
Findings of the Association for Computational Linguistics: EACL 2024, pages 1707–1721
November 12-16, 2024 ©2024 Association for Computational Linguistics

Optimizing Instruction Synthesis: Effective Exploration of Evolutionary
Space with Tree Search

Chenglin Li1∗, Qianglong Chen1*, Zhi Li1, Feng Tao1, Yicheng Li1
Hao Chen2, Fei Yu2, Yin Zhang1†

1Zhejiang University, Hangzhou, China
2Ant Group, Hangzhou, China

{chenglinli,chenqianglong,zhili,tao_feng,yichengli,zhangyin98}@zju.edu.cn
chuhu.ch@antgroup.com, feiyu.fyyu@gmail.com

Abstract

Instruction tuning is a crucial technique for
aligning language models with humans’ ac-
tual goals in the real world. Extensive research
has highlighted the quality of instruction data
is essential for the success of this alignment.
However, creating high-quality data manually
is labor-intensive and time-consuming, which
leads researchers to explore using LLMs to syn-
thesize data. Recent studies have focused on
using a stronger LLM to iteratively enhance
existing instruction data, showing promising re-
sults. Nevertheless, previous work often lacks
control over the evolution direction, resulting
in high uncertainty in the data synthesis pro-
cess and low-quality instructions. In this paper,
we introduce a general and scalable framework,
IDEA-MCTS (Instruction Data Enhancement
using Monte Carlo Tree Search), a scalable
framework for efficiently synthesizing instruc-
tions. With tree search and evaluation mod-
els, it can efficiently guide each instruction
to evolve into a high-quality form, aiding in
instruction fine-tuning. Experimental results
show that IDEA-MCTS significantly enhances
the seed instruction data, raising the average
evaluation scores of quality, diversity, and com-
plexity from 2.19 to 3.81. Furthermore, in open-
domain benchmarks, experimental results show
that IDEA-MCTS improves the accuracy of
real-world instruction-following skills in LLMs
by an average of 5% in low-resource settings.

1 Introduction

Large language models (LLMs) have exhibited
remarkable capabilities across a wide range of
tasks in the field of natural language processing
(NLP) (Brown et al., 2020; Kojima et al., 2022;
Wei et al., 2022; Ouyang et al., 2022; Touvron
et al., 2023; Jiang et al., 2023; OpenAI, 2023).
Notably, LLMs can be trained to enhance their

* Equal Contribution.
† Corresponding author: Yin Zhang.

Seed
Instruction:

 1+1=?

Evolution Actions
1. Add Constraints.

2.Deepening.
3. Add Constraints

......

Random Sample

LLM

give a mathematical
expression that is equal
to 2 without using any
mathematical operators,
numbers, letters, or
graphic symbols.

 Please write Python code,
combining the basic concepts

and theorems in number
theory, to calculate and
explain the value of the

following expression in detail:
5×123+123×123-123.

Previous Method

Our Method

MCTS

score:3

Seed
Instruction:

1+1=?
LLM

Evolution Actions
1. Add Requirements.

2. ADD Domain Knowledge.
3. ADD Constraints.

score:0

Figure 1: Iteratively enhance seed instructions using
LLMs: The prior method’s random sampling instruc-
tion evolution led to a perplexing instruction by select-
ing “Add constraints” multiple times. Our method uses
MCTS to find suitable prompts, resulting in high-value
instructions that align the language model to effectively
learn multiple skills.

instruction-following skills through various meth-
ods, including fine-tuning on human-annotated
data (Ouyang et al., 2022; Zhou et al., 2023b; Tou-
vron et al., 2023) or extracted knowledge from
stronger LLMs (Wang et al., 2022; Xu et al., 2023a;
Zhao et al., 2023; Xu et al., 2023a,b; Wang et al.,
2024). Zhou et al. (2023b) have demonstrated that
this alignment can be achieved with low-resource
1k data. However, acquiring such data through hu-
man annotation remains high-cost, thus limiting
further progress.

Recent work explores synthesizing instruction
data with LLMs by prompting them with exam-
ple data or prompts and iteratively enhancing the
instruction data, offering an efficient and cost-
effective alternative to human annotation (Xu et al.,
2023a; Luo et al., 2023b,a; Liu et al., 2023). They
introduced evolution prompts for LLMs, such as
“Add constraints”, “Increase reasoning” and “Com-
plete input.”, enabling LLMs to iteratively im-
prove seed instructions. However, the process suf-
fers high uncertainty due to the limited evolution

1707

Reward

.....

