blog posts (Fu et al.,
2021; Qiang et al., 2016; Chandrasekaran et al.,
2020). Our experiments demonstrate that using
a structured intermediate representation leads to
improvements in performance across tasks, with
greater gains for smaller language language models.
In our human evaluation to validate both our uni-
fied document generation method and evaluation
metric, we show that annotators prefer the output
yielded by the structure-aware generation process

82% of the time and that our evaluation metric cor-
relates more highly with human preference than
other popular metrics. A visualization of our meth-
ods can be found in Figure 1. We release our code1

to support future research.

2 Related Work

There are several areas of related research in NLP
that are relevant to the problems of document trans-
formation and evaluation.

Document summarization has been explored in
a number of domains, including news (See et al.,
2017), literature (Sciré et al., 2023), law (Deroy
et al., 2023), and dialogue (Chen et al., 2021).
In the scientific domain, summarization of scien-
tific papers has taken the form of long form sum-
maries (Chandrasekaran et al., 2020), abstract gen-
eration (Cohan and Goharian, 2015), conference
talks (Lev et al., 2019), and query based sum-
maries (Fok et al., 2023). These summaries can
be either extractive (Sefid and Giles, 2022) or ab-
stractive (Chandrasekaran et al., 2020).

Although the tasks of slide and poster genera-
tion have generally been considered separate from
scientific summarization, they are related in that
both tasks require taking an input article, then orga-
nizing and abstracting the information to generate
a new document. Past work has developed meth-
ods for slide generation from papers (Hu and Wan,
2015; Li et al., 2021; Hu and Wan, 2015; Fu et al.,

1https://github.com/microsoft/
knowledge-centric-templatic-views
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2021), from code (Wang et al., 2023a), or based
on a query (Sun et al., 2021). Poster generation
has been explored in the form of content extraction
for posters (Xu and Wan, 2021), interactive genera-
tion (Wang et al., 2015), or full content generation
using graphical models (Qiang et al., 2016). To the
best of our knowledge, our work is the first to create
a unified method capable of generating a diverse
range of templatic views of a source document.

Large Language Models (LLMs), which are cen-
tral to our approach, have shown impressive capa-
bilities in a variety of tasks (Radford et al., 2019;
Brown et al., 2020). Based on the transformer archi-
tecture (Vaswani et al., 2017), LLMs have shown
emergent abilities in tasks such as arithmetic and
question answering (Wei et al., 2022a). Similar to
chain of thought prompting (Wei et al., 2022b) and
content planning prompting (Wang et al., 2023b),
we show that by generating an intermediate repre-
sentation of an input document can improve perfor-
mance over simply prompting the model to gener-
ate the final document from the original input.

As past work has tackled generation of templatic
views as separate tasks, methods for automatic
evaluation of different document types is frag-
mented. LongSumm, the shared task introduced
by Chandrasekaran et al. (2020), uses ROUGE
to evaluate model performance (Lin, 2004). Fu
et al. (2021) introduced Slide Level ROUGE to
evaluate slide generation, a variant that contains
a penalty for the number of slides. Qiang et al.
(2016) used a trained regressor. For summarization,
many automatic evaluation metrics have been in-
troduced such as BERTScore (Zhang* et al., 2020),
UniEval (Zhong et al., 2022), BARTScore (Yuan
et al., 2021), BLANC (Vasilyev et al., 2020), and
MoverScore (Zhao et al., 2019). However, these
metrics are intended for a simple input document-
summary setup, and do not take into account factors
that affect the quality of other types of documents
(e.g. structure). Our work is the first to introduce
template adaptable evaluation, allowing uniform
comparison of performance across template types.

3 Data

We begin by describing the data used in this paper.
There is no existing dataset that includes multiple
views of a single document. Instead, we evaluate
our unified method, described in §4, on 3 existing
datasets: DOC2PPT, LongSumm, and Paper-Poster
(Fu et al., 2021; Chandrasekaran et al., 2020; Qiang

et al., 2016). These datasets are chosen because
they each involve generating a different view of a
document. Although our method is not specific to
the scientific domain, it is one of the few domains
with abundantly available public data of multiple
templatic views 2. The three datasets and their
associated generation tasks are described below.

Slide Generation. We use use the DOC2PPT
dataset (Fu et al., 2021), which contains 5.8K sci-
entific papers in Computer Science and their re-
spective slide decks. As Fu et al. (2021) do not
release data splits or code, we randomly sample
1K examples from this dataset for evaluation. The
slides are provided as an image for each slide. We
use the Azure OCR tool to extract the text from
each slide3.

Blog Generation. We use the LongSumm
dataset (Chandrasekaran et al., 2020), which in-
cludes blog posts of scientific papers in the Com-
puter Science domain. Since our approach requires
no training or supervision, we use the entire train-
ing split from Longsumm as our evaluation set. Of
the 531 publicly released blog posts in this set, we
could only access 505, with the other 26 including
broken links or being behind a paywall.

