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Abstract

In task-oriented dialogue systems, intent de-
tection is crucial for interpreting user queries
and providing appropriate responses. Exist-
ing research primarily addresses simple queries
with a single intent, lacking effective sys-
tems for handling complex queries with mul-
tiple intents and extracting different intent
spans. Additionally, there is a notable absence
of multilingual, multi-intent datasets. This
study addresses three critical tasks: extract-
ing multiple intent spans from queries, detect-
ing multiple intents, and developing a multi-
lingual multi-label intent dataset. We intro-
duce a novel multi-label multi-class intent de-
tection dataset (MLMCID-dataset) curated
from existing benchmark datasets. We also
propose a pointer network-based architecture
(MLMCID) to extract intent spans and detect
multiple intents with coarse and fine-grained
labels in the form of sextuplets. Comprehen-
sive analysis demonstrates the superiority of
our pointer network based system over baseline
approaches in terms of accuracy and F1-score
across various datasets.

1 Introduction

Task-oriented dialogue systems have become a
major field of study in recent years, significantly
advancing the capabilities of Natural Language
Understanding (NLU). These systems execute
command-based tasks, demonstrating versatility
in handling diverse user queries through a set of
predefined skills, known as intents. Users interact
with dialogue systems to fulfill their needs, and in-
tent detection plays a pivotal role in comprehending
user queries and generating appropriate responses
in task-oriented conversations, thereby maintain-
ing user engagement. The task of intent detection
involves identifying the intent(s) within a given
statement or query, which represents the underly-
ing meaning conveyed by the user. For example,

the query “How is the weather today?" would be
associated with the GetWeather intent. Dialogue
systems rely on detecting these intents to under-
stand user queries and provide suitable answers.

However, in real-world conversation, a query
or a statement often contain multiple different
intents. For instance, as shown in Fig. 1, for
the query (from Facebook English dataset): “re-
mind me to pick up contact lenses tomorrow,
set the alarm for 5 mins and 30 seconds", con-
tains two distinct intent categories with following
spans: ‘remind me to pick up contact lenses to-
morrow’ (‘set reminder’ intent) and ‘set the alarm
for 5 mins and 30 seconds’ (‘set alarm’ intent).
Both of these are fine intent categories. Multi-
ple similar fine intents can be merged to create
one coarse intent as explained in Table 1. Thus,
the above query contains ‘reminder_service’ and
‘change_alarm_content’ coarse intents as shown
in Fig. 1. In case of multiple intents in a sen-
tence, one intent which is dominant and most im-
portant in that sentence can be termed as ‘Pri-
mary’ intent while the other intents can be con-
sidered ‘Non-Primary’. For example, in the query
(From Mix-SNIPS dataset) “How is the weather
today? It would be lovely to go for a movie" is
a combination of two simple sentences ‘How is
the weather today?’ and ‘It would be lovely to
go for a movie’, whose intents are GetWeather
and BookMovieT icket respectively. Out of the
two possible intents, BookMovieT icket is pri-
mary (primary and main focus of the sentence) and
GetWeather becomes non-primary. It would re-
quire an intent span extraction algorithm to extract
multiple intent spans and a multi-label, multi-class
classifier to detect different fine and coarse intents.

Over the past few years, researchers concentrate
on intent identification across different domains.
Flexible and adaptive intent class detection models
have been developed for dynamic and evolving real-
world applications. (Liao et al., 2023; Kuzborskij
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Figure 1: Examples of multi-label multi intent datasets (SNIPS, Facebook and BANKING)

et al., 2013; Scheirer et al., 2012; Degirmenci and
Karal, 2022) focus on streaming data to identify
evolving new classes using incremental learning.
SENNE Cai et al. (2019), IFSTC (Xia et al., 2021),
SENC-MaS (Mu et al., 2017b), SENCForest (Mu
et al., 2017a), ECSMiner (Masud et al., 2010) aim
at SENC (streaming emerging new class) problem
on intents on streams. (Sun et al., 2016) work on
emergence and disappearance of intents. (Wang
et al., 2020) uses high dimensional data for stream-
ing classification. (Mullick et al., 2022d) identifies
multiple novel intents using a clustering framework.
(Na et al., 2018; Zhan et al., 2021; Larson et al.,
2019; Yan et al., 2020; Zhou et al., 2022; Firdaus
et al., 2023) detect new intents in the form of outlier
detection. Unlike the previous single-intent detec-
tion models, which can easily utilize the utterance’s
sole intent to guide slot prediction, multi-intent
SLU (Spoken Language Understanding) encoun-
ters the challenge of multiple intents, presenting
a unique and worthwhile area of research. (Mul-
lick et al., 2023, 2022b; Mullick, 2023b,a; Mullick
et al., 2022a) explore intent detection in different
directions. AGIF (Qin et al., 2020), GL-GIN (Qin
et al., 2021), (Gangadharaiah, 2019), (Song et al.,
2022) work on multiple intent identification prob-
lem but these approaches do not detect the sentence
spans related to different intents and also do not
distinguish the primary and non-primary intents.
Based on Convert (Henderson et al., 2019) backed
framework, (Coope et al., 2020) extract spans for
different slots but does not extract and identify mul-
tiple intents. (Mullick et al., 2024; Guha et al.,
2021; Mullick et al., 2022c) focus on entity extrac-
tion in different forms. Previous research also in-
cludes both pipeline-based approaches (Jiang et al.,
2023) and end-to-end methods (Ma et al., 2021;
Cui et al., 2019; Ma et al., 2022). However, our
work is different from the fact that we identify mul-
tiple intent spans along with their corresponding
fine and coarse labels.

Our work differs from the fact that, we extract
multiple intent spans from a given sentence and
detect its coarse and fine intent labels. In this paper,
we seek to address the following research ques-

tions in the field of multi-label multi-class intent
detection with span extraction:
1. We introduce a novel multi-label multi-class
intent detection dataset (MLMCID-dataset) utiliz-
ing a diverse set of existing datasets with various
intent sizes in multilingual settings (English and
non-English languages), including coarse and fine-
grained intent labeling along with primary and non-
primary intent marking.
2. We thereafter, build a pointer network based
encoder-decoder framework to extract multiple in-
tent spans from the given query.
3. We propose a feed-forward network based in-
tent detection module (MLMCID - Multi-Label
Multi-Class Intent Detection) to automatically de-
tect multiple primary and non-primary intents for
coarse and fine categories in a sextuplet form. We
evaluate the performance of MLMCID for full and
few shot-settings across several MLMCID datasets.
4. We experiment with different LLMs (Llama2,
GPT) to assess their efficacy, comparing them with
our approach, and providing a detailed qualitative
analysis along with a specialized loss function for
multi-label multi-class intent detection.