1) Selection 2) Expansion 3) Evaluation 4) Simulation 5) Backpropagration

1+1=?

2+2=? 2+2*3=?

provide the code to
solve 2+2*3=?

1+1=?

provide the code
to solve 2+2*3=?

provide
the
code to
solve
2*4+2*
3=?

provide the
code to solve
following
question.John
has 12
pencils, and
he buys 7
more pencils.
How many
pencils does
John have
now?

provide the code
to solve following
question.John has
12 pencils, and
he buys 7 more
pencils. How
many pencils does
John have now?

Please provide the Python
code to solve the
following problem using a
function. The function
should take two arguments:
the initial number of
pencils and the number of
pencils purchased. The
function should return the
total number of pencils
John has now. John
initially has 12 pencils and
then purchases 7 additional
pencils. Use meaningful
variable names and include
comments explaining each
step.

Reward

.....

Please provide the Python
code to solve the following
problem using a function.
The function should take
two arguments: the initial
number of pencils and the
number of pencils purchased.
The function should return
the total number of pencils
John has now. John initially
has 12 pencils and then
purchases 7 additional
pencils. Use meaningful
variable names and include
comments explaining each
step.

1+1=? 1+1=?

2+2=? 2+2*3=?

Figure 2: Framework of MCTS for instruction synthesis: 1. Selection: Choose high-value leaf nodes. 2. Expansion:
Evolve the selected leaf nodes to generate new nodes. 3. Evaluation: Assess the current node to determine a reward.
4. Simulation: Randomly evolve the current instruction to a terminal state. 5. Backpropagation: Propagate the
terminal state’s reward back through the path’s nodes.

prompts, random selection methods, and lack of
control over the evolution direction. Specifically,
failures occur when LLMs select inappropriate evo-
lution prompts or fail to halt the instruction synthe-
sis process appropriately. As shown in Figure 1,
randomly selecting the prompts can turn a seed in-
struction like "1+1=" into a perplexing instruction.
Language models will struggle to learn new skills
from these low-value instructions, as humans also
find them difficult to understand. Conversely, a few
high-value instructions can significantly enhance
the model’s skills, enabling it to solve real-world
problems.

Intuitively, simple seed instructions can evolve
into a wide variety of forms during the evolutionary
process. To efficiently optimize and control this
evolution, we introduce a novel framework, IDEA-
MCTS, which expands the evolution prompts as
the action space and incorporates a tree search al-
gorithm to iteratively enhance seed instruction data.
In MCTS, each seed instruction acts as the root
node. High-value nodes are identified through se-
lection and use evolution prompts for further expan-
sion, followed by simulation and backtracking, to
find an optimal evolution action space to enhance
the instructions. In this process, we employ cus-
tomizable evaluation models to assess the quality,

diversity, and complexity of the nodes, effectively
controlling the direction of instruction evolution.
This framework enhances instruction data and pro-
vides a clearer understanding of the evolution pro-
cess, as shown in the case analysis in Appendix D.
Our experimental results show that IDEA-MCTS
significantly enhances the seed instruction data and
models fine-tuned on this enhanced data exhibit
substantial improvements compared to previous
methods. We believe this work provides clear guid-
ance for instruction synthesis, aiding models in
achieving data-efficient alignment and enhancing
overall performance. The contributions of our work
are as follows:

• To synthesize high-value instructions for en-
hancing language model skills, we propose
IDEA-MCTS, a scalable framework that con-
trols the direction of instruction evolution by
expanding the evolution space and integrating
evaluation models in tree search.

• To enhance the efficiency and accuracy of in-
struction evolution, we expand the existing
limited evolutionary space in two ways: evolv-
ing general effective instructions from them-
selves, and evolving task-specific instructions
by designing meta-prompts.

1708

• We demonstrate the effectiveness of our frame-
work by analyzing the generated instructions
and fine-tuning open-source models, includ-
ing LLaMA2, LLaMA3, Phi-3, and Mis-
tral, across different seed datasets and tasks,
achieving a 5% improvement over the previ-
ous random evolution method on the open-
domain instruction-following benchmark.

