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Abstract

Adapting general-purpose language models to
new skills is currently an expensive process that
must be repeated as new instruction datasets
targeting new skills are created, or can cause
the models to forget older skills. In this work,
we investigate the effectiveness of adding new
skills to preexisting models by training on the
new skills in isolation and later merging with
the general model (e.g. using task vectors). In
experiments focusing on scientific literature un-
derstanding, safety, and coding, we find that the
parallel-train-then-merge procedure, which is
significantly cheaper than retraining the models
on updated data mixtures, is often comparably
effective. Our experiments also show that par-
allel training is especially well-suited for en-
abling safety features in LMs relative to contin-
ued finetuning and retraining, as it dramatically
improves model compliance with safe prompts
while preserving its ability to refuse dangerous
or harmful prompts.

1 Introduction

Recent work has shown that instruction tuning pre-
trained language models (LMs) can result in strong
generalist models that can perform a variety of com-
prehension and generation tasks, owing largely to
the availability of high quality datasets.

As training datasets targeting new skills are con-
structed, it is an open question how best to patch
preexisting models to incorporate the new skills
represented by those datasets. Commonly used ap-
proaches include continued finetuning (CFT) of the
existing models on the new datasets and retrain-
ing (RT) the models on a combination of old and
new instruction tuning datasets, both of which have
clear pros and cons associated with them.

CFT, while computationally cheaper, may cause
the model to forget the skills from earlier rounds
of training. On the other hand, in addition to being
more expensive, RT on merged datasets is possible

only when the practitioner has access to the the
training datasets from earlier rounds, which is not
the case for many publicly available instruction-
tuned LMs such as Mistral 7B (Jiang et al., 2023)
and Llama 3 (AI@Meta, 2024). While we focus on
publicly available mixes, this is an important con-
sideration as new models and datasets are released.

As an alternative, we explore merging the pa-
rameters of models separately trained for indi-
vidual skills—merging to learn—a family of ap-
proaches we refer to as “parallel train then merge”
(PTM). This general idea is shared by several well-
known methods (e.g., model patching, Ilharco et al.,
2022; WiSE-FT, Wortsman et al., 2022b; task arith-
metic, Ilharco et al., 2023; TIES Yadav et al., 2023;
DARE, Yu et al., 2024; time vectors, Nylund et al.,
2024). Unlike RT, PTM does not require access
to the original training data, as one can separately
train only on the new data, also making PTM a
computationally cheaper option. Since PTM does
not directly change the weights associated with pre-
viously learned tasks, it should allow the model
to retain more of its original skills compared to
other methods. PTM also enables the efficient addi-
tion of multiple new skills to a single model. This
work is the first to systematically explore PTM for
instruction tuning.

We compare the three methods for model patch-
ing (CFT, RT, and PTM) in terms of model perfor-
mance as well as computational cost. We experi-
ment with adding three new skills: scientific liter-
ature understanding, coding, and refusing unsafe
requests, to Tülu, a general-purpose instruction-
tuned model, and evaluate the performance of the
models resulting from each method on a suite of
evaluation datasets representing general instruction-
following skills as well as those that target the new
skills being added. We find that:

• When optimizing performance on the new
skills, PTM achieves competitive performance
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with the best RT models, with a 50–95% im-
provement in training efficiency.

• PTM preserves nearly all of the original
model’s general skills versus a 10–40% drop
for CFT, while achieving similar skill-specific
performance.

• Setting the mixture weight proportional to the
ratio of the number of training steps dedicated
to the new skill being added is a good heuris-
tic when held-out data is not available, result-
ing in good model performance on new skills
while preserving general performance. We
find that this heuristic can also be effective for
adding multiple new skills to a single model.

• For enabling safety-related refusals, a skill
that can be at odds with general skills, PTM
proves to be particularly effective compared
to RT and CFT by improving unsafe refusal
rates, preserving general skills, and reducing
exaggerated refusals by 30–80%.

Overall, we find that PTM is consistently a bet-
ter choice than CFT for teaching instruction-tuned
models new skills without compromising on gen-
eral skills. We note that RT is not always a feasi-
ble option because the training datasets for many
publicly available instruction-tuned models are not
available, and even when it is, PTM generally of-
fers comparable performance tradeoffs while being
significantly cheaper.

2 Problem Setup

We aim to add new, diverse behaviors to a general-
purpose instruction-tuned model, while preserving
the original model’s overall performance. We want
to do so in a computationally efficient manner, with-
out increasing inference cost. Defined concretely,
we want to use a new skill-specific dataset D to
improve the performance of a general model θG,
trained on general data G, on an evaluation set
for new skills ED, without losing performance on
a general set EG, while minimizing the computa-
tional requirements.