Empirical findings on various MLMCID datasets
demonstrate that our pointer network based
RoBERTa model surpasses other baselines meth-
ods including LLMs, achieving a higher accuracy
with an improvement in macro-F1.

2 Dataset

We conduct different experiments to evaluate our
framework on various datasets - all of which are
benchmark datasets in NLU domain. We consider
three different sizes of the datasets (as per intent
class count - mentioned within bracket) -

(i) Small: a) SNIPS (10 intents) (Coucke et al.,
2018), b) ATIS (21 intents) (Tur et al., 2010), c)
Facebook Multi-lingual (12 intents) (Schuster et al.,
2018) (consisting of the comparable corpus of En-
glish, Spanish and Thai data), abbreviated as Fb.

(ii) Medium: a) HWU (64 intents) (Liu et al.,
2019a), b) BANKING (77 intents) (Casanueva
et al., 2020).
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(iii) Large: a) CLINC (150 intents) (Larson et al.,
2019).

Intents of similar domains which convey a sim-
ilar broader meaning and are manually grouped
together to make coarse-grained labels from origi-
nal fine-grained labels 1. Table 1 shows an exam-
ple of Facebook-English (Fb-en) combining mul-
tiple fine intents (like - ‘cancel reminder’, ‘set re-
minder’, ‘show reminders’) which are closely sim-
ilar and convey similar broader meaning of ‘re-
minder_service’ so these are grouped together to
form one single broad coarse grained intent label -
‘reminder_service’ and an example of SNIPS com-
bining multiple fine intents (like - ‘GetTrafficInfor-
mation’, ‘ShareETA’) are merged into one single
course intent class (‘Traffic_update’). Finally, we
end up with course intent class of 4 for SNIPS, 5
for Facebook, 18 for HWU, 12 for Banking and
120 for CLINC2. Due to space shortage, the details
are in Appendix Table 12 and 13.

Fine Intents Combined Coarse Intent
cancel reminder, set reminder,
show reminders

reminder_service

GetTrafficInformation, Sha-
reETA

Traffic_update

Table 1: Fine-Course Intent for Fb-en and SNIPS

All the above datasets are of single intent. In
order to validate the broad applicability of the
model, we follow the MixAtis and MixSNIPS data-
generation guidelines (Qin et al., 2020) to prepare
multi-intent datasets for Fb, HWU, BANKING
and CLINC. We also use MixATIS and MixSNIPS
datasets (Qin et al., 2020). All datasets are in En-
glish except for Facebook - which contains Spanish
and Thai also along with English. Three annotators
are selected after several discussions and condi-
tions of fulfilling criteria like annotators should
have domain knowledge expertise along with a
good working proficiency in English. Each formed
sentence instance is manually checked for correct-
ness, coherence, grammatically meaningful and
filter out many sentences which do not qualify. An-
notators mark Multiple intents and their respective
spans within the specified sentence. Annotators

1Course intent is a combination of multiple similar mean-
ing or closely matching finer intents of higher hierarchy. One
coarse-grained intent is a cluster of multiple closely matching
fine-grained labels.

2For ATIS we keep fine intents as it is, without coarse
intents due to high dis-similarity among intents

also point out which intent is Primary3 and which
one is non-Primary. If Primary and non-Primary
intents can not be distinguished then both of the
intents are considered as Primary.

Dataset Train Dev Test
Mix-SNIPS 11000 2197 2198
Mix-ATIS 13161 600 829

FB-EN 800 100 100
FB-ES 800 100 100
FB-TH 800 100 100
HWU64 780 97 97

BANKING 1156 144 144
CLINC 1353 169 169
Yahoo 498 62 162
MPQA 284 36 136

Table 2: MLMCID-dataset statistics

To show the real world applicability of our frame-
work, we also experiment on two different practi-
cal datasets: a) MPQA4 (Multi Perspective Ques-
tion Answering) (Mullick et al., 2016, 2017), b)
Yahoo News article (Mullick et al., 2016, 2017).
Intent can be broadly categorised as opinionated
or factual. Each sentence from MPQA and Ya-
hoo news articles is marked as opinion and fact.
Further, opinions can be of four different subcat-
egory (Asher et al., 2009) - ‘Report’, ‘Judgment’,
‘Advise’ and ‘Sentiment’ and facts can be subcate-
gorised into five types (Soni et al., 2014) - ‘Report’,
‘Knowledge’, ‘Belief’, ‘Doubt’ and ‘Perception’.
So coarse intent can be sub-categorized in four
opinionated fine-intents and five factual fine-intents.
In MPQA and Yahoo news article, annotators are
told to identify different clauses of compound and
complex sentences and mark the fine label intent
categories for opinion and fact. In all the annotation
tasks - initial labeling is done by two annotators and
any annotation discrepancy is checked and resolved
by the third annotator after discussing with others.
Overall inter-annotator agreement is 0.89 which is
considered good as per (Landis and Koch, 1977).
The detail statistics of train-dev-test divisions of
different dataset intent dataset are shown in Table
2. We term this dataset as MLMCID-dataset.

We use the Facebook data from MLMCID-
dataset comprising 1000 text instances and cor-
responding intent labels are annotated for its 3 vari-

3Between two intents, we define one as primary which is
more important than others and main focus of the sentence

4https://mpqa.cs.pitt.edu/

15666



Figure 2: Pointer Network Based multi-label, multi-class intent detection (MLMCID) architecture

ations - English, Spanish and Thai. The text in-
stances of English, Spanish and Thai languages are
termed as Facebook (English), Facebook (Spanish)
and Facebook (Thai) dataset respectively.

3 Problem Definition

To formally describe the multi-label, multi-class in-
tent detection (MLMCID) problem setting, let there
be an input sentence Si = {w1, w2, ..., wn} con-
tains n words. The model aims to extract multiple
intent spans along with their coarse and fine classes
in the form of a sextuple, ST = {outi|outi =

[(stp1i , ep1i ), inc1
i , inf1

i , (stp2i , ep2i ), inc2
i , inf2

i ]}|ST |
i=1 ;

where ti denotes the ith triplet and |ST | denotes
the length of the sextuple set. stp1i and stp2i repre-
sents the beginning position of first intent span and
second intent span respectively for the ith sextuple.
Similarly, ep1i and ep2i denotes the end position of
first intent span and second intent span for the ith

sextuple. So (stp1i and ep1i ) mark the first intent
span for the ith sextuple. Similarly, (stp2i and ep2i )
mark the second intent span for the ith sextuple.
inc1

i and inf1
i represents the possible coarse and

fine intent class of the first intent span. Similarly,
inc2

i and inf2
i represents the possible coarse and

fine intent class of the second intent span. p1 and
p2 denote the two pointer network models. Pointer
Network Model has the following advantages: it
is a joint model for entity extraction and relation
classification. Pointer network model can detect an
intent in a sentence in a form of triplet (intent span,

coarse intent label, fine intent label) even if there is
an overlap with other intents. c1 and c2 mark the
course labels. f1 and f2 indicates fine labels. outi
is the ith output sextuple.