Notably, while Longsumm includes a blind test
set of 22 papers, this test set only consists of inputs
without their reference outputs, thus making it im-
possible to compute our custom evaluation metric
(see §5). In the interest of completeness and com-
parison to prior work, we do, however submit runs
from our systems to the leader board and report the
results of this blind test set in Appendix C.

Poster Generation. We use the Paper-Poster
dataset (Qiang et al., 2016), which consists of a
dataset of 85 papers in Computer Science and Bi-
ology, and their respective scientific posters; two
examples containing corrupted PDFs are excluded.
Although Qiang et al. (2016) release data splits,
they do not release code or results for comparison.
Given the small size of the dataset, we use it in its
entirety for more robust results. While the authors
uses the source files to extract the text of posters
for evaluation, they only release the PDF formats.
To preprocess the reference posters, we found that

2We acknowledge that scientific writing does have struc-
tural regularities that may influence unified document gener-
ation. Due to the lack of other available datasets we leave
exploration of other domains to future work.

3
https://learn.microsoft.com/en-us/azure/

ai-services/computer-vision/overview-ocr
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Step Prompt
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R

ep "Given the input text, extract the document
title and authors. For each section in the
given input text, extract the most important
sentences. Format the output using the
following JSON template:\n
<JSON STRUCTURE>\n\n Input:
<INPUT DOC>\n\n Output:"

Te
m

pl
at

ic
V

ie
w "Summarize the following input in a

<TEMPLATE TYPE>style. Style parameters:
<STYLE PARAMS>Format the output
document as a latex file: \n\nInput:
<INPUT DOC>\n\n Output:"

Table 1: Prompts used to generate the intermediate rep-
resentation and final LaTeX document. The JSON struc-
ture is pictured in Figure 2 and exact style parameters
used can be found in Table 2.

{
 “Document Title": "TITLE",
 "Document Authors: ["AUTHOR 1", ..., "AUTHOR N"],
 "SECTION TITLE 1": {"Content": 
                    ["SENTENCE 1",...,"SENTENCE N"]
                    },
 ... 
 "SECTION TITLE N": {"Content": 
                    ["SENTENCE 1",...,"SENTENCE N"]
                    }
}

Figure 2: Abbreviated template of the intermediate rep-
resentation provided to the prompts in Table 1. We note
that the specific structure provided to the prompt is not
inherent to our method, and a different structure could
be provided depending on the input document and do-
main.

automatic tools to extract text from documents did
not handle the visual layout of posters well, so we
manually extracted the text of the posters in this
dataset. Note that this process was only done to
obtain evaluation scores, and that our unsupervised
generation method is capable of creating target doc-
uments without the need for reference data.

For all 3 datasets, we use the Azure Document
Layout tool to extract the text of the input papers.4

4 Unified LLM-powered Generation of
Templatic Views

The most straightforward way to transform docu-
ments between templatic views using LLMs, is to
simply prompt the system to generate the target
view given the input. However, similar to chain of
thought prompting (Wei et al., 2022b), we hypothe-
size that first generating a structured, intermediate
representation of an input document and then rea-

4
https://learn.microsoft.com/en-us/azure/

ai-services/document-intelligence/concept-layout

Style Params

Sl
id

es

“Slides should include a title page. Following
slides should contain an informative slide
title and short, concise bullet points. Longer
slides should be broken up into multiple slides.”

Po
st

er
s “Posters should include a title section at the top.

Each panel should include a heading and short,
concise bullet points of the most important take-
aways from that section.”

B
lo

gs

“Blogs should include paragraphs introducing the
topic, a summary of the input document, and
important takeaways. The blog should be more
readable to a general audience than the input
document.”

Table 2: Style parameters provided to the prompts in
Table 1. Style parameters allow the user to specify
template style with minimal prompt engineering.

soning over that representation will result in better
generations than directly prompting the model. Our
goal is to evaluate the capabilites of LLMs to gen-
erate long, structured documents, and experiment
with how structured prompting can improve per-
formance. We experiment with a simple general
two-step process: first generate an intermediate
representation, then generate the templatic view.
These steps are described in greater detail below,
and the process is visualized in Figure 1.

Intermediate Representation Generation. In
this work, we set the intermediate representation to
be a JSON consisting of a structured layout of the
most important parts of the input. We provide the
input document to the model along with a template
of the representation and prompt it to extract the
most important information from the input docu-
ment, and format it in the given JSON structure.
The prompts can be found in Table 1 and the JSON
structure can be found in Figure 2. While our ex-
periments use a JSON intermediate representation,
note that other formats that provide structure to
the input text could be employed (e.g. XML or
Markdown). Rather than trying to optimize for the
best representation format, our goal is to show that
this chain of extraction approach along with struc-
tured augmentation to prompts can aid the quality
of generations from LLMs. We leave exploration
of different formats and other prompt optimization
to future work.

Templatic View Generation. We then feed the
generated representation as input back into the
LLM, prompting the model to generate the final out-
put document, represented as a LaTeX document.
For each templatic view, the prompt to generate
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the final LaTeX document takes a short descrip-
tion of the desired output, which we refer to as
a style parameter. The style parameters we used
can be found in Table 2. Style parameters make
our method adaptable to new templatic views; the
user only needs to write a short description of the
template style. Both the generation of the inter-
mediate representations and the final documents
require little to no prompt engineering.