We describe the methodology and training com-
plexity of three methods for adding new skills to
preexisting models: continued finetuning, retrain-
ing from scratch, and model merging. We measure
training complexity in terms of how many training
steps are required to create the pool of models we
select from.

2.1 Continued Finetuning on Target Skills

One straightforward method is to continue finetun-
ing the instruction-tuned model on instruction data
targeting the new skills, which is much cheaper
than retraining from scratch. To determine the best
amount of D to train on, we try n different subsam-
ples Di, each requiring |Di| training steps. In total,
this requires

∑n
i=1 |Di| training steps.

We will see in Section 4.2 that continued fine-
tuning substantially degrades general skills.

2.2 Retraining From Scratch

Another method is to retrain the instruction-tuned
model starting from the pretrained model, with
the skill-specific data added into the original data
mix. Since we care about retaining the general
performance as well, the ratio of the amount of the
skill-specific data to that of the original data needs
to be determined carefully. The ideal way to do
this is to retrain with different data mixing ratios
and then perform model selection based on these
models’ performance on a held-out validation set.

While retraining should lead to competitive per-
formance on both general and skill-specific evalu-
ations, it is inefficient compared to other methods
due to the need to retrain on the entire general mix
for every training run, especially considering the
model selection described above.

For a given subsample of the skill-specific data
Di, a single retraining run requires |G|+ |Di| train-
ing steps. For n data mix variations, the total is
n · |G|+∑n

i=1 |Di|. General instruction datasets
tend to be larger than skill-specific datasets, con-
taining hundreds of thousands to millions of in-
stances (Ivison et al., 2023; Lian et al., 2023; Singh
et al., 2024), while many skill-specific datasets
contain on the order of tens to a hundred thou-
sand instances (Chaudhary, 2023; Wadden et al.,
2024; Zheng et al., 2024), highlighting the overall
expense of retraining.

Additionally, we note that retraining is not pos-
sible in cases where the pretrained and instruction-
tuned models have been released but the general in-
struction mix has not, such as Llama 3 (AI@Meta,
2024), Mistral 7B (Jiang et al., 2023) and Gemma
(Gemma-Team et al., 2024). While we experiment
with publicly available data, this is important for
future work with the latest models and datasets.
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2.3 Parallel Training & Merging
We next describe the three model merging methods
that we explore: task arithmetic (Ilharco et al.,
2023), linear interpolation (Rofin et al., 2022),
and WiSE-FT (Wortsman et al., 2022b). We con-
sider these as instantiations of a general parallel-
train-then-merge (PTM) framework:1 training a
base model on only the skill-specific data D to
create the skill-specific model θD, and then weight-
space merging θD with a generalist model θG with
weight ω.

While retraining and continued finetuning re-
quire training multiple models to determine how
much the skill-specific data should influence the
general model, in PMT, this is accomplished
through the mixture weighting parameter ω. This
means that the total training cost for PMT is |D|,
dramatically lower than other methods.

The three PTM methods we consider correspond
to different ways of training separately on the skill-
specific data and incorporating it into the final
model. While we describe all three methods be-
low, we primarily focus on task arithmetic as we
find that it is particularly adept at improving per-
formance on new skills while preserving general
skills. We compare all three directly in Section 4.4.

Task Arithmetic For task arithmetic, we finetune
the pretrained model θpre on all of the available
skill-specific data D to create θD, and then subtract
θpre to get the new task vector τD:

τD = θD − θpre (1)

We then merge the task vector into the general-
purpose instruction-tuned model θG:

θfinal = θG + ω · τD, (2)

where ω is selected using held out data when avail-
able, or with a heuristic. Experimentally, we find
that setting ω < 1.0 is better than naively setting
ω = 1.

Linear Interpolation For linear interpolation,
we create a general skill task vector τG by sub-
tracting θpre from the instruction-tuned model:

τG = θG − θpre (3)

We then interpolate between the task vector τD and
the general skill vector:

θfinal = θpre + ω · τD + (1− ω) · τG (4)
1This name derives from “branch-train-merge,” a similar

technique designed for pretraining (Li et al., 2022).

WiSE-FT For WiSE-FT, we first continue to fine-
tune θG on the new skill-specific dataset to create
θCFT . We then subtract θG to create τCFT :

τCFT = θCFT − θG (5)

We then add τCFT to the general model with weight
ω, downweighting the impact of CFT:

θfinal = θG + ω · τCFT (6)

Notably, WiSE-FT is especially suitable for mod-
els without publicly available pretrained check-
points, as it does not require access to θpre .

