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Abstract

This paper introduces MalAlgoQA, a novel
dataset designed to evaluate the counterfactual
reasoning capabilities of Large Language Mod-
els (LLMs) through a pedagogical approach.
The dataset comprises mathematics and reading
comprehension questions, each accompanied
by four answer choices and their correspond-
ing rationales. At the heart of MalAlgoQA are
“malgorithms” - rationales behind incorrect an-
swer choices that represent flawed yet logically
coherent reasoning paths. These malgorithms
serve as counterfactual scenarios, allowing us
to assess an LLM’s ability to identify and ana-
lyze flawed reasoning patterns. We propose the
Malgorithm Identification task, where LLMs
are assessed based on their ability to identify
corresponding malgorithm given an incorrect
answer choice. To evaluate the model perfor-
mance, we introduce two metrics: Algorithm
Identification Accuracy (AIA) for correct an-
swer rationale identification, and Malgorithm
Identification Accuracy (MIA) for incorrect an-
swer rationale identification. Our experiments
reveal that state-of-the-art LLMs exhibit sig-
nificant performance drops in MIA compared
to AIA, highlighting the challenges in counter-
factual reasoning. Surprisingly, we find that
the chain-of-thought prompting technique not
only fails to consistently enhance MIA but
can sometimes lead to underperformance com-
pared to simple prompting. These findings have
important implications for developing LLMs
with improved counterfactual reasoning, par-
ticularly relevant for AI-powered tutoring sys-
tems, where identifying and addressing stu-
dent misconceptions is essential. MalAlgoQA
dataset is available here.

1 Introduction

Evaluating the counterfactual reasoning capabil-
ities of Large Language Models (LLMs) – their

∗Equal contribution.

ability to consider “what if” scenarios and infer
causes based on hypothetical situations – remains
a significant challenge despite their impressive per-
formance in various natural language tasks (Pearl,
2019; Rafetseder et al., 2021; Sonkar and Baraniuk,
2023). We introduce a novel method to evaluate
these capabilities, drawing inspiration from edu-
cational assessment techniques. Specifically, we
leverage the practice of distractor choice genera-
tion, which involves creating plausible but incor-
rect answer options by envisioning hypothetical
scenarios and logical yet flawed reasoning paths.
This approach mimics how educators anticipate and
model potential student misconceptions, engaging
in counterfactual thinking about alternative cogni-
tive processes that could lead to specific errors.

Building on this foundation, we present MalAl-
goQA, a dataset designed to challenge LLMs’ abil-
ity to reason about hypothetical situations and iden-
tify flawed logical pathways. MalAlgoQA con-
sists of a diverse set of 807 mathematics and 290
reading comprehension questions spanning various
grade levels (3-11), content classifications (e.g., al-
gebra, geometry, number & operations), and Depth
of Knowledge levels (DOK) (1-3) (Webb, 2002).
Each question is accompanied by a set of answer
choices and their associated rationales.

Central to our approach is the concept of
“malgorithms” - a term we coin to describe the
flawed reasoning paths that lead to incorrect an-
swers (name is inspired by the concept of “mal-
rules” proposed by Payne and Squibb (1990)).
These malgorithms represent deterministic yet er-
roneous thought processes, mirroring the way stu-
dents might logically follow a series of steps based
on a misunderstanding or misapplication of con-
cepts. We propose the Malgorithm Identification
task to assess LLMs’ ability to reason about both
correct and incorrect answer rationales. In this
task, given a question and a specific answer choice,
the model must identify the underlying rationale

15554

https://github.com/luffycodes/MalAlgoQA-Dataset


Question

Each side of a square is 3 inches long. A student increases the length of each side by 3
inches. The area of the new square is how many times the area of the original square?

Answer Choices

(A) 9 (Rationale: Squared the change in the length.)

(B) 2 (Rationale: Calculated the relationship between the sides.)

(C) 3 (Rationale: Used the change in the length.)

(D) 4 (Rationale: Calculated the area of the original square: 3× 3 = 9 and the area of the new
square with each side length increased by 3 inches: 6× 6 = 36. Then determined that the
area of the new square is 4 times the area of the original square.)

Table 1: An example question from the MalAlgoQA dataset illustrating the Malgorithm Identification task. Each
answer choice is associated with a rationale, representing the reasoning process that led to that answer. The task
for the model is to correctly identify the rationale given a particular answer choice. For incorrect answer choices,
the corresponding rationales are malgorithms, representing flawed reasoning processes and thereby evaluating the
counterfactual reasoning abilities of LLMs.