4 Solution Approach

For the task of multi-label, multi-class intent detec-
tion (MLMCID), our goal is to jointly extract the
intent spans along with detecting multiple coarse
and fine intents. Our MLMCID output represen-
tation is a sextuple format. We employ pointer
network based architecture for joint extraction of
the sextuple. Following are the different compo-
nents of solution framework approach:

4.1 Encoder

We use four different embeddings in the en-
coder block (for English language datasets): a)
BERT (‘bert-base-uncased’) (Devlin et al., 2019),
b) RoBERTa (‘roberta-base-uncased’) (Liu et al.,
2019b), c) DistilBERT (Sanh et al., 2019) and
d) Electra (Clark et al., 2020). For non-English
language datasets (Facebook Thai and Spanish),
we utilise mBERT (multilingual BERT) (Pires
et al., 2019), XLM-R (XLM-RoBERTa) (Conneau
et al., 2020) and mDistilBERT (Sanh et al., 2019).
mBERT architecture pre-trained on Wikipedia arti-
cles from 104 languages. XLM-RoBERTa is a large
multi-lingual language model based on RoBERTa,
trained on 2.5TB of filtered CommonCrawl data.
mDistilBERT is a distilled version of mBERT con-
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taining 134 million parameters.
Let, Si be the ith sentence containing w1, w2 ...

wn words. After sentence encoding, the encoder
generates a vector (VE

i ) from the ith sentence Si.
It is shown in the ‘Encoder Block’ in Fig 2.

4.2 Decoder
We apply a Pointer Network-based approach along
with LSTM-based sequence generator, attention
model and FFN (Feed-Forward Network) architec-
ture (Similar to (Nayak and Ng, 2020)) to identify
intent spans and predict the coarse and fine intent
labels. Different blocks are as following:
LSTM-based Sequence Generator: The se-
quence generator structure is based on an LSTM
layer with hidden dimension Dh to produce the
sequence of two intent spans. Using the atten-
tion layer sentence encoding (aEi ), pointer network
based previous tuple (tupi) and hidden vectors
(hDi−1) as input to generate the hidden representa-
tion of the current token (hDi ). The tup0 = (

−→
0 )

denotes the dummy tuple. Following are LSTM
outcomes:

tupi =

i−1∑

j=0

tupj (1)

hD
i = LSTM(aEi ∥tupi−1,h

D
i−1) (2)

ŝt
1
i = w1

sth
m
i + b1st, ê1i = w1

eh
m
i + b1e (3)

stp1i = softmax(ŝt
1
i ), ep1i = softmax(ê1i ) (4)

Attention Modeling: Utilizing Bahdanau et al.
(2014) attention algorithm we use previous tuple
(tupi−1) and hidden vector (hDi−1) as input at times-
tamp t to produce the attention weighted context
vector (aEi ) for the current input sentence.
Pointer Network: A Bi-LSTM layer with hid-
den dimension DH , followed by two FFN (Feed
Forward Networks), constitutes a pointer network.
Here we use two-pointer networks for extracting
two intent spans. We concatenate hD

i and VE
i

(obtained from the encoding layer) to provide the
input of a Bi-LSTM model (forward and backward
LSTM), which provides a hidden representation to
be fed to FFN models. Two FFNs with softmax
provide scores between 0 and 1, the start (st) and
end (e) index of one intent span.
where w1

st and w1
e are the weight parameters of

FFN. b1st and b1e are the bias parameters of the feed-
forward layers (FFN). ŝt1i and ê1i are normalized

probabilities of the ith source sentence. stp1i and
ep1i denotes the begin and end token of the first
intent span in the first pointer network model of the
ith source sentence. Then, the second pointer net-
work model extracts the second entity. After con-
catenating the first Bi-LSTM output vector (hm

i )
with decoder sequence generator output (hD

i ) and
sentence encoding (VE

i ), we feed them to the sec-
ond pointer network to obtain the position of the
begin and end tokens of the second intent span. To-
gether, these two pointer networks produce the fea-
ture vectors tupi containing intent span 1 (span1

i )
and span 2 (span2

i ).
Intent Detector: We concatenate tupi with hD

i

and pass it through a feed-forward network (FFN)
with softmax to produce the normalized probabili-
ties over intent sets and thereby predict the coarse
(inc1

i , inc2
i ) and fine (inf1

i , inf2
i ) intent labels for

first and second spans.

4.3 Baselines

We employ different open-source LLMs with
prompt based fine-tuning on the training set to
generate the two different intent spans and detect
coarse and fine intents.
Llama2:5 We apply Llama2-7b ((Touvron et al.,
2023)) using Quantized Low-Rank Adaptation
(QLoRA) (Dettmers et al., 2023) (to optimize train-
ing efficiency) for supervised fine-tuning using
MLMCID-Datasets.
GPT: We also use state-of-the-art large-size LLMs,
developed by OpenAI: GPT-3.5 (gpt) 6 and GPT-
4 (OpenAI, 2023)7 with example based prompting
to extract intent spans and identify coarse and fine
intents (Computed on April, 2024).

5 Experiments

To validate our proposed framework, we compare
the Pointer Network Model (PNM) of MLMCID
while taking various embeddings as input: BERT,
RoBERTa, DistilBERT, and Electra on all datasets.
We also explore different large language models
(Llama2-7b, GPT-3.5 and GPT-4) to check how ef-
fectively they can extract multiple intent spans and
detect different intents. After that, we experiment
with different variations of overall best perform-
ing RoBERTa model - varying the training data

5https://ai.meta.com/llama/

6https://chat.openai.com/
7https://openai.com/gpt-4
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Dataset BERT (p, av) RoBERTa (p, av) DistilBERT (p, av) Electra (p, av) Llama2 (p, av) GPT-3.5 (p, av) GPT-4 (p, av)

MIX_SNIPS A 89.2,80.2 90.0,81.9 89.2,80.2 89.8,80.7 48.3,41.2 60.4,55.8 64.7,61.1
F1 89.0,80.1 89.7,82.1 88.5,79.4 89.5,80.5 42.6,40.5 60.2,56.2 62.5,60.3

FACEBOOK
(English)

A 98.0,80.8 98.5,81.2 97.2,80.2 97.4,80.5 21.0,19.2 70.7,62.1 75.6,76.5
F1 98.2,88.2 92.8,82.8 92.8,82.2 92.8,83.1 20.6,19.6 65.3,60.8 72.6,70.5