3 Experimental Setup

3.1 Datasets & Evaluations
We explore the trade-off between general and skill-
specific performance across three sets of skills: Sci-
ence, Safety, and Coding. We train general pur-
pose models using a modified version of the Tülu
V2 mix (Ivison et al., 2023), and train skill-specific
models with (1) SciRIFF (Wadden et al., 2024),
(2) a novel refusals dataset, and (3) CodeFeedback
(Zheng et al., 2024). We additionally choose con-
sistent sets of evaluations designed to capture either
general or specialized skills. Datasets and relevant
evaluations are described in greater depth below
and in Table 1.

General-purpose To train our general-purpose
models, we use a modified version of the Tülu V2
mix. We removed the science subset (7.5k exam-
ples), CodeAlpaca (20k examples), and refusals
identified by heuristics (23k examples), resulting
in 275k total instances, to simulate a setting where
the base model has plenty of room to improve in
our target skills. We refer readers to Wang et al.,
2023 and Ivison et al., 2023 for more details on the
original mix.

We evaluate general skills on a subset of the Tülu
2 evaluation suite to cover a broad range of skills:
world knowledge (MMLU, Hendrycks et al., 2021),
mathematics (GSM8K, Cobbe et al., 2021), open-
ended generation (AlpacaEval, Li et al., 2023), rea-
soning (Big Bench Hard, Suzgun et al., 2022), and
truthfulness (TruthfulQA, Lin et al., 2022). More
details are available in Ivison et al., 2023.

Science To train our skill-specific models on sci-
ence, we use SciRIFF (Wadden et al., 2024), an
instruction dataset covering tasks like information
extraction, question answering, and more for sci-
entific literature understanding. The dataset covers
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Dataset Training
Set Size

Number
of Evals Domain

Tülu V2 (modified) (Ivison et al., 2023) 275,464 5 Collection of general instructions

SciRIFF (Wadden et al., 2024) 61,349 9 Scientific literature understanding
Safety (internal) 66,161 4 Prompt/refusal pairs
CodeFeedback (Zheng et al., 2024) 156,526 2 Single-turn coding examples

Table 1: Summary of datasets used in this work.

scientific disciplines like biomedicine, artificial in-
telligence, and others. We refer readers to Wadden
et al., 2024 for full details on the dataset.

We evaluate our models on science using SciR-
IFF’s validation and test sets, measuring perfor-
mance across nine held-out tasks not seen during
training. Unless otherwise noted below, we report
average validation set scores during our analyses.
We refer readers to Wadden et al., 2024 for more
details on evaluations.

Safety To train our skill-specific models on
safety, we use an internally developed safety
dataset covering broad categories like harmful lan-
guage, malicious uses, misinformation, and more.
Each example is a potentially dangerous or harmful
prompt paired with a refusal generated from GPT-4
(OpenAI et al., 2024). A seed set of prompts were
written by humans, and more prompts were gen-
erated based on this seed set by GPT-4. Refusals
were collected by prompting GPT-4, and keeping
responses that were classified as a refusal.

To evaluate our models on safety, we use four
categories of safety evaluations in our experiments:
toxicity (ToxiGen, Hartvigsen et al., 2022), auto-
mated red teaming (HarmBench, Mazeika et al.,
2024), refusing unsafe prompts (XSTest Unsafe,
Röttger et al., 2024), and exaggerated refusals
(XSTest Safe). We normalize scores for these eval-
uations so 0.0 is the worst possible score and 100.0
is the best. For scores reported below, we report
the average of the first three metrics and consider
exaggerated refusals separately.

Coding To train our skill-specific models on cod-
ing, we use the single-turn subset of CodeFeedback
(Zheng et al., 2024) of instruction/code pairs. We
refer readers to Zheng et al., 2024 for more details.

We evaluate our models on coding by taking
the average of scores on HumanEval+ (Chen et al.,
2021; Liu et al., 2023) and Mostly Basic Python
Programs+ (MBPP+) (Austin et al., 2021; Liu et al.,

2023). We sample with a temperature of 0.8 and
report pass@10 metrics for both.

3.2 Training Setup

Settings We run all of our experiments on top
of Llama 2 7B (Touvron et al., 2023). We fully
finetune all of our models for two epochs with a
context length of 4,096 and a batch size of 128,
and we follow the other hyperparameters used in
Ivison et al., 2023. Our general purpose model was
created by training Llama 2 7B on our modified
Tülu 2 mix, described in Section 3.1. All models
were trained on v3 TPUs using a fork of EasyLM2.
Full training details are available in Appendix A.

Methods For Adding New Tasks We compare
three methods for add new skills to an instruction-
tuned model, described in Section 2: continued
finetuning (CFT) on skill-specific data, retraining
(RT) from scratch on a mix of all of the general data
and some amount of skill-specific data, and task
arithmetic, a form of parallel-train-then-merge
(PTM), by training the base pretrained model on
the skill-specific data and adding the task vector
directly to the instruction-tuned model.