2 Related Work

Data Synthesis for Instruction Tuning Instruc-
tion tuning (IT) is a crucial technique for enhanc-
ing the performance and alignment of LLMs (Taori
et al., 2023; Chiang et al., 2023; Wang et al., 2023).
Recent efforts have extended into open-domain IT,
characterized by a wide range of formats and task
types, driven by crowdsourced human-generated
instruction-response pairs (Köpf et al.; Conover
et al., 2023; Zhang et al., 2023a; Peng et al., 2023;
Zhou et al., 2023b). However, the high cost of hu-
man annotation poses significant challenges (Zhang
et al., 2023a). One promising solution for this
limitation is the synthesis of instruction data with
the help of stronger LLMs (Bai et al., 2022; Ope-
nAI, 2023; Anil et al., 2023; Team, 2023). Yet,
using LLM-generated data increases the risk of low-
quality examples, highlighting the need for more fo-
cus on dataset refinement and enhancement. Some
works (Chen et al., 2023; Lu et al., 2023; Liu et al.,
2023) address this by prompting stronger LLMs
to filter instruction data based on its quality, diver-
sity, and complexity, serving as a form of refine-
ment. However, this approach lacks the synthesis
of new instruction, limiting the model’s instruction-
following capabilities, especially in low-resource
scenarios where only a small amount of data is
available. Other works (Zhao et al., 2024; Xu
et al., 2023a) enhance existing seed instructions
by using LLMs with carefully designed prompt
templates. Zhao et al. (2024) enhanced the origi-
nal instructions using tree-structured prompts but
focused only on the complexity and heavily relies
on LLMs’ intrinsic knowledge. Additionally, some
work (Xu et al., 2023a; Luo et al., 2023b,a; Liu
et al., 2023) design a series of evolution prompts
to iteratively guide LLMs in enhancing the seed
instructions. However, random selection during
instruction evolution introduces high uncertainty
and affects the quality of generated instructions. To
effectively enhance the seed instruction data, we
propose IDEA-MCTS, which expands the evolu-

tion action space, introduces evaluation models and
iteratively improves instruction data with MCTS.

Tree Search for LLM Enhancement Tree
search methods such as BFS, A* search (Hart et al.,
1968), and MCTS (Kocsis and Szepesvári, 2006;
Coulom, 2006; Ye et al., 2021; Silver et al., 2016),
are widely used to find an optimal state in a tree
structure. Integrating tree-search methods with
LLMs presents a novel approach to find an effec-
tive sequence of actions that leads to a favorable
outcome. Effective search strategy is crucial for
reasoning and planning (Hao et al., 2023; Zhou
et al., 2023a; Hu et al., 2023). Depth/breadth-first
search in (Yao et al., 2023), A* search in (Zhuang
et al., 2023) and MCTS in (Zhang et al., 2023b; Yu
et al., 2023; Hao et al., 2023; Zhou et al., 2023a;
Chen et al., 2024b). Feng et al. (2023); Tian et al.
(2024); Chen et al. (2024a) have utilized tree search
for LLM self-improvement. Unlike previous ap-
proaches, we leverage the powerful generative ca-
pabilities of LLMs and MCTS for instruction syn-
thesis.

3 Approach

In this section, we introduce the novel framework
IDEA-MCTS, which enhances the quality, diver-
sity, and complexity of seed instructions with a
stronger LLM, using MCTS. We first define the
problem, including the state, action space, and re-
ward function. Then, we discuss the expansion of
evolution prompts from two key aspects and the use
of MCTS with LLM to efficiently explore the ac-
tion spaces. Finally, we fine-tune models based on
the instruction data generated by the LLM, proving
the effectiveness of the framework in low-resource
settings.