(algorithm or malgorithm) that led to that choice.
This approach challenges LLMs to engage in both
causal and counterfactual reasoning. To illustrate,
consider a simple question: “What is 1 + 2 × 3 +
4?” with choices A. 11, B. 13, and C. 21. The
rationales are: “Worked left to right” (correspond-
ing to choice B), “Applied PEASMD rule instead
of PEMDAS” (corresponding to choice C), and
“Applied PEMDAS rule” (corresponding to the cor-
rect choice A). Given an answer choice, the model
should identify the rationale explaining that choice.

In order to evaluate model performance, we intro-
duce two key metrics: Algorithm Identification
Accuracy (AIA), which measures accuracy in iden-
tifying the rationale behind a given correct answer.
Malgorithm Identification Accuracy (MIA), of
particular interest, evaluates the model’s counter-
factual causal reasoning abilities by quantifying ac-
curacy in identifying the rationale behind an incor-
rect answer. Our experiments reveal that GPT-4o
(OpenAI, 2023) achieves an AIA of 95.7%, demon-
strating its proficiency in this task. However, when
it comes to MIA, GPT-4o’s performance drops sig-
nificantly, with an accuracy of only 66.1%. This
pattern, where accuracy is higher for correct answer
rationales and lower for incorrect answer rationales,
is consistent across other language models, such as
LLaMA-3-70B (Dubey et al., 2024) and GPT-3.5
(Schulman et al., 2022). It emphasizes the chal-

lenge of counterfactual reasoning for LLMs, espe-
cially on finding the underlying rationale behind
incorrect answer choices. Our experiments also
reveal an unexpected result that Chain-of-Thought
(CoT) prompting (Wei et al., 2022b; Kojima et al.,
2022) not only fails to consistently enhance MIA, it
sometimes even underperforms compared to simple
prompting.

The implications of our findings reveal critical
challenges for AI in education. The stark perfor-
mance gap between AIA and MIA across all mod-
els (e.g., GPT-4o’s 95.7% AIA vs. 66.1% MIA) ex-
poses fundamental limitations in LLMs’ ability to
understand student misconceptions. This discrep-
ancy suggests that current LLM tutoring systems
fail to identify and address the root causes of
student errors. Such limitations necessitate a re-
thinking of feedback mechanisms in LLM-powered
educational tools. Their struggle with malgorithm
identification (e.g., GPT-3.5’s dramatic drop from
86.3% AIA to 14.74% MIA in Math) indicates
they may offer incomplete or potentially mislead-
ing guidance when addressing student mistakes.
These insights have profound implications for au-
tomated grading and assessment. The significant
performance drop in MIA across all models raises
concerns about the reliability of AI-driven systems
in evaluating open-ended questions or complex
problem-solving tasks.
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Our work makes two key contributions to the
field of LLMs and AI for education, with crit-
ical implications for developing more effective
AI-powered tutoring systems. First, we introduce
MalAlgoQA in section 2, a novel dataset inspired
by pedagogical distractor generation techniques,
specifically designed to evaluate the counterfactual
reasoning capabilities of LLMs. This approach
mimics how educators create plausible but incor-
rect answer options, challenging LLMs to engage
in the type of reasoning essential for understanding
and addressing student misconceptions. Second,
we propose the Malgorithm Identification task in
section 3, along with two associated evaluation
metrics: AIA and MIA. Our findings in sections 4
and 5 reveal a significant performance gap between
these metrics across various LLMs, highlighting
the challenge these models face in counterfactual
reasoning. We discuss the implications of our find-
ings for AI-powered educational tool in section 6.
By developing methods to evaluate LLMs’ ability
to identify and understand student misconceptions,
our work paves the way for more effective AI tu-
toring systems that can accurately diagnose and
address individual students’ conceptual gaps (Liu
et al., 2023; Sonkar et al., 2023, 2024c).

2 MalAlgoQA Dataset

We introduce MalAlgoQA, a real-world dataset
consisting of multiple-choice questions in mathe-
matics and reading comprehension for students in
grade 3 through 11. The dataset is designed to eval-
uate the counterfactual reasoning abilities of LLMs
through the task of analyzing the rationales and
reasons behind incorrect answer choices, a process
we refer to as “Malgorithm identification.” The
MalAlgoQA dataset provides valuable resources to
assess the counterfactual reasoning capabilities of
LLMs through a pedagogical approach.