We evaluate five checkpoints for each setting,
varying the influence of the skill-specific data on
the general model. For CFT and RT, we train on
five different amounts of the skill-specific data. For
PTM, we choose five different values for the mix-
ture weight. We also compare PMT with linear
interpolation and WiSE-FT in Section 4.4.

Many instruction datasets do not have validation
sets (Ivison et al., 2023; Zheng et al., 2024; Lian
et al., 2023; Singh et al., 2024), and thus how to
select models is an open question. We take advan-
tage of SciRIFF’s validation set to select models in
Section 4.1. Otherwise, we select using heuristics.

2https://github.com/hamishivi/EasyLM/tree/main
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Model General Science Training
Steps

Tülu Only 49.9 27.9 -

Best CFT 33.7 40.6 1,005
Best RT 50.6 37.8 11,766

Best PTM 47.1 38.2 479

Table 2: Performance on general and science test evalu-
ations for the best continued finetuning (CFT), retrain-
ing from scratch (RT), and parallel-train-then-merge
(PTM) models based on science validation performance.
PTM shows equivalent science performance to the best
RT model with slightly lagging general skills, while
taking about 4% as many training steps. PTM shows
slightly lower science performance than CFT with an
over 13 point gain on general skills, while taking less
than half the total training steps. Detailed results are in
Appendix B.

4 Results

4.1 Trade-off Between Computation Cost and
Model Performance

In this section, we explore the performance and
cost trade-offs when optimizing for performance
based on held-out data. We look at improving sci-
entific literature understanding through three meth-
ods: CFT, RT, and PTM.

For both CFT and RT, we experiment with the
five different amounts of science data reported in
SciRIFF (Wadden et al., 2024), ranging from about
4k to about 61k training examples. For PTM, we
train on all 61k training examples, and test five
different values for the mixture weight ω: 0.2, 0.4,
0.6, 0.8, and 1.0. We additionally report the total
number of training steps required (with our batch
size of 128) to create the models in each group to
estimate the cost of each method. We then select
the best model from each of these three methods
based on SciRIFF validation set performance.

As shown in Table 2, we find that PTM achieves
strong performance on both general and science
evaluations, with a fraction of the compute. PTM
requires about 4% of the compute compared to
RT, and slightly edges out the best RT model on
science while being within a few points on general
evaluations. PTM is also within a few points on
science compared to the best CFT model, with a
more than 13 point improvement in general skills
and less than 50% the compute.

Model %∆
Gen.

%∆
Spec.

Training
Steps

Best CFT (Science) –32.5 46.0 1,005
Best RT (Science) 1.37 39.1 11,766
Best PTM (Science) 1.30 26.3 479

Best CFT (Safety) –40.1 98.9 1,551
Best RT (Safety) 0.66 89.6 12,311
Best PTM (Safety) –0.13 88.9 517

Best CFT (Coding) –7.73 51.6 3,669
Best RT (Coding) 0.13 50.7 14,429
Best PTM (Coding) 1.43 33.3 1,223

Best CFT (Ex. Ref.) –85.1 98.9 1,551
Best RT (Ex. Ref.) –39.9 87.2 12,311
Best PTM (Ex. Ref.) –6.45 72.6 517

Table 3: Absolute percentage change compared to the
Tülu baseline on two evaluations: general and special-
ized for science, safety, and coding, and exaggerated
refusals and safety for the exaggerated refusals rows.
PTM preserves general performance better than CFT
and comparably to RT in all four settings, while requir-
ing a fraction of the compute compared to either method.
PTM also improves skill-specific performance in every
scenario, and improves safety as much as RT while
taking 4% the compute. Detailed results in App. B.

4.2 Model Performance Across Skills

Overall Trends We now look at overall trends
when comparing PTM to CFT and RT. In Table 3,
we compare CFT, RT, and PTM across all three
sets of skills, as well as for exaggerated refusals.
We consider an equal number of models for each
method to ensure a fair comparison: for CFT and
RT, we perform five data mix trials for each dataset,
and for PTM, we explore five evenly spaced values
for ω. We select models in each category based
on their average percentage improvement over the
baseline model in two dimensions: general skills
and performance for science, safety, and coding,
and exaggerated refusal compliance rate and safety
for the exaggerated refusals rows.