3.1 Problem Setting
We begin with a seed instruction sample x as the
root node and employ a stronger language model
pθ. Our goal is to improve the quality, diversity,
and complexity of x. To achieve this, we use evo-
lution prompts, such as ‘add constraints’, as our
action space. During the tree search, intermediate
instructions generated by the LLM, denoted as zt,
serve as new nodes.

zt+1 = pθ(zt, a) (1)

By applying an action a, which is an evolution
prompt to wrap the state zt, we obtain the next in-
struction zt+1 via pθ. We assess each intermediate

1709

Please rate according to the accuracy and quality . Score 1-5. You can give a score of 6 if the question is
high quality. You should respond with the format: [1] Score: [2] Score:
[1] <Instruction 1> [2] <Instruction 2> [3] <Instruction 3> [4] <Instruction 4> [5] <Instruction 5>
(Quality)

Please rate according to the difficulty and complexity. Score 1-5. You can give a score of 6 if the question
is too complex for you to answer it. You should respond with the format:[1] Score: [2] Score:
[1] <Instruction 1> [2] <Instruction 2>
(Complexity)

Please identify tags of user intentions in the following instruction and provide an explanation for each tag.
Please response in the JSON format {"tag": str, "explanation": str}.
 Instruction: <Instruction>
(Diversity)

Figure 3: Evaluation prompt used to assess the quality, complexity, and diversity of instructions. Instruction diversity
is measured by the number of distinct intents.

instruction zt based on its quality, diversity, and
complexity. The value v(zt) of an instruction is
determined using the following equation:

v(zt) = pθq(zt) + pθd(zt) + pθc(zt) (2)

In this equation, pθq(zt), pθd(zt), and pθc(zt)
represent the quality, diversity, and complexity
scores of the instruction zi, respectively. Notably,
instruction diversity is measured by the number of
distinct intents. Further details about these value
scores will be discussed in the following sections.
By integrating these elements, we aim to create
a framework that robustly enhances seed instruc-
tions.

Quality & Complexity & Diversity Following
the (Liu et al., 2023; Lu et al., 2023), we con-
tinue training based on models, EVOL_QUALITY,
EVOL_COMPLEXITY, and InsTagger from these
works with 1k data points. We apply a random evo-
lution method(Xu et al., 2023a) to create new data
points from a base sample, gradually adjusting their
complexity, quality, and diversity of instruction.
We evaluate these data points using ChatGPT and
train an automatic scoring model with LLaMA2-
7B to predict ChatGPT’s scores. The evaluation
prompt we use is shown in Figure 3. These scoring
models are used to assess the quality, complexity,
and diversity of instructions as rewards in MCTS.

3.2 Instruction Evolution with MCTS

In our framework, we leverage a stronger language
model pθ and value function v to evolve the seed
instruction x using MCTS, as shown in Figure 2.

Intuitively, more precise and diverse evolution
prompts contribute to enhancing the quality of seed
instructions. To achieve this, we first expand the
evolution prompts from two ways, general effec-
tive and task-specific instructions. We explore the
open-space evolution prompts, that contribute a
general effective instructions such as goals, key
constraints, and requirements (Xu et al., 2023a;
Tianle Li*, 2024). On the other hand, we aim to
ensure that the seed instructions can effectively
transfer to task-specific contexts. With LLMs, we
design the meta prompts, as shown in Figure 4,
to extract task-related evolution prompts that con-
tain the words "such as." As shown in Table 1, the
designed evolution prompts can enhance both the
depth and breadth of the seed instruction.

Then we construct a decision tree. MCTS pro-
ceeds for k episodes, starting from the root (ini-
tial state) and progressively expanding this tree
through two primary steps: Selection and Expan-
sion. During Selection, the child with the highest
Upper Confidence bounds applied to Trees (UCT)
value (Kocsis and Szepesvári, 2006; Coulom, 2006)
is chosen for the next iteration. The UCT of a child
state z is computed as follows:

UCT (z) = V (z) + C ·
√

ln(N(p))

N(z)
(3)

where N(z) represents the number of visits to node
z, and V (z) is the value function (expected return).
During Expansion, multiple child states z are ex-
plored from the current state p by sampling n ac-
tions. The child node with the highest UCT value is
selected for expansion in the subsequent iteration.

1710

Evolution Space Description

Add Global and Local Goals
Add one or more global and local goals into the instruction to enhance
its direction and purpose.

Add Key Constraints
Add one or more constraints where necessary to define its limitations
and boundaries.

Add Task Requirements
Specify one or more detailed requirements to clarify the tasks within
the instruction.

Add Problem-Solving Skills Add one or more problem-solving task skills.

Add Reasoning Complexity Increase complexity by adding one or more reasoning elements.

Add Domain Knowledge
Add one or more areas of domain-specific knowledge, such as
medicine, law, finance, IT technology.