MIX_ATIS A 71.3,64.6 70.2,63.5 72.2,63.6 70.6,59.7 16.9,15.0 29.5,32.5 38.7,32.8
F1 51.7,38.6 53.4,38.8 50.3,35.8 46.3,35.5 15.7,14.0 27.2,31.5 36.8,32.6

HWU64 A 83.5,68.0 85.5,70.0 82.5,66.2 83.0,66.2 35.8,38.1 56.0,52.3 59.1,53.1
F1 81.9,65.9 80.0,63.7 79.9,64.1 79.4,62.5 32.9,30.5 50.6,51.2 57.3,56.4

BANKING A 84.0,76.9 85.4,78.5 78.8,70.9 79.9,71.8 31.5,31.6 25.4,20.5 47.9,47.4
F1 82.7,71.4 85.2,75.2 79.2,67.9 79.4,68.1 28.2,29.1 20.2,20.3 45.2,43.6

CLINC A 86.3,72.7 92.3,81.3 79.8,68.0 88.7,71.7 57.5,55.9 58.7,57.2 64.3,56.6
F1 77.1,64.1 88.3,75.5 71.7,60.0 81.3,63.0 51.2,50.3 56.3,55.3 63.7,54.3

Overall Average A 84.1,75.7 88.2,78.5 82.2,73.2 85.7,72.2 34.1,37.0 49.2,38.1 60.6,53.3
F1 80.8,73.9 85.2,75.8 81.4,70.6 80.9,71.3 30.5,32.8 44.9,41.4 58.7,53.6

Table 3: Overall Accuracy (A) and Macro F1-score (F1) in (%) of different models in MLMCID and LLMs for
coarse labels (on English Datasets) - primary intent (p) and average(av). (The best outcomes are marked in Bold)

size to understand how much training data is re-
quired for decent performance. We also perform
zero-shot and few-shot experiments to check the
approach’s usefulness in the presence of minimal
data. Tables 3, 4 and 5 show the overall perfor-
mances of different models for the English (Mix-
SNIPS, Mix-ATIS, Facebook, HWU, BANKING
and CLINC) and Non-English (Facebook Thai and
Spanish) datasets. We use prediction accuracy and
macro F1-score as evaluation metrics. Table 3 and
4 infer performances on primary and overall av-
erage of coarse and fine intent labels on English
datasets. Following are the details of our findings:

Findings 1: For coarse label intent detection, as
shown in Table 3, RoBERTa (with PNM) in MLM-
CID achieves superior performances in terms of
accuracy and F1-score across all datasets of dif-
ferent intent sizes (Mix-SNIPS, Mix-ATIS, HWU,
BANKING, CLINC) for both primary intent de-
tection and overall average except for Facebook
English where BERT is more effective in terms of
F1-score for both primary and overall average.

Findings 2: Similar to coarse intent detection, for
fine label intent detection, RoBERTa (with PNM)
in MLMCID also produce better results than others

in terms of accuracy and F1-score for most of the
cases across all English datasets except for Face-
book English dataset, where Electra provides better
outcome in terms of accuracy and F1-score for both
primary and overall intent detection. It is shown in
Table 4.

Findings 3: For all English datasets, BERT,
RoBERTa, DistilBERT and Electra performs al-
most similar with decent accuracy and F1-score
which signifies the utility of pointer network model
based MLMCID architecture.

Findings 4: We observe that the LLMs (Llama-2-
7b, GPT-3.5, GPT-4) fall behind in performance
from Pointer Network based approaches with dif-
ferent encoders, even though they are much larger
than our proposed framework, thus strengthening
the need for such a specialized MLMCID archi-
tecture. Llama2-7b performs poorly among three
LLMs - this may be due to the fact of less con-
textual understanding in this specific task. More
details in Appendix A.

Findings 5: RoBERTa with PNM in MLMCID
performs better than any other models for overall
average accuracy and F1-score across all English
datasets for both primary and average course and

Dataset BERT (p, av) RoBERTa (p, av) DistilBERT (p, av) Electra (p, av) Llama2 (p, av) GPT-3.5 (p, av) GPT-4 (p, av)

MIX_SNIPS A 85.4,80.9 89.6,85.0 87.5,81.9 86.3,80.9 35.0,20.1 64.2,60.5 64.7,61.1
F1 83.5,80.1 89.0,85.9 86.6,81.7 86.2,82.1 27.5,22.1 55.6,51.2 57.3,54.9

FACEBOOK
(English)

A 96.5,81.3 97.5,80.7 96.5,79.7 98.5,81.7 11.1,12.1 44.4,46.4 73.4,77.6
F1 87.5,79.5 94.5,82.0 78.4,73.1 95.4,82.7 9.2,9.7 40.2,41.3 69.5,69.8

MIX_ATIS A 71.3,64.6 70.2,63.5 72.2,63.6 70.6,59.7 16.9,15.0 29.5,32.5 38.7,32.8
F1 51.7,38.6 53.4,38.8 50.3,35.8 46.3,35.5 15.7,14.0 27.2,31.5 36.8,32.6

HWU64 A 74.1,57.2 83.0,67.1 75.1,57.7 70.1,53.9 29.8,20.3 41.8,33.2 52.5,48.2
F1 57.9,43.6 68.3,52.8 61.0,44.6 54.5,41.6 25.6,19.6 31.6,30.5 48.9,46.3

BANKING A 78.5,61.2 82.3,71.2 69.5,54.3 73.3,57.2 19.0,17.7 21.0,20.5 27.3,25.7
F1 73.5,57.0 80.0,68.4 64.1,51.4 67.8,52.4 15.6,16.2 18.1,19.4 25.6,24.3

CLINC A 88.1,73.9 89.3,81.2 81.6,68.1 84.9,70.8 43.0,37.8 47.0,40.9 55.7,48.1
F1 81.7,66.9 85.3,74.2 75.2,60.8 79.4,63.4 39.6,35.7 45.4,39.5 51.2,45.3

Overall Average A 82.3,69.9 85.3,74.8 80.4,67.5 80.6,67.4 25.8,20.5 41.3,39.0 52.1,48.9
F1 72.7,60.9 78.4,66.9 69.3,57.9 71.6,59.7 22.2,19.6 36.4,35.6 48.2,45.5

Table 4: Overall Accuracy (A) and Macro F1-score (F1) in (%) of different models in MLMCID and LLMs for fine
labels (on English Datasets) - primary intent (p) and average(av). (The best outcomes are marked in Bold)
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Dataset mBERT (p, av) XLM-R (p, av) mDistilBERT (p, av) Llama-2 (p, av) GPT-3.5 (p, av) GPT-4 (p, av)

FACEBOOK
(Spanish)