From this table, we see a few trends. First, PTM
preserves much more of the underlying model’s
general skills than CFT, which consistently suffers
a substantial drop in general performance across
all four settings. Second, for safety, PTM achieves
comparable or better general and safety-specific
performance compared to RT. Finally, across all
settings, PTM is substantially cheaper than both
CFT and RT, requiring a fraction of the total train-
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Figure 1: Trade-offs managed through ω. We highlight the point along each curve that corresponds to using our
weighting heuristic, ω = |D|

|G| . This point consistently achieves strong performance on all settings, without requiring
held out data. We take advantage of PTM’s negligible cost to test different mixture weights to plot 10 checkpoints
from evenly spaced values of ω as well as the heuristic

Model General Science Coding Safety Exaggerated
Refusals

Additional
Training

Steps

Tülu Only 49.9 27.8 37.6 50.3 99.2 -

CFT (All 3) 40.3 37.9 58.2 99.8 16.0 2,219
RT (All 3) 50.1 39.2 57.9 95.0 37.2 4,732

PTM (All 3) 51.1 26.6 45.3 84.0 93.2 0

Table 4: PTM with all three skill-specific models improves general performance, while noticeably improving both
coding and safety over the baseline. PTM also shows strong improvement on exaggerated refusals, with a 77 point
gain over CFT and a 56 point gain over RT. However, science performance is adversely impacted, and CFT and RT
achieve stronger coding and safety performance overall. If single-skill models have already been trained, three-skill
PTM has no additional training cost, while both the CFT and RT models must be separately trained. Detailed results
are in Appendix B.

ing cost of either method.

PTM Mitigates Exaggerated Refusals As men-
tioned in Section 3.1, when evaluating safety, we
consider two metrics: our safety average, measur-
ing how often a model correctly refuses to comply
with a prompt, and exaggerated refusals, measur-
ing how often the model complies with a prompt,
written to be superficially similar to offensive or
harmful prompts, that it should comply with. In
this section, we analyze the effect of using task
vectors on exaggerated refusals.

We compare improvement over the baseline
model for these metrics in Table 3. By training
a separate “safety vector” and applying it to an
SFT model, we are able to achieve comparable,
if not better, general and safety performance to
CFT and RT, while dramatically improving com-
pliance on exaggerated refusals. In other words,
PTM makes the final model substantially better
at safe but misleading prompts, improving perfor-
mance on XSTest Safe by 30–50 points versus the

other methods, while achieving similar safety and
general performance.

Heuristics For settings without held-out data,
such as our safety and coding datasets, we find
that a consistently strong heuristic for selecting a
model checkpoint is to 1) train the task vector on
all of the available skill-specific data, and then 2)
weight the vector with

ω =
|D|
|G| . (7)

In Figure 1, we plot the trade-off between gen-
eral and skill-specific performance as we vary ω
between 0.0 and 1.0. We highlight the point on
each curve selected by our heuristic, and we see
that it consistently selects a point on the curve that
preserves most, if not all of the original model’s
general performance, while substantially improv-
ing skill-specific performance.
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4.3 Multiple New Skills

We next investigate adding multiple new skills to a
single model. In Table 4, we report the results of
merging all three skills into a single model using
the heuristic, and compare with both CFT and RT
using all of the available skill-specific data. We
also report scores for using our heuristic for each
skill individually.

We see that when we merge all three skills into a
single model, we achieve best overall general and
exaggerated refusals performance, once again sub-
stantially improving the latter over both CFT and
RT. Additionally, we get very similar performance
on both coding and safety when compared with sin-
gle skill PTM models. However, we also see a large
drop in science performance. We take advantage
of PTM’s very low ablation cost to attempt to diag-
nose this issue. We investigate in Table 5 by merg-
ing each skill-specific model together pairwise, and
find that the drop in science performance is most
likely caused by interference between the coding
and safety vectors, as demonstrated by the large dif-
ference in science performance between this merge,
the baseline, and the two pairwise merges involv-
ing science. In Appendix B, we investigate if other
model merging methods—designed to minimize
interference—can help mitigate this issue.

4.4 Alternative PTM Methods

The first alternatives we explore are the two other
relative weighting schemes described in Section 2:
linear interpolation and WiSE-FT.

Figure 2: WiSE-FT performance on all of SciRIFF
vs. all of SciRIFF mixed with a matching amount of
Tülu data. A matching amount of general data in the
mix leads to an improvement in skill-specific perfor-
mance and a much smaller degradation in general skills.

We compare all three methods for all three set-
tings in Figure 3, using all of the skill-specific data
in every scenario. We see that both linear interpola-
tion and WiSE-FT can achieve strong skill-specific
performance, and occasionally best overall, but
consistently experience dramatic degradation in
general performance compared to PTM.

For linear interpolation, as one vector is more
highly weighted the other is downweighted, show-
ing clear trade-offs between both sets of evaluations
as we vary ω.