5 Template Adaptable Evaluation

Prior work on document generation has treated the
evaluation of different templatic views as separate
tasks. Thus, our goal is to develop a framework
of automatic evaluation that is template adaptable.
This not only allows us to compare performance
across diverse datasets, it also removes the require-
ment of designing and maintaining individual met-
rics for each template. In order to generalize to
multiple templates, we introduce the concept of
panels. A panel is a unit of organization within a
document type, for which the placement and order-
ing of the panel is important to the overall flow of
information in the document.

For example, we consider panels to be each slide
in a slide deck and each section on a poster. We
consider the entirety of a blog post to be a single
panel. Although we test our method on the tasks of
slide, blog, and poster generation, the concept of
panels is not limited to these document types. For
example, each post on a social media thread could
be considered a panel, or each page on a website.

We aim to unify the evaluation of templatic
views by integrating prior metrics into a template
adaptable precision-recall framework, which we
refer to as Template-Adaptable Evaluation (TAE).
TAE is not a new individual metric, but rather an
evaluation framework that allows generalization to
new templates. For example, TAE can even be used
with ROUGE to evaluate poster generation.

The general TAE formulation is as follows:

Precision = QP ×OP × L

Recall = QR ×OR × L
(1)

in which QP is the precision measure of quality
(§5.1), OP is the precision penalty for order (§5.2),
and L is the non-reflexive penalty for length (§5.3).
Similarly, QR is the recall quality measure and OR

is the recall penalty for order. The precision-recall
formulation allows evaluators to decide which mea-

sure is most important to them, or calculate an
overall F-measure score.

5.1 Quality Measure

For the TAE precision score, we calculate the av-
erage similarity between the generated panels and
their most similar reference panel as follows:

QP =
1

|S̃|
∑

S̃

maxsim(S, S̃i) (2)

in which S is the set of reference panels and S̃
is the set of generated panels. For the similar-
ity metric, the user can choose a metric that best
matches their use case, such as ROUGE, BERT-
Score, or a custom trained regressor (Lin, 2004;
Zhang* et al., 2020). For example, a user might
choose ROUGE if they want a similarity metric
that focuses on exact word overlap, or BERTScore
to measure broader semantic similarity.

Similar to precision, the TAE recall score is cal-
culated as the average similarity between the refer-
ence panels and their most similar generated panel:

QR =
1

|S|
∑

S

maxsim(S̃, Si) (3)

By splitting the evaluation of quality into preci-
sion and recall, we can evaluate both the content
of the slides that were generated as well as the
coverage of this content against some reference.

5.2 Order Penalty

Broadly, the goal of the ordering penalty is to mea-
sure the similarity of the order of information in ref-
erence and generated panels, independent of other
factors. Unfortunately, because the cardinality of
panels in the two outputs is not necessarily the
same, a direct one-to-one mapping to compare or-
dering is not feasible. Instead, a panel in one set
can align to multiple references in the other, or
none at all – as depicted in Figure 3. Intuitively,
our solution is to virtually replicate (resp. drop)
panels that have multiple (resp. zero) alignments
in the reference set so that a one-to-one mapping
of ordering, can in fact be computed.

Formally, assume S and S̃ are sequences of ref-
erence and generated panels respectively. We use
the maximum similarity scores calculated in §5.1
to align the panels across sets.

For the precision ordering penalty, we define the
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Figure 3: Example of the process of obtaining the rank-
ings for the precision ordering penalty. We first use
the similarity measure to map each generated panel to
its most similar reference document. This mapping is
used to calculate the precision quality score QP . We
then use the mappings to create a one-to-one alignment
from the generated to the reference panels, which we
use to calculate the precision ordering penalty (OP ). By
creating a one-to-one alignment, we are able to repre-
sent inversions in the ordering. This process is reflexive,
and panels not accounted for in the precision ordering
penalty are accounted for in the recall ordering penalty.

following operation λP (s) =
∑

s̃ δP (s, s̃), where

δP (s, s̃) =

{
1, iff s → s̃

0, otherwise

Intuitively, this captures the cardinality of the align-
ment of a panel in S with panels in S̃. Then, using
this operation we can replace every s ∈ S with
λP (s) copies, leading to an identical cardinality
for both S and S̃, and subsequent one-to-one map-
ping between their corresponding panels.

Then, to operationalize a penalty score for the
two sets of ordered panels we associate them with
ranks in both sets and use a rank correlation metric
to compute the degree of agreement. Specifically,
rank assignment is done as follows: panels in S̃
are simply assigned ranks in order of appearance
1 through N – we call this S̃P

ranking; meanwhile
panels in S are assigned the identical rank to their
one-to-one aligned panel in S̃ and S̃P

ranking – we

refer to these rankings as SP
ranking. An example

of this process can be found in Figure 3. The final
ordering penalty is computed using Spearman’s
rank correlation (Szmidt and Kacprzyk, 2010):

OP =
Spearman(SP

ranking, S̃
P
ranking) + 1

2
(4)

where we perform a linear transformation to map
the original range of the correlation coefficient [-1,
1] to the desired range [0, 1].