2.1 Dataset Overview

MalAlgoQA comprises two multiple-choice ques-
tion sets: a mathematics and a reading compre-
hension question set. The mathematics question
set contains 807 questions, while the reading com-
prehension question set has 290 questions. Each
question is associated with four answer choices,
as well as their corresponding rationales. Reading
question set also provides a passage for each ques-
tion. Table 1 provides an example of math question,
with more examples available in A. Additionally,

the dataset provides rich metadata including the
grade level, content classification, and Depth of
Knowledge (DOK) level for each question.

2.1.1 Grade Levels
The questions in MalAlgoQA span across multiple
grade levels, ranging from Grade 3 to Grade 11. As
illustrated in Table 2, the distribution of questions
for both mathematics and reading comprehension
subsets is balanced across different grade levels.

Grade Level Math Reading

3 132 45
4 120 47
5 94 33
6 140 41
7 159 35
8 128 42

10 - 47
11 34 -

Table 2: Distribution of questions across grade levels.

2.1.2 Content Classifications
The mathematics questions set are categorized into
five content classifications: Number & Operation,
Algebra, Geometry & Measurement, Data Analysis,
and Data Analysis & Probability. The reading com-
prehension questions are divided into two content
classifications: Informational Text and Literature.
Table 3 presents an overview of the distribution
across content classifications for both question sets.

Math Content Classifications

Classification Questions

Algebra 315
Number & Operation 312

Geometry & Measurement 122
Probability 44

Data Analysis 14

Reading Content Classifications

Classification Questions

Informational Text 190
Literature 100

Table 3: Distribution of questions across content classi-
fications.
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2.1.3 Depth of Knowledge (DOK) Levels
Each question in MalAlgoQA is annotated with a
DOK level, which indicates the cognitive complex-
ity of the question. The DOK levels are derived
from Norman L. Webb’s taxonomy (Webb, 2002)
and range from I to III, with higher levels represent-
ing increased cognitive complexity. Table 4 shows
the distribution of questions across DOK levels for
both question sets.

DOK Level Math Reading

I 349 37
II 434 203
III 24 50

Table 4: Distribution of questions across DOK levels.

2.2 Question and Rationale Characteristics
The questions in MalAlgoQA vary in length and
complexity. The average length of mathematics
questions is 122 characters, while the average
length of reading comprehension questions is 104
characters. Reading comprehension questions are
accompanied by passages, which have an average
length of 5783 characters. Each answer choice is
associated with an rationale, which provide expla-
nations for the correct and incorrect answer choices.
The average length of answer rationales for math-
ematics questions is 227 characters, while the av-
erage length of answer rationales for reading com-
prehension questions is 1699 characters.

3 Methodology

In this section, we present the task formulation
for Malgorithm Identification.

3.1 Definitions and Task Formulation
Let Q = {q1, q2, ..., qn} be a set of multiple-choice
questions, where each question qi has a set of an-
swer choices Ci = {ci1, ci2, ci3, ci4} and a set of
rationales Ri = {ri1, ri2, ri3, ri4} corresponding
to each answer choice. The rationale can be thought
of as a chain of reasoning steps, where each step
represents a part of the thought process leading to
the selection of an answer choice.

Malgorithm
We introduce the term “malgorithm” to describe
a rationale underlying an incorrect answer choice.
A malgorithm is composed of a series of reason-
ing steps, some of which are correct, while others

contain errors. We refer to these erroneous steps
as “mal-rules”. The term mal-rules is derived from
the cognitive error literature (Brown and VanLehn,
1980; VanLehn, 1990; Payne and Squibb, 1990),
which refers to the flawed or incorrect rules that stu-
dents may apply when solving problems, resulting
in systematic errors. In our context, a malgorithm
is a reasoning chain that consists of both correct
rules and mal-rules, with the presence of mal-rules
ultimately leading to the selection of an incorrect
answer choice.

Malgorithm Identification Task
Given a question qi, an answer choice cij (either
correct or incorrect), and the set of rationales Ri,
the LLM must identify the rationale rik that corre-
sponds to the given answer choice cij . If the given
answer choice is incorrect, the corresponding ratio-
nale is a malgorithm containing a combination of
correct reasoning steps and one or more mal-rules.

3.2 Evaluation Metrics

To gain a comprehensive understanding of the
LLMs performance in the Malgorithm Identifica-
tion task, we use two key metrics:

1. Algorithm Identification Accuracy (AIA):
This metric measures the model’s ability to identify
the rationale or algorithm that corresponds to the
correct answer choice. Essentially, AIA evaluates
how well the model recognizes and follows a chain
of reasoning steps that lead to the correct answer.