Coarse A 98.0,80.7 98.5,81.5 98.0,80.2 51.2,39.9 64.6,61.6 70.7,75.6
F1 91.3,82.2 92.5,82.7 91.1,82.9 47.2,39.6 62.6,61.3 69.4,69.3

Fine A 96.7,80.0 97.5,81.0 96.5,80.2 38.3,27.2 57.6,56.6 69.7,74.2
F1 84.6,80.0 86.0,81.7 84.3,76.8 36.2,30.6 55.4,55.0 66.2,65.6

FACEBOOK
(Thai)

Coarse A 96.5,79.8 97.0,80.0 96.8,79.0 28.0,24.2 69.7,58.6 73.4,71.5
F1 88.4,75.8 96.6,78.8 94.2,73.4 25.6,24.8 67.8,57.2 71.6,69.3

Fine A 96.0,79.5 96.5,79.7 95.5,77.2 16.3,15.2 18.2,18.7 68.7,64.9
F1 84.1,74.2 82.5,75.5 68.8,62.7 15.7,14.9 17.9,16.8 59.2,58.7

Average
Coarse A 97.2,80.3 97.8,80.8 97.4,79.6 39.6,32.1 67.2,60.1 72.1,73.6

F1 89.8,79.0 94.6,80.8 92.6,78.2 36.4,32.2 65.2,59.3 70.5,69.3

Fine A 97.3,79.7 97.0,80.8 96.0,78.7 27.3,21.2 37.9,37.7 69.2,69.6
F1 84.3,77.1 84.3,78.6 76.5,69.8 25.9,22.8 36.7,35.9 62.7,62.2

Table 5: Overall Accuracy (A) and Macro F1 (F1) in (%) of different models in MLMCID and LLMs for coarse
and fine grained labels of Facebook Spanish and Thai datasets - primary intent (p) and overall average(av). (The
best outcomes are marked in Bold)

fine intent detection after intent spans extraction.

Findings 6: For non-English languages like Span-
ish (Facebook) and Thai (Facebook) datasets , we
observe that for both fine and coarse grained intent
labels, XLM-R and mBERT both produce good
results but XLM-R outperforms mBERT in all as-
pects across all datasets and overall for both pri-
mary intent detection and overall average intent
detection with intent span extraction.

Findings 7: To check the effectivity of span ex-
traction by pointer network, we vary the similarity
(extracted intent span vs actual intent span) thresh-
old utilise that extracted span to check the over-
all accuracy. We check for 50% - 90% similarity
threshold range and overall framework (RoBERTA
with PNM) accuracies (for both primary and aver-
age intent) across all datasets for coarse and fine
intent labels are shown in Table 6 and 7. It is seen a
good performance even with 50% similarity which
shows the efficacy of the system.

Ablation Studies

1. K-shot setting: To evaluate the RoBERTa based
PNM model of MLMCID architecture, we utilize
K samples for all English datasets where K = 5
(5-shot) and 10 (10-shot) for coarse and fine intent
labels. The accuracy and F1-score of primary and
average intents are shown in Table 9. This shows
even with very limited number of data-points (like
in 5-shot), the system is able to achieve a decent
performance across different datasets.

2. Practical Datasets: We test the trained
RoBERTa models with PNM (using SNIPS,
BANKING and CLINC dataset) in MLMCID to
evaluate on external MPQA and Yahoo datasets.
We also check LLMs - Llama2-7b (vanilla and fine-
tuned), GPT-3.5 and GPT-4 on MPQA and Yahoo
but RoBERTa based PNM in MLMCID outper-
fomrs LLMs in most of the cases and show decent
performance as shown in Table 8. It is seen that,
for Llama2-7b vanilla model performs poorly and

Th Dataset (primary (p) and average (av) intent) in %
MIX_SNIPS FB_en FB_es FB_th MIX_ATIS HWU64 BANKING CLINC

50 % 89.2,80.9 96.0,78.5 94.5,77.4 89.9,82.4 95.1,90.2 85.5,70.0 81.8,74.7 90.1,79.2
60 % 87.7,78.9 95.0,77.9 86.5,71.2 77.4,70.3 91.9,90.2 85.5,68.9 79.4,72.0 88.4,77.5
70 % 79.4,70.8 91.0,74.6 75.6,63.1 75.2,67.7 85.1,89.2 84.6,68.1 75.9,68.3 84.0,73.0
80 % 70.4,63.5 83.0,68.8 72.6,59.4 71.4,62.9 83.8,88.2 81.9,66.6 69.9,62.8 79.1,67.6
90 % 59.2,54.2 75.0,63.2 61.6,50.3 69.4,59.6 80.9,86.2 77.5,62.6 63.4,56.0 67.5,58.2

Table 6: Overall Accuracy (A) in (%) of RoBERTa model in MLMCID for coarse grained labels (on English
Datasets) - primary (p) and average (av) intents. (‘Th’ indicates threshold value)

Th Dataset (primary (p) and average (av) intent) in %
MIX_SNIPS FB_en FB_es FB_th MIX_ATIS HWU64 BANKING CLINC

50 % 83.6,80.7 93.5,78.1 91.5,75.9 89.6,81.1 95.1,90.2 83.0,67.1 77.1,69.8 86.6,78.9
60 % 82.1,78.9 92.5,77.0 85.6,70.2 82.4,79.6 91.9,90.2 80.4,65.0 74.8,67.5 86.1,77.4
70 % 76.1,72.3 87.6,71.9 78.7,63.8 75.9,67.2 85.1,89.2 79.5,64.3 69.1,62.2 82.9,70.9
80 % 68.6,64.8 78.7,65.9 74.8,60.6 68.4,61.0 83.8,88.2 75.2,62.4 64.5,56.0 77.0,68.0
90 % 55.2,52.4 72.8,61.0 63.0,50.7 65.4,57.3 80.9,86.2 67.5,55.1 57.7,49.4 66.4,62.8

Table 7: Overall Accuracy (A) in (%) of RoBERTa model in MLMCID for fine grained labels (on English Datasets)
- primary (p) and average (av) intents. (‘Th’ indicates threshold value)

,
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Dataset Llama2-7b Fine-
tune (p,av)

Llama2-7b
Vanilla (p, av)

GPT-3.5 (p, av) GPT-4 (p, av) RoBERTa-
SNIPS(p, av)

RoBERTa-
BANKING(p,av)

RoBERTa-
CLINC(p, av)

MPQA Fine 42.8,27.1 18.8,16.9 20.0,14.2 48.5,37.1 45.0,42.5 44.5,42.0 43.9,41.5
Coarse 65.7,64.2 51.9,50.0 62.8,59.9 68.5,45.6 75.6,43.7 73.0,41.9 72.8,42.6

YAHOO Fine 48.3,37.5 18.8,15.8 11.4,10.6 58.0,56.2 55.3,54.9 54.0,53.8 52.9,54.2
Coarse 61.2,49.9 52.8,50.0 50.0,50.0 61.2,49.1 66.3,65.7 64.5,62.9 63.2,60.8

Table 8: Overall Accuracy (A) in (%) of RoBERTa model in MLMCID (trained on SNIPS, BANKING and CLINC)
and LLMs for fine and course grained labels - primary (p) and average (av) intent.

fine-tune version perform better but does not out-
perform GPT and RoBERTa based models.