For WiSE-FT, the findings seem strange at first
glance. Why does continuing to finetune a strong
generalist model on a specific skill degrade general
performance more than adding a task vector, which
was trained in parallel on the base model? We
hypothesize that this is caused by the differences
between the skill-specific and general training data
distributions. In Figure 2, we compare WiSE-FT
trained on only science and WiSE-FT train on a
mixture of science and a matching subsample of
Tülu data. We see that this new mixture, which
by construction is more similar to the general in-
struction data distribution already seen by the base
model, achieves stronger skill-specific and general
performance compared to standard WiSE-FT. We
leave it to future work to explore two follow up
questions from this result:

1. How much general data is needed during CFT
to preserve general performance?

2. When the base mix is not publicly available, is
it possible to use data from a different general
distribution to preserve general performance?

5 Related Work

Mitigating Forgetting During Finetuning The
problem of reduced generality in language models
during finetuning, and more generally during con-
tinual learning is a fundamental problem in gradient
based learning and has been widely studied in prior
work (McCloskey and Cohen, 1989; Goodfellow
et al., 2013; Luo et al., 2023). Several techniques
have been proposed to mitigate this issue, including
regularization to minimize overfitting (Ahn et al.,
2019; Lee et al., 2019) and recalling or replay-
ing prior knowledge during training (Kirkpatrick
et al., 2017; Röttger et al., 2024; Chen et al., 2020).
More recently, it has been shown that parameter-
efficient learning methods, particularly low-rank
adaptation (Hu et al., 2021) forget less than conven-
tional full-parameter finetuning methods. Unlike
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Model General Science Coding Safety Exaggerated
Refusals

Tülu Only 49.9 27.8 37.6 50.3 99.2

PTM (Science) 50.3 34.8 36.1 50.9 98.0
PTM (Safety) 50.3 25.6 36.9 89.3 90.0
PTM (Coding) 51.0 24.9 46.7 50.5 98.0

PTM (Science and Safety) 50.8 31.6 38.5 89.1 89.6
PTM (Science and Coding) 51.3 32.1 45.5 49.5 98.4
PTM (Safety and Coding) 52.1 18.8 45.2 85.0 92.4

Table 5: We take advantage of the efficiency of PTM to attempt to diagnose the degraded science performance in
the three-skill PTM results shown in Table 4, with no additional training cost. By merging each specialized model
pairwise, we see that safety and coding together show a large drop in science performance compared to the single
skill and baseline models, suggesting that the drop in science performance in the three skill model is caused by
interference between the other two skills.

Figure 3: Plotting three PTM methods for each scenario. Both linear interpolation and WiSE-FT can achieve
very strong domain-specific performance, at the cost of general performance and exaggerated refusals. While task
arithmetic also improves in skill-specific performance, it preserves much more of the general skills.

most of these methods, model merging does not
require access to the original training data.

Model Editing As discussed earlier, Ilharco et al.
(2022) introduced an approach that used model in-
terpolation between a pretrained model and a model
fine-tuned on a downstream task. This is conceptu-
ally similar to our work here (though we focus on
language), and one of the foundational papers that
spawned a variety of work. Ilharco et al. (2023) in-
troduced “task vectors”, which are calculated as the
difference (in weight space) between a pretrained
model and that same model after finetuning. Worts-
man et al. (2022b) introduced WiSE-FT, an ap-
proach of linearly interpolating between models,
which they found to lead to increased distributional
robustness. Wortsman et al. (2022a) introduced
“model soups”, made by weight-space averaging
multiple models trained on the same dataset (us-
ing different hyperparameters, amounts of training
data, etc.). Nylund et al. (2024) introduced “time
vectors”, showing that temporal information can

also be created and applied to new models, similar
to task vectors.

6 Conclusions

We explore the effectiveness of PTM for adding
new skills to instruction-tuned models. We find
that PTM is an efficient and effective method of
augmenting preexisting models, enabling the addi-
tion of new skills with a fraction of the compute
required compared to other common methods. In
addition, we find that PTM achieves much better
trade-offs between model safety and capability over
other common methods tested. Finally, we report
heuristics for selecting merging coefficients when
held out data is not available, and find that these
strategies together enable the addition of multiple
skills into a single model with no additional train-
ing required.
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Limitations