2. Malgorithm Identification Accuracy
(MIA): This metric measures the model’s ability
to identify the flawed reasoning or malgorithm that
corresponds to an incorrect answer choice. Specifi-
cally, MIA evaluates the model’s capacity to iden-
tify faulty reasoning chains that contain a combi-
nation of correct steps and one or more mal-rules,
which lead to the wrong answer.

4 Experiments and Findings

4.1 Experimental Setup

We conducted experiments on the Malgorithm
Identification task with four state-of-the-art LLMs:
GPT-4o, GPT-3.5, LLaMA3-70B and LLaMA3-
8B. To evaluate the LLMs performance, we use
AIA and MIA metrics (described in section 3.2).

The specific models we use are GPT-4o: gpt-4o-2024-
05-13, GPT-3.5: gpt-3.5-turbo-0125, LLaMA3-70B: Meta-
LLaMA3-70B-Instruct, LLaMA3-8B: Meta-LLaMA3-8B-
Instruct
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CoT Prompt for Malgorithm Identification:

System: Provide step-by-step reasoning to determine the answer rationale that

corresponds to the given choice for the question. Then, provide your answer in
the specified JSON format.

Question: {question}
Choice: {choice}
Answer Rationales: {formatted_rationales}

Given the question and answer rationales, determine which answer rationale
corresponds to the given choice for the question.

Provide step-by-step reasoning. Show the steps.

And then provide your answer in the following JSON format:
{{
"Correct Choice": "[A/B/C/D]"

}}

Table 5: Prompt for the Malgorithm Identification experiment, where the LLM identifies the relationship between
answer choices and rationales in a multiple-choice question-answering setting. The task involves identifying the
“malgorithm”, a rationale that represents flawed reasoning steps which lead to an incorrect answer choice. The
prompt provides the question, an answer choice (either correct or incorrect), and all rationales, asking the LLM to
identify the rationale corresponding to the given choice. The highlighted sentence instructs the model to provide
step-by-step reasoning, an instruction added for the Chain-of-Thought prompting strategy.

For each model, we evaluated with four experi-
mental settings: (1) Simple prompting, where the
LLMs are prompted to provide only the final an-
swer; (2) Chain-of-Thought (CoT) prompting (Wei
et al., 2022b; Kojima et al., 2022), where the LLMs
are prompted to provide step-by-step reasoning and
show the intermediate steps before giving the final
answer, as shown in Table 5; (3) Zero-shot learn-
ing, where the LLMs are provided without any
additional examples; (4) Few-shot learning, where
the LLMs are provided with a small number of
examples demonstrating the desired reasoning pro-
cess, in addition to the standard prompts. Due to
context length constraints, we conducted few-shot
experiments only on the Math dataset.

4.2 Main Findings

Wide Performance Gap Between MIA and AIA

The most striking observation from Table 6 is the
substantial performance gap between Malgorithm
Identification Accuracy (MIA) and Algorithm Iden-
tification Accuracy (AIA) across all models. For
GPT-4o on the Math dataset with zero-shot CoT
prompting, we see an AIA of 95.65% compared
to an MIA of only 66.10% - a drop of nearly
30 percentage points. This pattern is consistent
across models and prompting strategies, with the

gap widening for smaller models. For instance,
GPT-3.5 shows an even more dramatic difference:
86.28% AIA vs 14.74% MIA.

This disparity suggests that while LLMs have
become proficient at identifying correct reasoning
paths, they struggle significantly when asked to rec-
ognize and articulate flawed reasoning. This chal-
lenge goes beyond simple counterfactual reasoning
and points to a fundamental limitation in how these
models process and evaluate logical structures. The
ability to identify correct reasoning does not nec-
essarily translate to the ability to pinpoint errors
in incorrect reasoning, indicating a potential blind
spot in the training or architecture of current LLMs.

Impact of Model Size on MIA Performance
The data reveals a clear correlation between model
size and MIA performance. For the Math dataset
with zero-shot CoT prompting, we see a pro-
gression from LLaMA3-8B (27.05% MIA) to
LLaMA3-70B (55.32% MIA) to GPT-4o (66.10%
MIA). This trend suggests that the ability to iden-
tify malgorithms is an emergent property that sig-
nificantly improves with increased model capacity
(Wei et al., 2022a). However, it’s important to note
that this improvement with model size is much
more pronounced for MIA than for AIA. While
GPT-4o outperforms LLaMA3-8B by 39.05 per-
centage points in MIA, the difference in AIA is
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LLM Subject Num Shots Prompting MCQ AIA MIA