3. Intent Counts: All datasets have two intents
(primary and non-primary) in one sentence except
for Yahoo, 2.6% cases with more than 2 intents
so we show all results considering the case of 2
intents in a sentence. Our system is also effective
for more than two intents by utilizing more pointer
network block in the decoder framework, as shown
in Appendix A.2.

Dataset Coarse (p, avg) Fine (p, avg)

SNIPS
5-shot A 61.0,49.2 70.9,53.3

F1 58.1,46.4 67.9,51.7

10-shot A 61.4,52.1 75.9,63.1
F1 60.7,47.4 75.1,61.0

FACEBOOK
(English)

5-shot A 83.5,62.0 76.0,58.3
F1 58.0,42.8 26.7,20.4

10-shot A 87.5,67.8 83.5,64.3
F1 59.5,45.9 34.3,25.2

HWU-64
5-shot A 57.2,39.3 47.8,29.6

F1 49.3,34.7 35.5,22.1

10-shot A 62.2,43.5 62.2,43.3
F1 58.2,39.2 46.2,31.9

BANKING
5-shot A 36.0,28.2 62.3,38.6

F1 32.5,25.0 56.7,34.4

10-shot A 46.0,32.9 76.1,52.9
F1 46.1,31.4 71.2,48.0

CLINC
5-shot A 78.4,50.4 76.3,53.4

F1 69.9,44.0 65.8,44.6

10-shot A 87.3,65.9 89.6,69.7
F1 79.3,58.5 79.3,58.5

Table 9: Accuracy (A) and F1-Score for coarse and fine
intents by RoBERTa(in %) for k-shot, k = {5, 10}

Experimental Settings: Our experiments are con-
ducted on two Tesla P100 GPUs with 16 GB RAM,
6 Gbps clock cycle, GDDR5 memory and one
80GB A100 GPU, 210MHz clock cycle, 2*960
GB SSD with 5 epochs. We use Adam optimizer
with learning rate: 10−5 with cross-entropy as the
loss function, weight decay: 10−5 and a dropout
rate of 0.5 is applied on the embeddings to avoid
overfitting for all experiments (Details are in Ap-
pendix). All methods took less than 120 GPU
minutes (except Llama2: ∼4-5 hrs) for fine tun-
ing and ∼2 hrs for inference. All the hyperpa-
rameters are tuned on the dev set. We have used
NLTK, Spacy, Scikit-learn, openai (version=0.28),
huggingface_hub, torch and transformers python

packages for all experiments and evaluation 8.

6 Loss Function

We calculate loss of different intent classes across
all samples for primary, non-primary intents and
their respective primary and non primary spans as
shown in equation 5, 6 and 7 respectively. For train-
ing our model, we minimize the sum of negative
log-likelihood loss for classifying the intent and the
four pointer locations corresponding to the primary
and non primary intent spans as shown in equation
8.

Lp = − 1

N

N∑

i=1

[ C∑

j=1

(y1)ij log(pij)− 1

J

J∑

j=1

log((y1)j
n)
]

(5)

Lnp = − 1

N

N∑

i=1

[ C∑

j=1

(y2)ij log(pij)− 1

J

J∑

j=1

log((y2)j
n)
]

(6)

Lspan = − 1

N × J

N∑

n=1

J∑

j=1

[
log((stp1)jn·

(ep1)jn) + log((stp2)jn · (ep2)jn)
]

(7)

Here, C is the number of intent classes and (y1) ∈
{inc1, inf1} and (y2) ∈ {inc2, inf2}. (y1)ij and
(y2)ij are the one-hot ground truth labels for sam-
ple i and class j for the primary and non-primary
intents respectively, and pij is the predicted proba-
bility for sample i and class j. n represents the nth

training instance with N being the batch size, j rep-
resents the jth decoding time step with J being the
length of the longest target sequence among all in-
stances in the current batch. stp, ep; p ∈ {p1, p2}
respectively represent the softmax scores corre-
sponding to the true start and end positions of the
primary and non primary spans. Fig 3 shows the

8All Code / Data details are in https://github.com/
ankan2/multi-intent-pointer-network
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(a) Combined loss - Coarse (b) Combined Loss - Fine

Figure 3: By RoBERTa based pointer network
(PNM) model in MLMCID

variation of the overall loss for course and fine in-
tents with respect to the training progress (in terms
of epochs) across different datasets. Loss decreases
with larger epochs and after 10 epochs the loss
decrement is significant to obtain decent outcome.

L = Lp + Lnp + Lspan (8)

7 Conclusion

Intent detection is crucial in task-oriented conversa-
tion systems. Earlier works focus on scenarios with
the presence of a single intent and do not extract in-
tent spans. This work is one of the first to consider
multiple intents in a single sentence within a conver-
sation system, including primary and non-primary
intents. First, we create novel datasets using state-
of-the-art datasets with coarse and fine intent la-
bels. Then, we develop a Pointer Network-based
encoder-decoder framework (MLMCID - multi-
label multi-class intent detection) using RoBERTa
(for English data) and XLM-R (for non-English
data) to jointly extract intent spans from sentences
and detect corresponding coarse and fine intents.
We show that the MLMCID model even outper-
forms various LLMs for these specific tasks across
different datasets. The approach demonstrates effi-
cacy even in few-shot scenarios. Qualitative anal-
ysis shows a reasonable grasp of primary and sec-
ondary intent concepts. Overall, this highlights the
importance of multi-intent modeling for real-world
conversational AI, with the datasets and models
providing a strong foundation for future research.

Limitations and Discussion

Table 3, 4, 5 shows that even when our model fails
to give the correct predictions exactly, it predicts
the primary intent correctly most of the time. This
is due to the fact we are using the top-2 intents to
infer the primary and non-primary intents using
the same classifier. Also, in some examples, the

primary and non-primary intent Labels, when pre-
dicted wrongly, are swapped, suggesting that the
model is still able to grasp the notion of intent. We
shall work on these limitations in future.

Ethical Concerns

We use publicly available codes and datasets so
there is no ethical concerns.

Acknowledgements

The work was supported in part by Prime Minister
Research Fellowship (PMRF).

References
Gpt-3.5 turbo documentation.