Add Life Topics
Add one or more life topics. Topics can range from health and
nutrition, cooking, photography, music, and travel, to parenting.

Add Real-World Applications
Add one or more real-world applications to provide practical context
and applicability, such as education, customer service, and Business.

Add Emotional Expression
Add one or more emotional content elements such as excitement or
concern.

Format the Input Style
Define one or more input formatting styles, such as a doctor, teacher,
or customer.

Format the Output Style
Specify one or more output formats, such as report format or summa-
rized in paragraphs.

Refine the Factuality
Refine the instruction to make it more factual and clear, to ensure it
is more factual, clear, and able to be responded to.

Create a New One
Create one instruction within the same domain to introduce fresh
perspectives.

Table 1: Expanded Space for Instruction Evolution.

In Evaluation, we assess the quality, complexity,
and diversity of the instruction data using the value
function v, which serves as the node’s reward. In
Simulation, selection and expansion are performed
repeatedly until a termination state is reached, con-
structing the rollout policy. The termination state
occurs when the tree’s depth or node value meets
a specified threshold. Backpropagation is per-
formed at the end of an episode: the return v is
used to update every V (z) along the path using the
formula:

V (z) = Vold(z) ·
(
N(z)− 1

N(z)

)
+

v

N(z)
(4)

where Vold(z) denotes the old value function.
MCTS relies on an environment model to re-

verse steps and build a search tree, imposing strict
assumptions. This constraint does not apply to
LLMs. Our method allows resetting to any step
by copying historical text input, overcoming the
limitation. By integrating MCTS with LLMs, we

demonstrate how heuristic search algorithms can
efficiently evolve instructions by leveraging the
powerful generative capabilities of LLMs.

Finally, after evolving the seed instructions, we
obtain responses from the stronger LLM and fine-
tune the open-source model. To ensure clarity and
logic, we avoided complex templates from previ-
ous works (Wei et al., 2021; Longpre et al., 2023).
Instead, our method follows a straightforward in-
struction template (Taori et al., 2023).

4 Experiments

4.1 Experiments Setting
Baselines We compare our method with manu-
ally annotated data and other techniques for enhanc-
ing instructional data using a more powerful LLM.
Additionally, we present the baselines utilized in
our experiments:

• Seed: Serves as the baseline without any en-
hancement methods.

1711

Method
Metric

Quality Instag Complexity Average

Seed 3.58 1.60 1.40 2.19
Lima 3.58 1.99 2.09 2.55

Tree-instruct 4.37 2.40 2.44 3.07
Evol-Instruct 3.82 2.30 2.52 2.87

Evol-Instruct+ 4.01 2.80 2.70 3.17
MCTS 3.96 3.12 3.51 3.53

MCTS+ 4.56 3.24 3.62 3.81

Table 2: Statistics of instruction dataset. The "+" symbol
indicates methods that expand the evolution prompts
space.

• LIMA (Jha et al., 2023): Contains 1,000 high-
quality, human-annotated instructional data
points, demonstrating significant improve-
ments for LLMs.

• Tree-instruct (Zhao et al., 2024): Enhances
the complexity of instructional data by adding
nodes to the semantic tree structure.

• Evol-Instruct (Xu et al., 2023a; Luo et al.,
2023a,b): Distinguishes itself by prompting
the LLM to iteratively evolve instructional
data in a random step-by-step manner.

Test Datasets Many studies have focused on
assessing the capabilities of LLMs (Liang et al.,
2022). However, the challenge remains unresolved.
A prevalent method involves using the powerful
language model as the evaluator (Li et al., 2023a;
Zheng et al., 2024; Chiang et al., 2023; Chen et al.,
2023). In our framework, we employ two dis-
tinct methods to assess the model’s capabilities:
LLM evaluation and human evaluation. Specifi-
cally, we use Alpaca-Eval (Li et al., 2023b) and
MT-Bench (Zheng et al., 2024) to assess real-world
instruction-following capabilities. We show more
details in Appendix A. In the Alpaca-Eval, we com-
pare our model’s output with Text-Davinci-003 and
use GPT-3.5-turbo to evaluate and score the out-
put in MT-Bench. Additionally, we evaluate the
model’s capabilities in the NLP benchmark with
the OpenLLM Leaderboard, which comprises four
tasks: ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), GSM8K (Cobbe et al., 2021), and
TruthfulQA (Lin et al., 2022).