GPT 4o Reading
0 Simple 95.86 98.23 82.80
0 CoT 95.52 97.88 68.63

LLaMA3-70B Reading
0 Simple 89.45 95.72 60.00
0 CoT 89.27 94.60 58.40

GPT-3.5 Reading
0 Simple 84.83 95.05 13.98
0 CoT 81.66 85.82 8.61

LLaMA3-8B Reading
0 Simple 73.96 89.62 19.89
0 CoT 78.05 89.52 15.47

GPT 4o Math

0 Simple 90.11 92.06 62.82
5 Simple 90.61 64.99
0 CoT 97.61 95.65 66.10
5 CoT 95.49 65.10

LLaMA3-70B Math

0 Simple 73.83 94.31 50.22
5 Simple 93.65 48.31
0 CoT 90.72 95.47 55.32
5 CoT 95.89 50.6

GPT 3.5 Math

0 Simple 52.85 77.08 35.8
5 Simple 76.85 34.61
0 CoT 82.53 86.28 14.74
5 CoT 81.87 17.06

LLaMA3-8B Math

0 Simple 45.79 75.29 34.81
5 Simple 80.32 38.41
0 CoT 70.68 83.07 27.05
5 CoT 83.05 31.39

Table 6: Performance results of LLMs on the Malgorithm Identification task for Reading and Math subjects.
Results are organized by prompting type (Simple/CoT) and number of shots (0/5). Metrics include Multiple-Choice
Question (MCQ) accuracy, Algorithm Identification Accuracy (AIA), and Malgorithm Identification Accuracy
(MIA). AIA measures correct rationale identification, while MIA measures flawed reasoning identification. MIA
scores are generally significantly lower than AIA, highlighting the challenge of counterfactual reasoning.

only 12.58 percentage points (95.65% vs 83.07%).
This disproportionate scaling indicates that mal-
gorithm identification may require more complex
reasoning capabilities that are only unlocked at
larger model scales.

Ineffectiveness of Few-Shot Learning
The data clearly demonstrates that few-shot learn-
ing does not significantly improve MIA perfor-
mance across models. For GPT-4o on the Math
dataset, the MIA score with CoT prompting ac-
tually decreases slightly from 66.10% (zero-shot)
to 65.10% (5-shot). LLaMA3-70B shows a sim-
ilar trend, with MIA dropping from 55.32% to
50.6%. Even in cases where there is a marginal
improvement, the gains are negligible. For in-

stance, LLaMA3-8B’s MIA increases from 27.05%
to 31.39% with 5-shot CoT prompting - a differ-
ence of only 4.34 percentage points. GPT-3.5
shows a similarly small improvement from 14.74%
to 17.06%.

These results suggest that providing examples
does not substantially enhance an LLM’s ability
to identify malgorithms. This finding is particu-
larly noteworthy given that few-shot learning often
improves performance on other NLP tasks. The
ineffectiveness of this approach for malgorithm
identification underscores the unique challenges
posed by this task and suggests that more sophisti-
cated techniques may be needed to improve LLM
performance in this area.
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Subject Grade GPT 4o LLaMA3-70B

Math

3 67.00 44.26
4 65.93 54.13
5 66.52 46.97
6 67.80 58.84
7 64.50 57.49
8 62.96 42.44
11 53.68 41.03

average 65.10 50.60

Subject Grade GPT 4o LLaMA3-70B

Reading

3 73.81 65.18
4 68.89 60.71
5 69.47 45.68
6 58.62 50.00
7 63.46 80.22
8 80.67 62.00
10 64.96 46.83

average 68.63 58.40

Table 7: Grade-level performance distribution (MIA) for GPT-4o and LLaMA3-70B models using Chain-of-Thought
prompting (few-shot for Math, zero-shot for Reading). Grades with above-average performance are underlined.

Figure 1: An illustration of MIA performance across different Grades and DOK levels for Math and Reading
question sets. The top number represents MIA performance and the bottom number represents question counts.
DOK I and II are selected for Math and DOK II and III for Reading. (best viewed in colors).

4.3 Understanding CoT Prompting for MIA

Our analysis of Chain-of-Thought (CoT) prompt-
ing reveals an unexpected ineffectiveness in
improving Malgorithm Identification Accuracy
(MIA), and in some cases, even leads to decreased
performance compared to simple prompting.

Inconsistent impact across subjects: For GPT-
4o, CoT prompting shows negligible difference in
Math MIA (65.1% vs 65.0% for simple prompt-
ing), but significantly underperforms in Reading
MIA (68.6% vs 82.8% for simple prompting).

Consistent underperformance of LLaMA-
70B: LLaMA-70B demonstrates lower MIA
prompting in both Reading (58.4% vs 60.0%) and
Math (48.3% vs 50.6%) with CoT compared to
simple prompting.