Nicholas Asher, Farah Benamara, and Yvette Yannick
Mathieu. 2009. Appraisal of opinion expressions in
discourse. Lingvisticæ Investigationes, 32(2):279–
292.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Xin-Qiang Cai, Peng Zhao, Kai-Ming Ting, Xin Mu,
and Yuan Jiang. 2019. Nearest neighbor ensembles:
An effective method for difficult problems in stream-
ing classification with emerging new classes. In
2019 IEEE International Conference on Data Mining
(ICDM), pages 970–975. IEEE.

Inigo Casanueva, Tadas Temčinas, Daniela Gerz,
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A Experimental Findings

A.1 Why encoder decoder model performs
well

Pointer Network model is a state-of-the-art ap-
proach which is ideal for extracting multiple spans
from a sentence using the pointing mechanism to di-
rectly select positions in the input sequence, allow-
ing for variable-length outputs and precise bound-
ary identification. Their attention mechanism ef-
fectively handles context, enabling accurate span
extraction in a computationally efficient manner. It
is effective also because of -

• Dynamically predict entity spans within a se-
quence, enhancing adaptability across various
NLP tasks

• capture the interdependence between spans
and intents, crucial for tasks where one in-
tent’s prediction relies on another characteris-
tics within the same context.

• Reduce the need for manual feature engineer-
ing, learning to predict spans directly from
input data for more efficient models

• Finally, enable end-to-end learning by directly
predicting entity span positions, facilitating
seamless integration with other neural net-
work components.

Dataset Intent 1 (%) Intent 2 (%) Intent 3 (%) Average (%)
MIX_SNIPS (fine) 81.2 73.8 60.3 71.7

MIX_SNIPS (coarse) 85.4 74.4 62.3 74.0
BANKING (fine) 79.3 60.0 56.3 65.2

BANKING (coarse) 83.3 68.9 59.6 70.6
CLINC (fine) 80.7 69.2 55.4 68.4

CLINC (coarse) 81.9 71.7 58.3 70.6

Table 10: 3-Intent Detection by Roberta based PNM

A.2 PNM for more than two intent cases
To evaluate the effectiveness of the Pointer Net-
work framework for more than two intents, we
experimented with a small sample from the
MIX_SNiPS, BANKING, and CLINC datasets, in-
corporating three intents. For instance, the sentence
"Will it snow this weekend? Please help me book
a rental car for Nashville and play that song called
’Bring the Noise’" includes the intents: weather,
car_rental, play_music. Table 10 presents the per-
formance of RoBERTa on this annotated sample.
The results demonstrate the effectiveness of our
system in handling a larger number of intents, as
reflected by the accuracy (in %).

A.3 Scalability
We experiment with datasets composed of two in-
tents with the P100 server with 16GB GPU B where
6-9 GB GPU VRAM has been utilised. Further we
experiment on the dataset with three intents in the
same server which use 12-13 GB GPU VRAM so
our approach is scalable and applicable in resource
constrained environments. It is also seen that in
case of larger numbers of intents with the introduc-
tion of additional pointer networks - the system is
scalable and does not require large computational
costs. So the framework can be useful in real time
processing for large scale systems. Though it is
also to be noted that most of the datasets are com-
posed with two intents even in the real life sen-
tences.

A.4 Single Intent Detection
We perform additional experiments on three
datasets with various intent sizes - SNIPS (small),
BANKING (medium) and CLINC (large) and de-
tect the single-intent text using RoBERTa based
pointer network architecture - which is shown in
the following table (in %). It shows the effective-
ness of our model for coarse (c) and fine (f).

B Experimental Settings

Our experiments are conducted on two Tesla
P100 GPUs with 16 GB RAM, 6 Gbps clock cy-
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Dataset coarse (%) fine (%)
SNIPS 90.0 85.9

BANKING 83.9 81.8
CLINC 80.0 75.3

Table 11: Single Intent Detection

cle, GDDR5 memory and one 80GB A100 GPU,
210MHz clock cycle, 2*960 GB SSD with 5
epochs. We use Adam optimizer with learning
rate: 10−5 with cross-entropy as the loss function,
weight decay: 10−5 and a dropout rate of 0.5 is
applied on the embeddings to avoid overfitting for
all experiments. All methods took less than 120
GPU minutes (except Llama2: ∼4-5 hrs) for fine
tuning and ∼2 hrs for inference. All the hyperpa-
rameters are tuned on the dev set. We have used
NLTK, Spacy, Scikit-learn, openai(version=0.28),
huggingface_hub, torch and transformers python
packages for all experiments and evaluation.

C Example

Figure 4 shows some examples from MLMCID
dataset. Table 12 and 13 shows some examples
of fine to coarse label conversion for MLMCID
dataset. Table 14 shows some examples of the
intent classes predicted with their respective confi-
dence for PNM.
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Figure 4: Examples in MLMCID Dataset
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Sr.
No.

Dataset Coarse Label Fine Labels Combined

1. SNIPS Traffic_update ComparePlaces, GetPlaceDetails, ShareCurrentLo-
cation, SearchPlace, GetDirections

App_Service RequestRide, BookRestaurant
Location_service GetTrafficInformation, ShareETA
GetWeather GetWeather

2. BANKING

Cancelled_ transfer cancel_transfer, beneficiary_not_allowed
Card_problem card_arrival, card_linking, card_swallowed,

activate_my_card, declined_card_payment, re-
verted_card_payment?, pending_card_payment,
card_not_working, lost_or_stolen_card,
pin_blocked, card_payment_fee_charged,
card_payment_not_recognised, card_acceptance

exchange_rate_query exchange_rate, fiat_currency_support,
card_payment_wrong_exchange_rate,
wrong_exchange_rate_for_cash_withdrawal

General_Enquiry extra_charge_on_statement,
card_delivery_estimate, pending_cash_withdrawal,
automatic_top_up, verify_top_up, top-
ping_up_by_card, exchange_via_app,
atm_support, lost_or_stolen_phone, trans-
fer_timing, transfer_fee_charged, receiv-
ing_money, top_up_by_cash_or_cheque, ex-
change_charge, cash_withdrawal_charge, ap-
ple_pay_or_google_pay

Top_up top_up_by_bank_transfer_charge, pending_top_up,
top_up_limits, top_up_reverted, top_up_failed

Account_opening age_limit
transaction_problem contactless_not_working,

wrong_amount_of_cash_received, trans-
fer_not_received_by_recipient, bal-
ance_not_updated_after_cheque_or_cash_deposit,
declined_cash_withdrawal, pending_transfer,
transaction_charged_twice, declined_transfer,
failed_transfer

Card_service_enquiry visa_or_mastercard, disposable_card_limits, get-
ting_virtual_card, supported_cards_and_currencies,
getting_spare_card, virtual_card_not_working,
top_up_by_card_charge, card_about_to_expire,
country_support

Identity_verification unable_to_verify_identity, why_verify_identity,
verify_my_identity

Service_request order_physical_card, edit_personal_details,
get_physical_card, passcode_forgotten,
change_pin, terminate_account, request_refund,
verify_source_of_funds, transfer_into_account,
get_disposable_virtual_card

Malpractice compromised_card, cash_withdrawal_not_ recog-
nised

Payment_inconsistency direct_debit_payment_not_recognised,
Refund_not_showing_up, bal-
ance_not_updated_after_bank_transfer

Table 12: Fine to Coarse Labels Conversion Examples for SNIPS and BANKING Dataset
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Sr.
No.