Similarly, for the recall ordering penalty, we map
the reference panels to the generated panels, cal-
culated as λR(s) =

∑
s δR(s̃, s). OR is calculated

similar to OP , using the recall rankings.

5.3 Length Penalty

Finally, we compute a length penalty for both the
recall and precision scores. Similar to Fu et al.
(2021), this is done as follows:

L = e
−abs(|S|−|S̃|)

|S| (5)

We chose to keep L non-reflexive, because in the
reverse case – as |S̃| → ∞, L → 1 – the metric
could be cheated by over-generating.

6 Results

As mentioned in §3, past work on Doc2PPT and
Paper-Posters do not release code, making it diffi-
cult to do a direct comparison. They also do not
report any baselines to compare against. Mean-
while, Longsumm’s blind test does not allow us to
compute our custom metric, although we do report
the leaderboard results in Appendix C. Notably,
with almost no prompt engineering our LLM-based
system places second on this leaderboard. We ar-
gue that for the investigation in this paper, direct
comparison to prior non-LLM baselines is not only
unfair to those approaches, but not particularly in-
sightful. Therefore, similar to Wei et al. (2022b),
we focus on variants of our LLM-based method
and treat them as baselines. Example outputs of
each template type can be found in Appendix D.

We conduct experiments with the following set-
tings: (1) No Representation – this is the default
setting of going directly from the source document
to the target document. We skip the intermediate
generation step, passing the full paper as input. We
experiment both with and without the style param-
eters. (2) Own Representation – we do not pass
a JSON structure to the intermediate generation
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Similarity Measure
Rep. Style R-L M B BERTS

Sl
id

es
None × 5.0 6.4 0.3 31.6
None ✓ 5.1 6.0 0.4 31.7
Own ✓ 6.5 7.1 1.2 36.1
Text ✓ 7.3 8.0 1.4 36.4

JSON × 4.2 6.0 0.3 31.4
JSON ✓ 7.4 8.4 1.5 36.9

B
lo

gs

None × 26.6 19.6 3.0 82.5
None ✓ 25.1 17.7 2.3 82.8
Own ✓ 23.9 19.2 2.3 82.2
Text ✓ 25.4 19.3 2.5 82.5

JSON × 28.3 25.3 5.0 82.3
JSON ✓ 25.4 19.6 2.8 82.4

Po
st

er
s

None × 8.1 10.3 1.0 35.6
None ✓ 10.1 11.6 1.9 39.5
Own ✓ 12.8 12.6 2.9 52.8
Text ✓ 11.3 11.7 2.1 45.9

JSON × 14.2 16.8 4.0 52.8
JSON ✓ 15.5 14.5 15.3 53.3

Table 3: Evaluation results using GPT3.5
(gpt35-16k). For each template, we experi-
ment with different representations (Rep) and whether
or not we include the style parameters (Style). We
report the TAE F1 scores as calculated in §5, using
ROUGE-L (R-L), METEOR (M), BLEU (B), and
BERTScore (BERTS) as the similarity metrics.

step, and allow the model to choose its own struc-
ture. (3) Text Representation – we extract the text
from the intermediate representation, discarding
the JSON structure. (4) JSON Representation –
this is the full JSON structure for the intermedi-
ate generation step. We experiment both with and
without the style parameters.

We use gpt35-16k-0613 in our main set of
experiments. We truncate text that is too long for
the input window and use a temperature of 0.0 as
standard.5

6.1 Results of automatic evaluation

In Table 3, we report the TAE F1 scores as de-
scribed in §5, using ROUGE-L (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), BLEU (Pap-
ineni et al., 2002), and BERTScore (Zhang* et al.,
2020) for the similarity measure. As seen in the
results, by most measures, generating a JSON inter-
mediate representation yields the best performance.

We see that using the text representation gen-
erally degrades the performance over providing
the structured JSON representation, indicating that
structure is important for downstream performance
in addition to abstractive filtering of information.
Additionally, the text representation performs bet-

5A detailed evaluation of the temperature hyper-parameter
is included in Appendix §B

Similarity Measure
Model Rep. R-L M B BERTS

Sl
id

es

MS × 0.6 0.4 0.0 28.6
✓ 4.4 4.6 0.4 30.5

MX × 4.8 7.3 0.5 31.8
✓ 6.7 7.9 1.0 34.0

GPT4 × 8.3 9.6 1.7 36.2
✓ 8.4 9.1 2.0 38.1

B
lo

g

MS × 2.7 1.7 0.1 73.5
✓ 21.7 16.2 1.7 81.3

MX × 22.8 15.7 2.1 82.6
✓ 25.6 20.5 3.2 82.5

GPT4 × 25.7 19.9 2.6 82.8
✓ 25.8 20.2 3.1 82.7

Po
st

er

MS × 3.2 1.8 0.2 32.2
✓ 6.0 6.5 1.2 38.1

MX × 10.5 11.4 1.7 40.9
✓ 10.4 11.0 1.5 50.7

GPT4 × 16.4 18.2 4.5 59.8
✓ 14.6 15.3 3.7 57.2

Table 4: TAE F1 scores using Mistral-7b (MS), Mixtral
(MX), and GPT4. We use ROUGE-L (R-L), METEOR
(M), BLEU (B) and BERTScore (BERTS) as our simi-
larity measures. For each template, we compare a JSON
representation versus skipping the intermediate genera-
tion step (Rep), maintaining the same style parameters
in both settings.

ter than skipping the intermediate step altogether
for both the poster and slide generation task, but
not the blog generation task. This is likely because
posters and slides have more inherent structure than
blog posts, which can be relatively free-form.