Minimal impact on AIA: CoT prompting gen-
erally performs similarly to simple prompting for
Algorithm Identification Accuracy (AIA) across
models and subjects, indicating its ineffectiveness
is specific to malgorithm identification.

These results challenge the assumption that ex-
plicit step-by-step reasoning always improves per-
formance on complex tasks. The data suggests

that CoT prompting, while effective for many NLP
tasks, may actually hinder the model’s ability to
identify flawed reasoning paths in the context of
malgorithm identification.

A plausible explanation for this counterintuitive
finding lies in the nature of the training data typi-
cally used for LLMs. These models are predom-
inantly exposed to examples of correct reasoning
during pre-training and fine-tuning. Consequently,
when CoT prompting guides the model through a
structured thought process, it likely leverages these
learned patterns of correct reasoning. This may
inadvertently anchor the model to correct logical
pathways, making it more challenging to deviate
from these patterns and identify flawed reasoning.
In essence, CoT prompting might be reinforcing
the model’s bias towards correct reasoning, which
is counterproductive when the task specifically re-
quires identifying incorrect logical steps.

5 Analysis: Educational Dimensions

Performance across Grade Levels
Table 7 analyzes the MIA performance of GPT-4o
and LLaMA3-70B models across different grade
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Figure 2: An illustration of MIA performance across five math content classes (Number & Operation, Algebra,
Geometry & Measurement, Data Analysis, Probability) and two Reading content classes (Informational, Literature).

levels in math and reading datasets. Both models
consistently show a decline in performance with
increasing grade levels, with LLaMA3-70B exhibit-
ing some unexpected variability, particularly ex-
celling in Grade 8 of the reading dataset. These
results highlight the increasing challenges in tack-
ling malgorithm identification task as the questions
becomes more complex.

Performance across DOK
Figure 1 presents a comprehensive overview of
performance across DOK levels for various Grade
using MIA score from GPT 4o with CoT prompt-
ing strategy. The pattern indicates that as the DOK
level and Grade increases, MIA performance tends
to decline, especially highlighted by the compar-
ison between the top-left cell (dark green) and
bottom-right cell (dark red). Similarly, in the Read-
ing dataset, performance at DOK Level III drops
to 33.33 for Grade 7. This trend further empha-
sizes the inherent difficulty in evaluating the mal-
gorithms of questions that require deeper under-
standing and analytical thinking.

Performance across Content Classifications
Figure 2 illustrates the performance of LLMs in de-
tecting malgorithms across five math contents and
two reading content classifications. For the math
dataset, Geometry consistently yields the highest
performance across all models, suggesting that
even for malgorithm identification, structural con-
tent like Geometry is easier for LLMs to handle as
compared to numerical content. On the other hand,
Probability appears to be more challenging content,
reflecting the inherent difficulty of LLMs in prob-
abilistic reasoning. For the reading dataset, GPT-
4o and LLaMA3-70B excel at Informational Text,

while smaller models like GPT-3.5 and LLaMA3-
8B perform better with Literature. This observation
suggests that larger models are better at processing
structured, factual content, whereas smaller mod-
els are more efficient with narrative, context-rich
material.

6 Implications for AI in Education

The findings from our study on malgorithm identifi-
cation have significant implications for the develop-
ment and application of AI in educational contexts:

Limitations in Understanding Student Mis-
conceptions: The substantial performance gap be-
tween Algorithm Identification Accuracy (AIA)
and Malgorithm Identification Accuracy (MIA)
suggests that current LLMs are far more adept
at recognizing correct reasoning than identifying
flawed logic. For GPT-4o, we observed a drop from
95.65% AIA to 66.10% MIA on the Math dataset.
This disparity indicates that AI tutoring systems
based on these models may excel at confirming cor-
rect answers but struggle to diagnose and address
student misconceptions effectively. This limitation
could lead to missed opportunities for targeted in-
tervention and personalized learning.

Rethinking Training Approaches for Error
Recognition The ineffectiveness of CoT prompt-
ing in improving MIA performance reveals a fun-
damental challenge in training LLMs to recognize
and analyze errors. Rather than simply diversify-
ing training data, this finding suggests a need for
novel training paradigms that specifically target the
skill of error identification (Sonkar et al., 2024a).
Future AIED systems may require specialized fine-
tuning processes or architectural modifications that
enable models to simultaneously reason about cor-
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rect and incorrect logical pathways. This could
involve developing new pre-training tasks focused
on error detection, or creating model architectures
that maintain separate representations for correct
and flawed reasoning patterns. Such innovations
could lead to AI tutors that are equally adept at
reinforcing correct understanding and diagnosing
misconceptions, significantly enhancing their effec-
tiveness in personalized education.

