@inproceedings{walsh-etal-2024-sonnet,
title = "Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets",
author = "Walsh, Melanie and
Antoniak, Maria and
Preus, Anna",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.914",
pages = "15568--15603",
abstract = "Large language models (LLMs) can now generate and recognize poetry. But what do LLMs really know about poetry? We develop a task to evaluate how well LLMs recognize one aspect of English-language poetry{---}poetic form{---}which captures many different poetic features, including rhyme scheme, meter, and word or line repetition. By using a benchmark dataset of over 4.1k human expert-annotated poems, we show that state-of-the-art LLMs can successfully identify both common and uncommon fixed poetic forms{---}such as sonnets, sestinas, and pantoums{---}with surprisingly high accuracy. However, performance varies significantly by poetic form; the models struggle to identify unfixed poetic forms, especially those based on topic or visual features. We additionally measure how many poems from our benchmark dataset are present in popular pretraining datasets or memorized by GPT-4, finding that pretraining presence and memorization may improve performance on this task, but results are inconclusive. We release a benchmark evaluation dataset with 1.4k public domain poems and form annotations, results of memorization experiments and data audits, and code.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="walsh-etal-2024-sonnet">
<titleInfo>
<title>Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Melanie</namePart>
<namePart type="family">Walsh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Antoniak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Preus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs) can now generate and recognize poetry. But what do LLMs really know about poetry? We develop a task to evaluate how well LLMs recognize one aspect of English-language poetry—poetic form—which captures many different poetic features, including rhyme scheme, meter, and word or line repetition. By using a benchmark dataset of over 4.1k human expert-annotated poems, we show that state-of-the-art LLMs can successfully identify both common and uncommon fixed poetic forms—such as sonnets, sestinas, and pantoums—with surprisingly high accuracy. However, performance varies significantly by poetic form; the models struggle to identify unfixed poetic forms, especially those based on topic or visual features. We additionally measure how many poems from our benchmark dataset are present in popular pretraining datasets or memorized by GPT-4, finding that pretraining presence and memorization may improve performance on this task, but results are inconclusive. We release a benchmark evaluation dataset with 1.4k public domain poems and form annotations, results of memorization experiments and data audits, and code.</abstract>
<identifier type="citekey">walsh-etal-2024-sonnet</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.914</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>15568</start>
<end>15603</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets
%A Walsh, Melanie
%A Antoniak, Maria
%A Preus, Anna
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F walsh-etal-2024-sonnet
%X Large language models (LLMs) can now generate and recognize poetry. But what do LLMs really know about poetry? We develop a task to evaluate how well LLMs recognize one aspect of English-language poetry—poetic form—which captures many different poetic features, including rhyme scheme, meter, and word or line repetition. By using a benchmark dataset of over 4.1k human expert-annotated poems, we show that state-of-the-art LLMs can successfully identify both common and uncommon fixed poetic forms—such as sonnets, sestinas, and pantoums—with surprisingly high accuracy. However, performance varies significantly by poetic form; the models struggle to identify unfixed poetic forms, especially those based on topic or visual features. We additionally measure how many poems from our benchmark dataset are present in popular pretraining datasets or memorized by GPT-4, finding that pretraining presence and memorization may improve performance on this task, but results are inconclusive. We release a benchmark evaluation dataset with 1.4k public domain poems and form annotations, results of memorization experiments and data audits, and code.
%U https://aclanthology.org/2024.findings-emnlp.914
%P 15568-15603
Markdown (Informal)
[Sonnet or Not, Bot? Poetry Evaluation for Large Models and Datasets](https://aclanthology.org/2024.findings-emnlp.914) (Walsh et al., Findings 2024)
ACL