Finally, we see that allowing the model to choose
its own representation format degrades perfor-
mance over providing our pre-defined JSON struc-
ture. However, we see that in most cases, providing
a representation generated without a JSON struc-
ture still performs better than skipping the interme-
diate generation step altogether (while maintaining
the same style parameter setting). This indicates
that even without a pre-defined structure, the inter-
mediate step is still valuable for performance.

Experiments with additional models. We
conduct a subset of our experiments on
Mistral-7B (7B-instruct-v0.1), Mix-
tral (8x7B-instruct-v0.1 ) (Jiang et al.,
2023, 2024), and GPT4 (gpt4-32k-0613),
comparing the JSON representation to skipping
the intermediate step. We maintain the same
style parameters in both settings. In Table 4, we
can see that by most measures, the documents
generated with the intermediate representation
score higher than the documents generated
without, particularly for blog posts and slides. The
difference in performance is larger for Mistral than
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Figure 4: Reasons annotators preferred each document. While annotators largely preferred documents generated
with an intermediate representation, the most common reasons for preference are better formatting and information
content. We exclude the “Other” count as it was only selected once.

Mixtral and GPT4, indicating that our method
particularly improves the performance of smaller
models. Smaller models are generally cheaper, less
resource intensive, and faster, but often operate
at the cost of performance. The results indicate
that for applications that are sensitive to cost or
latency, this trade-off can be mitigated with a
structured intermediate representation. The only
experiment in which the documents generated
with the representation do not strictly score higher
on most measures is the posters generated with
Mixtral and GPT4. Upon closer inspection,
the references in this dataset are very verbose,
averaging 391 tokens. Our method produces
generally less verbose posters, averaging 265
total tokens compared to 345 tokens produced
by the baseline. We hypothesize that by editing
the style parameters to include information about
verbosity and length, we can improve performance
on posters in the future.

6.2 Human evaluation

After showing that LLMs benefit from intermediate
structured representations in document transforma-
tions, we investigate whether our proposed evalua-
tion framework aligns better with human judgment
than previously proposed metrics. We sample 100
documents each from DOC2PPT and LongSumm,
and use the entirety of the Paper-Poster dataset in
this study. We present annotators with 2 versions of
each document, one generated with the intermedi-
ate representation and one without. Both versions
use gpt4-32k, as the best performing model.

The annotators are provided with the original
paper and the intended document type (blog, slide

deck, or poster), and are asked the following ques-
tions: (1) Which document do you prefer? (2) On
a scale of 1-3, to what degree do you prefer your
selection? (3) Why do you prefer your selection?
For question 3, annotators are also provided with
a multi-select checklist of reasons for their prefer-
ence: (1) quality of the content, (2) formatting, (3)
document style matching the intended document
types, (4) information represented in the document,
and (5) other (along with a free text box). The full
instructions, including the reasons provided and
examples, can be found in Appendix §A.

If the models do not produce LaTeX
and instead produce only text, we wrap
the text with \begin{document} and
\end{document}. We force the com-
pilation of the outputs with the command:
pdflatex --interaction=nonstopmode
<filename.tex>. Occasionally, this forced
compilation leads to oddly formatted documents,
but we consider this to be a part of the performance
of the method and present the documents with no
further changes. Each document is annotated by 3
different annotators. We employed 4 annotators
from India, sourced via a third-party agency, to
carry out the human evaluation of our task based
on a guideline document containing task-specific
instructions, guidance, and annotated examples.
They were compensated at a rate of $11.98 USD
per hour for the total time spent working on the
task, including a training round of annotation.

Which method do humans prefer? The doc-
uments generated with an intermediate represen-
tation were preferred by 82%, based on majority
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Metric PearsonR
ROUGE-L 14.5

TAE ROUGE-L 19.7
METEOR 24.6

TAE METEOR 25.2
BLEU 13.6

TAE BLEU 13.8
BERTScore 10.6*

TAE BERTScore 5.4*

Table 5: Correlation of evaluation metrics with human
judgement. We compare each metric computed using
the TAE framework versus the standard computation.
*Indicates the correlation is not statistically significant
(p > 0.01).

vote (71% unanimously). The annotator agreement
score was 0.51 with Krippendorff’s alpha, indicat-
ing that while this is a subjective and specialized
task, even non-expert annotators agree to a moder-
ate degree. A visualization of the reasons the anno-
tators preferred their selection can be found in Fig-
ure 4. It can be seen that while annotators largely
preferred the documents generated with an inter-
mediate representation, the most common reasons
for preference are better formatting and better in-
formation content. This indicates that the structure
provided by the intermediate representation makes
it easier for the model to format the final document
well. Additionally, the intermediate representation
only includes the most salient information from
the original text, resulting in higher quality of in-
formation content. Finally, we see a fairly even
distribution across different templatic views for the
reasons of preference, indicating humans prefer the
documents generated with the intermediate repre-
sentation across different document types.