Rethinking Feedback Mechanisms: The chal-
lenges in malgorithm identification suggest that
current AI models might provide incomplete or
misleading feedback to students. AIED systems
need to be designed with an awareness of these lim-
itations, potentially incorporating human oversight
or alternative assessment methods to ensure that
student misconceptions are accurately identified
and addressed.

Implications for Automated Grading and As-
sessment: The performance discrepancy between
AIA and MIA also raises concerns about the re-
liability of AI-driven automated grading systems,
particularly for open-ended questions or problems
requiring complex reasoning. Educational institu-
tions considering the implementation of such sys-
tems should be aware of these limitations and con-
sider alternate (Sonkar et al., 2024b,d) or hybrid
approaches with human review.

Adaptive Difficulty Handling: The observed
decline in MIA performance across increasing
grade levels and DOK levels highlights the need for
AIED systems that can adapt to varying levels of
question complexity. Future AI tutors should be de-
signed with mechanisms to maintain consistent per-
formance across different difficulty levels, ensur-
ing effective support for students as they progress
through more challenging material.

The difficulty LLMs face in identifying flawed
reasoning points to a broader challenge in coun-
terfactual reasoning. For AIED applications, this
suggests a need to develop models with enhanced
capabilities in exploring alternative scenarios and
reasoning paths. Such improvements could lead to
more sophisticated tutoring systems that can not
only identify errors but also explain why certain ap-
proaches are incorrect and guide students towards
correct understanding. By addressing these impli-
cations, AIED researchers can work towards not
only improving the accuracy of student assessment
but also enhancing the ability of AI systems to
provide targeted and personalized support.

7 Related Work

Counterfactual reasoning, a critical cognitive pro-
cess for understanding causality, has gained signifi-
cant attention in machine learning (ML) and NLP
research. Pearl’s seminal work on causal inference
(Pearl, 2009) has been widely applied to address
challenges in fairness (Kusner et al., 2017), inter-
pretability (Wachter et al., 2018), and robustness
(Bareinboim and Pearl, 2016) in ML. In NLP, coun-
terfactual reasoning is important for tasks requiring
comprehension of hypothetical scenarios. How-
ever, most existing NLP models primarily focus on
predictive tasks rather than hypothetical reasoning
(Bommasani et al., 2021; Bender et al., 2021). Re-
cent work has begun to address this gap developing
specialized datasets and models for counterfactual
reasoning (Qin et al., 2019). Several datasets have
been created to evaluate different aspects of rea-
soning, including counterfactual reasoning such as
COPA dataset (Roemmele et al., 2011), Counter-
factual Story Rewriting task (Qin et al., 2020), and
CQA dataset (Talmor et al., 2019). These efforts
are complemented by development of new model-
ing approaches, such as causal LMs (Feder et al.,
2021), counterfactual data augmentation (Kaushik
et al., 2020), and generating counterfactual expla-
nations (Wu et al., 2021; Ross et al., 2021). De-
spite these advancements, challenges remain such
as handling multi-step causal chains and generaliz-
ing across diverse domains (Xu et al., 2023; Keith
et al., 2020; Feder et al., 2022).

8 Conclusion and Future Work

This paper introduces MalAlgoQA, a novel dataset
designed to evaluate the counterfactual reasoning
capabilities of LLMs through a pedagogical lens.
By proposing the Malgorithm Identification task
and its associated metrics, we provide a new frame-
work for assessing LLMs’ ability to recognize and
analyze flawed reasoning patterns. Our findings
reveal significant challenges in counterfactual rea-
soning for state-of-the-art LLMs. These results
highlight the need for further research into enhanc-
ing LLMs’ counterfactual reasoning abilities, par-
ticularly for educational applications where under-
standing student misconceptions is crucial. Future
work will focus on expanding the dataset, explor-
ing novel training methodologies, and investigat-
ing architectural modifications to develop more
cognitively-aligned language models capable of
robust counterfactual reasoning.
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9 Limitations

While our research sheds light on the counterfac-
tual reasoning capabilities of LLMs, we acknowl-
edge the inherent complexity and intricacy of the
cognitive process may not be fully captured by
our current evaluation framework. The MalAl-
goQA dataset and the Malgorithm Identification
task, although designed with careful consideration,
are initial steps toward understanding the intricate
aspect of cognition. The chain-of-thought (CoT)
prompting technique is not a panacea and its ef-
fectiveness vary depending on the specific context
and task. As research in this field progresses, we
anticipate further refinements and enhancements to
our methodology, contributing to a more compre-
hensive understanding of counterfactual reasoning
in LLMs.