Dataset Coarse Label Fine Labels Combined

3. CLINC

health_suggestion nutrition_info, oil_change_how, calories
Restaurant restaurant_reviews, accept_reservations, restau-

rant_reservation, meal_suggestion, restau-
rant_suggestion

account redeem_rewards, report_lost_card, balance,
bill_balance, credit_limit, rewards_balance,
bill_due, credit_score, transactions, spend-
ing_history, damaged_card, pin_change, replace-
ment_card_duration, new_card, direct_deposit,
credit_limit_change, payday, application_status,
pto_request, pto_request_status, pto_balance,
pto_used

communication make_call, text
Reminder remind_update, remind, reminder_update, re-

minder, meeting_schedule
banking_enquiry account_blocked, freeze_account, interest_rate

4.
Facebook
Multilingual
Dialog Dataset

change_alarm_content cancel alarm, modify alarm, set alarm, snooze alarm
reminder_service cancel reminder, set reminder, show reminders
sunset_sunrise weather check sunrise, weather check sunset
get_weather weather find
read alarm content show alarm, time left on alarm

5. HWU64

alarm set, remove, query
audio audio_volume_mute, audio_volume_down, au-

dio_volume_other, audio_volume_up
iot iot_hue_lightchange, iot_hue_lightoff,

iot_hue_lighton, iot_hue_lightdim, iot_cleaning,
iot_hue_lightup, iot_coffee, iot_wemo_on,
iot_wemo_off

calendar calendar_query, calendar_set, calendar_remove
play play_music, play_radio, play_audiobook,

play_podcasts, play_game
general general_query, general_greet, general_joke,

general_negate, general_dontcare, general_repeat,
general_affirm, general_commandstop, gen-
eral_confirm, general_explain, general_praise

datetime datetime_query, datetime_convert
takeaway takeaway_query, takeaway_order
news news_query
music music_likeness, music_query, music_settings, mu-

sic_dislikeness
weather weather_query
qa qa_stock, qa_factoid, qa_definition, qa_maths,

qa_currency
social social_post, social_query
recommendation recommendation_locations, recommenda-

tion_events, recommendation_movies
cooking cooking_recipe, cooking_query
email email_sendemail, email_query, email_querycontact,

email_addcontact
transport transport_query, transport_ticket, transport_traffic,

transport_taxi
lists lists_query, lists_remove, lists_createoradd

Table 13: Fine to Coarse Labels Conversion Examples for Facebook and CLINC Dataset
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Text Predicted True Label Remarks about pre-
diction

Find a store near Sia’s place
where I can buy champagne
and find me a brunch spot in
Lower Manhattan (SNIPS)

Location_Service (Dominant),
App_Service (Non-dominant)

Location_Service, Loca-
tion_Service

Non-Dominant
Label predicted
wrongly

Book a cab, is there traffic
on the US 50 portion I’m go-
ing to take to go to my client
meeting? (SNIPS)

App_Service (Dominant), Traf-
fic_update (Non-Dominant)

Traffic_update,
App_Service

Wrong Predictions
- swapped ground-
truth labels

What will the weather be like
at my Airbnb this week end?
Is there a parking at my hotel?
(SNIPS)

GetWeather (Dominant), Loca-
tion_Service (Non-Dominant)

GetWeather, Loca-
tion_Service

Correct Predictions

Can you make a reserva-
tion at a lebanese restaurant
nearby, for lunch, party of 5?
How’s the traffic from here?
(SNIPS)

App_Service (Dominant), Traf-
fic_update (Non-Dominant)

App_Service, Loca-
tion_Service

Non-dominant label
wrongly predicted

set alarm,remind me to pay
electric monday (FACE-
BOOK)

set alarm (Dominant), set re-
minder (Non-Dominant)

set alarm, set reminder Correct Predictions

is it going to snow in chicago
tomorrow, any chance of rain
today? (FACEBOOK)

weather find (Dominant), set
reminder (Non-Dominant)

weather find, weather find Non-dominant label
wrongly predicted

how hot will it be, how long
will it rain tomorrow (FACE-
BOOK)

weather find (Dominant), set
reminder (Non-Dominant)

weather find, weather find Non-dominant label
wrongly predicted

what is the average wait
for transfers, I’m still wait-
ing on my identity verifica-
tion.(BANKING)

General_Enquiry(Dominant),
Identity_verification(Non-
Dominant)

General_Enquiry, Iden-
tity_verification

Correct Predictions

My card is due to expire,Why
can’t I get cash out (BANK-
ING)

card_about_to_expire(Dominant),
declined_cash_withdrawal(Non-
Dominant)

card_about_to_expire, de-
clined_cash_withdrawal

Correct Predictions

I have a new email. I am in
the EU. Can I get one of your
cards? (BANKING)

Card_service_enquiry(Dominant),
General_Enquiry(Non-
Dominant)

Service_request,
Card_service_enquiry

Incorrect Predictions;
Predicted Dominant
Intent is same as
the Non-Dominant
Ground Truth Label

Can other people top up my
account? where did my funds
come from? (BANKING)

verify_source_of_funds(Dominant),
topping_up_by_card(Non-
Dominant)

topping_up_by_card, ver-
ify_source_of_funds

Wrong Predictions
- swapped ground-
truth labels

Can you tell me my shop-
ping list items, please? Is
tomato on my shopping list?
(CLINC)

shopping_list(Dominant),
account(Non-Dominant)

shopping_list, shop-
ping_list

Non-dominant label
wrongly predicted

Change the name of your
system. Your name from
this point forward is george.
(CLINC)

change_ai_name(Dominant),
change_user_name(Non-
Dominant)

change_ai_name,
change_ai_name

Non-dominant label
wrongly predicted

use my phone and con-
nect please,tell me some-
thing that’ll make me
laugh(CLINC)

sync_device(Dominant),
tell_joke(Non-Dominant)

sync_device, tell_joke Correct Predictions

will there be traffic on the way
to walmart,can you help me
with a rental car(CLINC)

traffic(Dominant),
car_rental(Non-Dominant)

traffic, car_rental Correct Predictions

Table 14: Prediction of best-performing models and Respective Confidence
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