While we aim to be comprehensive in our experi-
ments, focusing on specific skills is inherently lim-
iting. Instruction-tuning is also one step in a larger,
constantly evolving adaptation framework, and this
work does not test models that have undergone pro-
cesses such as reinforcement learning from human
feedback after instruction-tuning. Additionally, our
evaluations, while covering a broad set of capabili-
ties, do not capture the full set of abilities models
can exhibit, such as general reasoning, or more
abstract concepts such as helpfulness.
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Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib,
Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien,
Sebastian Ruder, Surya Guthikonda, Emad A. Al-
ghamdi, Sebastian Gehrmann, Niklas Muennighoff,
Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh
Fadaee, and Sara Hooker. 2024. Aya dataset: An
open-access collection for multilingual instruction
tuning. Preprint, arXiv:2402.06619.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2022. Challenging
big-bench tasks and whether chain-of-thought can
solve them. Preprint, arXiv:2210.09261.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas

15614

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2211.12092
https://arxiv.org/abs/2211.12092
https://arxiv.org/abs/2308.01263
https://arxiv.org/abs/2308.01263
https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2402.06619
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261


Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

David Wadden, Kejian Shi, Jacob Morrison, Aakanksha
Naik, Shruti Singh, Nitzan Barzilay, Kyle Lo, Tom
Hope, Luca Soldaini, Shannon Zejiang Shen, Doug
Downey, Hannaneh Hajishirzi, and Arman Cohan.
2024. Sciriff: A resource to enhance language
model instruction-following over scientific literature.
Preprint, arXiv:2406.07835.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How far
can camels go? exploring the state of instruction tun-
ing on open resources. Preprint, arXiv:2306.04751.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
2022a. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increas-
ing inference time. Preprint, arXiv:2203.05482.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim,
Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael
Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. 2022b.
Robust fine-tuning of zero-shot models. Preprint,
arXiv:2109.01903.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. Preprint,
arXiv:2306.01708.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
Preprint, arXiv:2311.03099.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. Preprint,
arXiv:2402.14658.

A Training Details

A.1 Compute

All of our models were trained on v3-128 TPUs
on the Google TPU Research Cloud, and models
were merged with the publicly available mergekit
(Goddard et al., 2024) toolkit.

A.2 Hyperparameters

We follow the hyperparameters used in Ivison et al.,
2023:

• Precision: BFloat16

• Epochs: 2

• Weight decay: 0

• Warmup ratio: 0.03

• Learning rate: 2e-5

• Max. seq. length: 4,096

• Effective batch size: 128

B Other Results

Other Merging Algorithms We also briefly ex-
periment with two merging algorithms that aim to
minimize interference between models: TIES (Ya-
dav et al., 2023) and DARE (Yu et al., 2024). We
compare these in Table 6 and find that they do not
improve performance over weighted averaging.

Exaggerated Refusals vs General Skills We di-
rectly compare the trade-offs between general skills
and exaggerated refusals in Figure 4 and Figure 5.
We see that modifying the mixture weight ω shows
a clear relationship between the two skills, and that
PTM shows large improvements in exaggerated
refusals over both CFT and RT

Figure 4: We show general skills versus exaggerated
refusals, and show a clear relationship between the two
skill sets. Additionally, for the same general perfor-
mance, PTM achieves much higher exaggerated refusals
compliance than RT and CFT.

C Detailed Evaluations
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Model General Science Coding Safety Exaggerated
Refusals

PTM (All 3) 51.1 26.6 45.3 84.0 93.2
TIES PTM (All 3) 51.2 28.0 44.5 82.7 92.8
DARE PTM (All 3) 49.9 24.7 45.4 84.7 92.4

Table 6: Results of using our heuristic to merge all three task vectors into a single model with standard weighted
averaging PTM, TIES (Yadav et al., 2023), and DARE (Yu et al., 2024). TIES and DARE also do not mitigate
interference relative to the base method on science, and three methods show similar performance across all skills,
showing that other popular merging algorithms do not mitigate interference in this setting.

Model BBH GSM8K MMLU TruthfulQA Alpaca Eval

Tülu Only 44.8 32.5 49.6 48.3 74.2

Best CFT 45.1 22.0 46.0 38.3 17.0
Best RT 45.3 36.0 50.2 49.4 72.0

Best PTM 44.5 26.5 48.5 49.6 66.7

Table 7: Individual general evaluation results for Table 2

Figure 5: We show general skills versus exaggerated
refusals, and highlight the point chosen by our heuristic,
showing at most a small degradation in exaggerated
refusal performance while preserving general skills.
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Model BioASQ BioRED DiSCoMaT Ev. Inf. MultiCite MUP QASPER SciERC SciFact

Tülu Only 44.1 33.5 22.8 15.6 35.2 19.8 15.1/23.7 14.4 54.5/38.5

Best CFT 37.4 62.1 62.0 5.2 52.9 15.5 21.8/43.9 37.8 65.7/50.0
Best RT 34.9 50.5 58.6 10.2 48.7 16.8 15.3/45.6 29.3 65.4/47.3

