@inproceedings{mullick-etal-2024-pointer,
title = "A Pointer Network-based Approach for Joint Extraction and Detection of Multi-Label Multi-Class Intents",
author = "Mullick, Ankan and
Bose, Sombit and
Nandy, Abhilash and
Chaitanya, Gajula Sai and
Goyal, Pawan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.919/",
doi = "10.18653/v1/2024.findings-emnlp.919",
pages = "15664--15680",
abstract = "In task-oriented dialogue systems, intent detection is crucial for interpreting user queries and providing appropriate responses. Existing research primarily addresses simple queries with a single intent, lacking effective systems for handling complex queries with multiple intents and extracting different intent spans. Additionally, there is a notable absence of multilingual, multi-intent datasets. This study addresses three critical tasks: extracting multiple intent spans from queries, detecting multiple intents, and developing a multilingual multi-label intent dataset. We introduce a novel multi-label multi-class intent detection dataset (MLMCID-dataset) curated from existing benchmark datasets. We also propose a pointer network-based architecture (MLMCID) to extract intent spans and detect multiple intents with coarse and fine-grained labels in the form of sextuplets. Comprehensive analysis demonstrates the superiority of our pointer network based system over baseline approaches in terms of accuracy and F1-score across various datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mullick-etal-2024-pointer">
<titleInfo>
<title>A Pointer Network-based Approach for Joint Extraction and Detection of Multi-Label Multi-Class Intents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ankan</namePart>
<namePart type="family">Mullick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sombit</namePart>
<namePart type="family">Bose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhilash</namePart>
<namePart type="family">Nandy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gajula</namePart>
<namePart type="given">Sai</namePart>
<namePart type="family">Chaitanya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pawan</namePart>
<namePart type="family">Goyal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In task-oriented dialogue systems, intent detection is crucial for interpreting user queries and providing appropriate responses. Existing research primarily addresses simple queries with a single intent, lacking effective systems for handling complex queries with multiple intents and extracting different intent spans. Additionally, there is a notable absence of multilingual, multi-intent datasets. This study addresses three critical tasks: extracting multiple intent spans from queries, detecting multiple intents, and developing a multilingual multi-label intent dataset. We introduce a novel multi-label multi-class intent detection dataset (MLMCID-dataset) curated from existing benchmark datasets. We also propose a pointer network-based architecture (MLMCID) to extract intent spans and detect multiple intents with coarse and fine-grained labels in the form of sextuplets. Comprehensive analysis demonstrates the superiority of our pointer network based system over baseline approaches in terms of accuracy and F1-score across various datasets.</abstract>
<identifier type="citekey">mullick-etal-2024-pointer</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.919</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.919/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>15664</start>
<end>15680</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Pointer Network-based Approach for Joint Extraction and Detection of Multi-Label Multi-Class Intents
%A Mullick, Ankan
%A Bose, Sombit
%A Nandy, Abhilash
%A Chaitanya, Gajula Sai
%A Goyal, Pawan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F mullick-etal-2024-pointer
%X In task-oriented dialogue systems, intent detection is crucial for interpreting user queries and providing appropriate responses. Existing research primarily addresses simple queries with a single intent, lacking effective systems for handling complex queries with multiple intents and extracting different intent spans. Additionally, there is a notable absence of multilingual, multi-intent datasets. This study addresses three critical tasks: extracting multiple intent spans from queries, detecting multiple intents, and developing a multilingual multi-label intent dataset. We introduce a novel multi-label multi-class intent detection dataset (MLMCID-dataset) curated from existing benchmark datasets. We also propose a pointer network-based architecture (MLMCID) to extract intent spans and detect multiple intents with coarse and fine-grained labels in the form of sextuplets. Comprehensive analysis demonstrates the superiority of our pointer network based system over baseline approaches in terms of accuracy and F1-score across various datasets.
%R 10.18653/v1/2024.findings-emnlp.919
%U https://aclanthology.org/2024.findings-emnlp.919/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.919
%P 15664-15680
Markdown (Informal)
[A Pointer Network-based Approach for Joint Extraction and Detection of Multi-Label Multi-Class Intents](https://aclanthology.org/2024.findings-emnlp.919/) (Mullick et al., Findings 2024)
ACL