10 Ethics and Risk

The use of LLMs in classrooms, for instance, could
profoundly influence the learning experiences of
students. While LLMs can provide personalized
learning support and instant feedback, their inabil-
ity to accurately identify and address student mis-
conceptions, as highlighted by our study, could
potentially reinforce incorrect understanding or
reasoning. However, the transparency of LLMs’
decision-making process is a crucial ethical con-
sideration. If LLMs are to be trusted educational
aids, it is critical for students, teachers, and parents
to understand the reasoning behind the LLMs’ re-
sponses. Our work with the MalAlgoQA dataset
is a significant step towards understanding and ad-
dressing these ethical considerations. By exam-
ining the counterfactual causal reasoning abilities
of LLMs, we can assess their readiness for use in
educational settings and contribute to the ongoing
discourse surrounding the ethical deployment of AI
in education. However, we acknowledge that this
is a complex, multifaceted issue that requires con-
tinuous exploration, vigilance, and open dialogue
among researchers, educators, policymakers, and
society at large.
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A Appendix

Examples of MalAlgoQA dataset
We provide five math examples, one per content classifications, of question, choices and their correspond-
ing rationales in Table 8 and 9.
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Math Question Set Example 1:

Content Classification: Number & Operation

Question: What number is subtracted from 1,000 to result in a difference of 421?

Answer and Rationales:

A: 421
Rationale A: Selects the result of subtraction.

B: 579
Rationale B: 1000 - 421 = 579

C: 621
Rationale C: Rounded the hundreds place and added the tens and ones place. 1000 - 400 =

600; 600 + 21 = 621

D: 689
Rationale D: Rounded in hundreds, tens and ones place. 1000 - 400 = 600; 100 - 20 = 80; 10

- 1 = 9; 600 + 80 + 9 = 689

Math Question Set Example 2:

Content Classification: Algebra

Question: Anne bought a calculator that cost 30. She received 10% off her purchase and then
was charged 6% tax. What was the total amount that Anne paid?

Answer and Rationales:

A: 21.20
Rationale A: Subtracted 10 from 30, then added 6%.

B: 25.38
Rationale B: Subtracted 10% of the price from 30 then subtracted 6%.

C: 28.62
Rationale C: Subtracted 10% of the price from 30 and then added 6%.

D: 28.80
Rationale D: Calculated tax based on original price, then subtracted the 3.

Math Question Set Example 3:

Content Classification: Geometry and Measurement

Question: Which side lengths form a right triangle?

Answer and Rationales:

A: 2 cm, 4 cm, 8 cm

Rationale A: Multiplied the 2 smaller sides to get the longest side.

B: 4 cm, 5 cm, 6 cm

Rationale B: Selected side with constant difference between the sides.

C: 5 cm, 12 cm, 13 cm

Rationale C: 5^2 + 12^2 = 13^2

D: 9 cm, 16 cm, 25 cm

Rationale D: Added the 2 smaller sides to get the longest side.

Table 8: Examples of Mathematics question set.
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Math Question Set Example 4:

Content Classification: Data Analysis

Question: Mrs. Castillo recorded the number of students in each grade 5 classroom.
24 28 25 24 29

What is the mean of the data?

Answer and Rationales:

A: 24
Rationale A: Chose the mode.

B: 25
Rationale B: Chose the median. {24, 24, 25, 28, 29}

C: 26
Rationale C: (24 + 28 + 25 + 24 + 29) / 5 = 130/5 = 26

D: 29
Rationale D: Chose the greatest number.

Math Question Set Example 5:

Content Classification: Probability

Question: Ms. Collier had a deck of cards. There were stars on 1/4 of the cards in the deck
. After randomly picking a card and returning it to the deck 100 times, the expected
result and relative frequency of picking a card with a star were equal. In the first 50
cards she picked, she got a star 10 times. How many times did Ms. Collier get a star

in the second 50 cards she picked?

Answer and Rationales:

A: 10
Rationale A: Chose the number of times a star is picked in the 1st 50 cards drawn.

B: 13
Rationale B: Calculated 50 * 1/4 = 12.5 and then rounded to 13.

C: 15
Rationale C: Correct. 100 * 1/4 = 25 cards w/ stars. 25 - 10 = 15

D: 25
Rationale D: Calculated 100 * 1/4 = 25 cards w/ stars.

Table 9: Examples of Mathematics question set.
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