Best PTM 32.6 58.8 47.2 11.7 51.6 19.0 18.6/42.9 30.1 66.8/48.5

Table 8: Individual science evaluation results for Table 2

Model BBH GSM8K MMLU TruthfulQA Alpaca Eval

Tülu Only 44.8 32.5 49.6 48.3 74.3

Best CFT (Science) 45.1 22.0 46.0 38.3 17.0
Best RT (Science) 45.3 36.0 50.2 49.4 72.0
Best PTM (Science) 47.9 33.5 49.2 49.7 72.5

Best CFT (Safety) 34.7 24.5 46.7 39.0 4.7
Best RT (Safety) 45.4 34.5 49.8 48.0 73.5
Best PTM (Safety) 41.2 31.0 48.4 65.7 62.9

Best CFT (Coding) 43.1 28.0 48.2 44.9 66.0
Best RT (Coding) 45.1 30.5 49.9 51.4 73.0
Best PTM (Coding) 41.9 24.5 47.8 58.4 80.6

Best CFT (Ex. Ref.) 34.7 24.5 46.7 39.0 4.7
Best RT (Ex. Ref.) 46.9 32.5 49.8 49.3 74.4
Best PTM (Ex. Ref.) 48.4 29.5 48.5 58.9 71.0

Table 9: Individual general evaluation results for Table 3

Model BioASQ BioRED DiSCoMaT Ev. Inf. MultiCite MUP QASPER SciERC SciFact

Tülu Only 44.5 33.2 22.8 15.9 35.3 19.7 15.1/23.7 13.1 54.3/28.2

Best CFT 37.4 62.4 62.0 5.2 52.9 15.5 21.9/43.9 37.6 65.7/42.1
Best RT 34.9 50.5 59.2 10.8 48.8 17.2 21.0/42.7 33.6 66.1/40.8

Best PTM 44.8 50.2 49.7 14.8 36.0 20.1 16.6/29.1 28.9 61.2/35.0

Table 10: Individual science evaluation results for Table 3
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Figure 6: Curves showing general skills versus specialized skill performance for CFT, RT, and PTM across all three
domains and exaggerated refusals. PTM consistently achieves strong specialized performance while preserving
much more general performance compared to CFT. PTM also exhibits comparable performance to many RT
checkpoints. In the case of exaggerated refusals, PTM shows a clear improvement over all other methods tested.

Model HumanEval+ MBPP+

Tülu Only 29.8 45.5

Best CFT 58.4 55.7
Best RT 56.5 56.9
Best PTM 44.9 55.4

Table 11: Individual coding evaluation results for Ta-
ble 3
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Model XSTest Safe
(Exaggerated Refusals) Harmbench XSTest Unsafe ToxiGen

Tülu Only 99.2 44.2 69.0 37.6

Best CFT 85.2 100.0 100.0 100.0
Best RT 40.4 83.7 99.0 97
Best PTM 7.2 75.2 89.5 95.6

Table 12: Individual safety evaluation results for Table 3

Model BBH GSM8K MMLU TruthfulQA Alpaca Eval

T"ulu Only 44.8 32.5 49.6 48.3 74.2

CFT (All 3) 45.2 25.0 47.3 47.3 37.0
RT (All 3) 45.4 32.5 49.6 51.7 71.2

Best PTM 37.8 27.5 47.9 65.9 76.3

Table 13: Individual general evaluation results for Table 4

Model BioASQ BioRED DiSCoMaT Ev. Inf. MultiCite MUP QASPER SciERC SciFact

Tülu Only 44.5 33.2 22.8 15.9 35.3 19.7 15.1/23.7 13.1 54.3/28.2

CFT (All 3) 27.8 54.5 61.2 7.0 46.2 16.6 21.7/44.8 35.0 61.0/40.9
RT (All 3) 36.2 54.7 58.2 12.3 49.1 17.4 19.1/43.9 33.3 61.5/45.8

PTM (All 3) 39.1 49.3 14.4 12.4 34.3 20.9 8.1/9.2 24.2 54.0/26.9

Table 14: Individual science evaluation results for Table 4
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Model HumanEval+ MBPP+

Tülu Only 29.8 45.5

CFT (All 3) 57.1 59.4
RT (All 3) 56.3 59.5
PTM (All 3) 39.1 51.4

Table 15: Individual coding evaluation results for Ta-
ble 4
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Model XSTest Safe
Exaggerated Refusals Harmbench XSTest Unsafe ToxiGen

Tülu Only 99.2 44.2 69.0 37.6

CFT (All 3) 16.0 99.5 100.0 100.0
RT (All 3) 37.2 85 100.0 99.9
PTM (All 3) 93.2 72 86.0 94.0

Table 16: Individual safety evaluation results for Table 4
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