Which metric correlates better with humans?
We test whether our metric, as described in §5, cor-
relates better with human preference compared to
prior evaluation metrics in the literature. For each
annotation, given the degree of the preference d
(Appendix §A Q. 2) we convert value to a score
P (d) → [1, 2, 3] if d is slight, moderate, or strong,
respectively. If the annotator prefers the document
generated without an intermediate representation,
we take −P (d) instead. This allows us to measure
if the metric captures directionality of preference
along with degree. In parallel, we compute the
automatic score m for each metric, then calculate
S = m(with rep) − m(skip rep) where m is the
metric we are evaluating (e.g ROUGE). If a human
annotator prefers a document generated without the
intermediate step, we’d expect a good metric to as-

sign a higher score to that document as well, result-
ing in both S and P (d) being negative (and positive
in the opposite case). Using this intuition we assign
an affinity score of a metric with respect to human
evaluation as the Pearson correlation (Freedman
et al., 2007) of S and P (d).

Since prior metrics are not designed to account
for the structure of documents, we compute them
by extracting only the text of both the generated
and reference documents. The correlations with
human judgement for each metric to its respective
TAE variants can be found in Table 5. As we can
see from the results, evaluations using our template
adaptable framework correlate more highly with hu-
man judgement, except in the case of BERTScore.
In the latter case the results are not statistically sig-
nificant, and we hypothesize that the open-domain
nature of BERT embeddings are poorly suited to
represent the semantic similarity of scientific text.

7 Conclusion

In many domains, people choose to disseminate in-
formation across different modalities and formats
for better communication to broader audiences. We
proposed a unified view of document transforma-
tion and evaluation. We showed that LLMs are ca-
pable of templatic document generation with mini-
mal supervision, and that a structured, intermediate
representation can improve performance, particu-
larly for smaller models. We also introduced a
flexible precision-recall framework for automatic
evaluation that easily integrates existing evaluation
metrics into a unified system and allows for com-
parison across diverse datasets without additional
task specific metric design. Finally, we conducted
a human evaluation and showed that annotators
prefer the documents generated using the interme-
diate representation 82% of the time and that our
evaluation framework correlates better with human
preference than standard evaluation metrics.

8 Limitations

Although our methods are not domain specific, we
only evaluated them in the scientific domain, due
to the availability of public data. Additionally, our
framework is limited to textual content. In future
work we plan to explore the application of our uni-
fied framework for generation and evaluation on
document views in other domains, as well as in-
corporating multi-modal models and content gen-
eration. Finally, it is possible that some of our test
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data has leaked into the training data of the models
with which we experimented. This limitation is not
unique to our work and exists for our baselines in
addition to our methods.

9 Ethics

The potential risks of our work are similar to
those of other work in downstream applications
of LLMs. LLM generated documents can poten-
tial generate copy-righted material (Carlini et al.,
2020), personally-identifiable information (Lukas
et al., 2023), or factually incorrect text (Manakul
et al., 2023). The use of LLMs to generate docu-
ments may violate some academic dishonesty poli-
cies (Zdravkova et al., 2023). Our system is in-
tended to be used in collaboration with human writ-
ers. Users should edit the generations, checking
for factual inconsistencies and other potential er-
rors. Our work is intended to save users time that
might be spent repeating information across mul-
tiple documents, so they can focus on content cre-
ation. Therefore, we believe the benefits of our
work outweigh the potential risks.
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A Annotation Instructions

A.1 Questions
Question 1 – Which document do you prefer?
In this question, you are asked to choose which
document version you prefer. Some examples of
qualities you may use to decide your preference
include:

• The quality of the content – The text is gram-
matical and understandable. E.g. Document
A contains major grammatical errors while
Document B only contains minor errors.

• The formatting – The formatting is reasonable
and matches the formatting of the intended
document type. E.g. A poster contains panels
and each panel contains a header and body
text.

• The style – The document matches the style
of the intended document type. E.g. Shorter,
bulleted sentences in a slide deck.

• Information represented in the document –
The document contains sufficient information
to represent the input document. E.g. A blog
post represents the most important sections
from the input document.

The above criteria are non-exhaustive. Not all
criteria must be met, and you may use other rele-
vant criteria to make your decision. You are not
rating the document for factual correctness,6 and
only need to refer to the corresponding scientific
article if it will aid in making your preference. You
can answer this question with either Document A
or Document B.

Question 2 – On a scale of 1-3, to what degree
do you prefer your selection?
In this question you will rate the degree to which
you prefer your selection, on the following scale:

1. Small preference – The documents are similar
in quality and only contain minor differences
that affect my preference.

2. Moderate preference – I clearly prefer one
document but the differences are not major.

6The annotators are non-experts and do not have the back-
ground to determine factual correctness of scientific informa-
tion. Instead, they are encouraged to use the original paper
to understand if the information presented in the documents
represent the information in the paper, to the best of their
understanding.

3. Strong preference – I have a strong preference
for one document and the differences between
the documents are major.

Question 3 – Why do you prefer your selec-
tion? (You may select more than one property)

□ Formatting

□ Information

□ Quality

□ Style

□ Other (free text)

A.2 Edge cases
For most edge cases, it is up to your discretion on
how to best handle the case. However, below are
a few examples of how you could consider certain
edge cases:

Example 1: Slides 1-5 of Document A are
higher quality but slides 6-10 of Document B
are higher quality. You could reason that the first
slides represent the most important information,
and choose Document A. However, since Docu-
ment B contained higher quality slides for another
portion of the document, you could rate your de-
gree of preference as “Small preference.”

Example 2: Document A more closely
matches the style of the intended document type,
but Document B contains more relevant infor-
mation to the source document. You could
consider if Document A contains sufficient infor-
mation to represent the input document, such as
representing the most important sections. If yes,
then you could prefer Document A. If not, then
you could reason that information content is more
important than style, and prefer Document B.

Example 3: Document A contains more rel-
evant information than Document B, but also
contains major formatting errors, such as text
being cut off from the document.

You could reason that although Document A
contains more relevant information, the major for-
matting errors are significant enough to prefer Doc-
ument B.

Example 4: Neither document matches the
style or formatting of the intended document
type. Since neither document matches the style
or formatting of the intended document type, you
could consider other criteria, such as quality of
content or the information represented.
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Simularity Measure
Temp R-L M B BERTS

Sl
id

es
0.0 7.3 8.2 1.6 35.1
0.25 7.2 8.3 1.5 35.4
0.5 7.0 8.3 1.5 36.4
0.75 7.0 8.0 1.2 35.5
1.0 7.4 8.2 1.4 35.8

B
lo

gs

0.0 25.3 19.9 2.7 82.7
0.25 25.5 19.8 2.7 82.6
0.5 26.2 20.9 3.2 82.8
0.75 25.4 19.9 2.7 82.6
1.0 24.8 19.9 2.6 82.7

Po
st

er
s

0.0 13.5 15.3 3.4 53.5
0.25 13.0 14.8 3.4 53.1
0.5 12.5 14.0 2.7 52.2
0.75 12.0 13.9 3.0 50.8
1.0 11.6 11.9 2.4 50.3

Table 6: Results of the temperature hyperparameter
experiments. We use ROUGE-L (R-L), METEOR (M),
BLEU (B) and BERTScore (BERTS) as our similarity
measures.

B Temperature Experiments

We experiment with the temperature of the gen-
erations to see how temperature affects perfor-
mance. We randomly sample 100 documents
each from LongSumm and Doc2PPT for the blog
and poster generation tasks, respectively. We
use the entirety of the Paper-Poster dataset, since
it contains less than 100 examples. We use
gpt35-16k and experiment with the tempera-
tures [0.0, 0.25, 0.5, 0.75, 1.0]. The results of this
experiment can be found in Table 6. As we can see
from the results, there seems to be little consistency
across the different types in which temperature per-
forms the best.

C Longsumm Blind Test Set Results

We submit the final documents from GPT4, the best
performing model overall, to the Longsumm blind
test set evaluation. We compare the documents
generated with and without the intermediate step.
We see that without the intermediate representation
we get a Rouge-1 score of 46.8 while the results
generated without the intermediate representation
received a Rouge-1 score of 46.4. We note that this
blind test set of 22 papers is significantly smaller
than the evaluation data (505 papers) we used in
the main body of this paper. Despite not designing
a task specific method, we place second on the
leaderboard, showing the powerful capabilities of
LLMs in long document generation.

D Example Outputs

We provide examples of the outputs generated with
and without the intermediate representation below.
The documents in all examples are generated with
GPT4 (gpt4-32k). Figure 5 includes example
slide generations, Figure 6 includes example blog
generations, and Figure 7 includes example poster
generations.
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Abstract
Translating from gender-neutral languages into gender-marked languages is a challenge for machines.
This difficulty is due to training data reflecting natural language asymmetries, including gender bias.
The study investigates if speech translation, where the input is an audio signal, can provide additional information to reduce gender bias.
The study presents the first thorough investigation of gender bias in speech translation, contributing with a benchmark for future studies and a comparison of different technologies.

Introduction
The need to address gender fairness and gender bias in natural language processing tasks is a growing concern.
Gender bias arises from the extent through which each language formally expresses the female or male gender of a referred human entity.
Machines tend to reproduce the linguistic asymmetries present in the real-world data they are trained on.
The study presents the first systematic analysis aimed to assess speech translation performance on gender translation.

The MuST-SHE benchmark
MuST-SHE is a multilingual, natural benchmark allowing for a fine-grained analysis of gender bias in machine translation and speech translation.
It comprises approximately 1,000 (audio, transcript, translation) triplets annotated with qualitatively differentiated and balanced gender-related phenomena.
The dataset was created and annotated by an expert linguist with a background in translation studies.

Experimental Setting
The study compares an End2End system with two cascade systems (Cascade and Cascade+tag).
The evaluation method acknowledges and adapts previous related works to go beyond them and make BLEU scores informative about gender.
The study implements a new evaluation method that removes unrelated factors that may affect the overall performance of a system to soundly estimate gender bias.

Conclusion
Translating gender is still an issue in speech translation and current technologies are affected by gender bias to variable extent.
The study encourages the community to start its rescue from MuST-SHE and the findings discussed in this paper.

(a) Document generated without intermediate representation.
This example is not cropped.

(b) Document generated with intermediate representation. This
example is cropped for space and includes an additional 4 slides
that are not included for space.

Figure 5: The above documents are example slides generated by GPT4 (gpt4-32k) with and without the
intermediate representation. We can see that without the intermediate step, the model did not generate a true slide
deck.
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Introduction Inverse Reinforcement Learning (IRL) is a method used in machine learning where an agent learns to perform tasks by observing a demonstrator. However, a significant limitation of existing IRL methods is their inability to outperform the demonstrator. This is because IRL typically seeks a reward function that makes the demonstrator appear near-optimal, rather than inferring the underlying intentions of the demonstrator that may have been poorly executed in practice.
Summary of the Input Document A recent paper by Daniel S. Brown and colleagues introduces a novel reward-learning-from-observation algorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates beyond a set of ranked demonstrations to infer high-quality reward functions from a set of potentially poor demonstrations. When combined with deep reinforcement learning, T-REX outperforms state-of-the-art imitation learning and IRL methods on multiple Atari and MuJoCo benchmark tasks and achieves performance that is often more than twice the performance of the best demonstration.
Important Takeaways T-REX has several advantages. First, rather than imitating suboptimal demonstrations, it allows us to identify features that are correlated with rankings, in a manner that can be extrapolated beyond the demonstrations. Second, when learning features directly from high-dimensional data, this regularizing effect can also help to prevent overfitting to the small fraction of state space visited by the demonstrator.
The authors evaluated T-REX on a variety of standard Atari and MuJoCo benchmark tasks. Their experiments show that T-REX can extrapolate well, achieving performance that is often more than twice as high as the best-performing demonstration, as well as outperforming state-of-the-art imitation learning algorithms.
Conclusion T-REX is a promising new approach to IRL that can significantly outperform the demonstrator without additional external knowledge. This makes it a valuable tool for tasks where the demonstrator is suboptimal, and the goal is to exceed the demonstrator’s performance.

(a) Document generated without the intermediate repre-
sentation. This example is not cropped.

Extrapolating Beyond Suboptimal

Demonstrations: A New Approach to Inverse

Reinforcement Learning

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, Scott Niekum

December 11, 2023

1 Introduction

In the world of robotics and artificial intelligence, one of the key challenges is
designing autonomous agents that can perform tasks with well-defined goals
and objectives. While computers and robots often outperform humans in tasks
requiring computational speed, precise manipulation, and exact timing, it can
be difficult to design reward functions and objectives that lead to desired be-
haviors. This is where inverse reinforcement learning (IRL) techniques come
into play. IRL techniques can infer the intrinsic reward function of a user from
demonstrations, which is particularly useful when goals or rewards are difficult
for a human to specify.

2 The Problem with Existing IRL Methods

However, a critical flaw of existing IRL methods is their inability to significantly
outperform the demonstrator. This is because IRL typically seeks a reward func-
tion that makes the demonstrator appear near-optimal, rather than inferring the
underlying intentions of the demonstrator that may have been poorly executed
in practice.

3 A New Approach: T-REX

In a recent paper, we introduced a novel reward-learning-from-observation al-
gorithm, Trajectory-ranked Reward EXtrapolation (T-REX), that extrapolates
beyond a set of (approximately) ranked demonstrations in order to infer high-
quality reward functions from a set of potentially poor demonstrations. The goal
of our work is to achieve improvements over a suboptimal demonstrator in high-
dimensional reinforcement learning tasks without requiring a hand-specified re-
ward function or supervision during policy learning.

1

(b) Document generated with the intermediate representa-
tion. This example is cropped for space and includes an
additional page of text.

Figure 6: The above documents are example blog posts generated by GPT4 (gpt4-32k) with and without the
intermediate representation. We can see that without the intermediate representation, the model did not properly
format the LaTeX file for compilation.
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(a) Document generated without the intermediate repre-
sentation. This example is cropped for space and includes
an additional 3 slides.

(b) Document generated with the intermediate representa-
tion. This example is cropped for space and includes an
additional 4 slides.

Figure 7: The above documents are example posters generated by GPT4 (gpt4-32k) with and without the
intermediate representation. We found that GPT4 often generates slide decks in place of posters. We can see that
the document generated without the intermediate representation contains more verbose panels and includes less
formatting.
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