Experiment Setting We randomly select 1,000
seed instructions each from Alpaca-52K (Taori
et al., 2023) and Dolly (Conover et al., 2023) as
a low-resource setting. We initialize our MCTS

Your goal is to analyze the task-specific
instructions and extract features that are
essential for high-quality instructions in this
task-specific context. Then Use these features
to create evolution prompt as actions that can
improve the seed instructions. Follow the steps
below:
1. Identify Key Features: Analyze the task-
specific instructions and list the key features of
them.
2. Define Evolution Actions: Based on the
identified features, define evolution prompt as
action that can enhance the ##seed instructions.
##seed instructions:{seed instructions}
##task-specific instructions:{task-specific
instructions}

Figure 4: Meta prompt used in LLM: Extracting evolu-
tionary prompt actions from task-related contexts.

evolution process with the stronger LLM, GPT-
3.5-turbo-0125 model. When calling this API, we
define the temperature parameter to 0.7, set the hy-
perparameter C to 1 set the maximum token limit
to 2048, and apply no penalty. In the MCTS setup,
we generate evolution prompts for the seed instruc-
tions based on the task-specific Alpaca-eval bench-
mark. The terminal state is defined as either reach-
ing a depth of more than 4 or achieving a reward
of more than 10. For each iteration, we expand 5
nodes per step, and the MCTS process is iterated 3
times. We randomly select 1,000 data points from
the generated data, collected from paths between
the root node and terminal state nodes, as training
data for the low-resource setting. During tuning,
the foundational models for our experiments are
the LLaMA2-7B, Mistral-7B, LLaMA3-8B, and
Phi-3. To efficiently fine-tune these models, we
adopted the QLORA approach (Dettmers et al.,
2023). Throughout the tuning process, we main-
tained a batch size of 32 and ended the process
after a maximum of 800 training steps. It’s im-
portant to note that these preliminary experiments
were conducted on a single GPU with 48GB of
memory. For technical execution, we harnessed
the capabilities of HuggingFace Transformers, Py-
Torch, and Accelerate, ensuring strict adherence
to academic integrity and standards throughout the
entire process.

4.2 Statistical Analysis of the Data Evolved
from MCTS

We conduct a comprehensive analysis of the
evolved instruction data from three critical dimen-

1712

Model Method
Metrics

help_base koala self_instruct oasst vicuna overall

LLaMA2

Seed 39.53 49.36 38.10 55.85 45.00 45.59
Lima 44.96 42.95 30.95 51.60 33.75 40.68
Evol-Instruct 44.96 45.51 43.65 51.60 42.50 46.46
MCTS+ (ours) 51.94 50.64 45.24 63.83 42.50 51.61

LLaMA3

Seed 58.14 54.49 51.98 64.89 47.50 56.27
Lima 44.19 41.67 38.10 52.13 36.25 42.98
Tree-instruct 53.49 57.05 55.95 67.55 52.50 58.21
Evol-Instruct 56.59 52.56 51.98 68.09 52.50 57.08
MCTS+ (ours) 53.49 61.54 62.70 70.21 46.25 60.37

Phi-3

Seed 46.51 55.13 55.16 64.89 43.75 55.22
Lima 41.86 50.64 41.27 60.11 43.75 48.36
Tree-instruct 51.94 57.05 51.59 69.08 51.25 57.52
Evol-Instruct 51.94 55.77 51.19 68.09 46.25 56.09
MCTS+ (ours) 57.36 57.05 59.52 72.34 65.00 62.36

Mistral

Seed 56.59 55.77 52.78 70.21 45.00 57.52
Lima 41.86 48.08 42.86 53.72 36.25 45.59
Tree-instruct 55.04 59.62 53.57 69.62 46.25 58.39
Evol-Instruct 57.36 55.77 52.78 70.21 41.25 57.52
MCTS+ (ours) 61.24 60.90 58.33 72.87 58.75 62.80

Table 3: Results of different instruction-tuned models on Alpaca-Eval (%).

MT-Bench

Turn-1 Turn-2 Average Score

Seed 6.25 5.54 5.90
Lima 6.71 6.61 6.66
Tree-instruct 6.55 6.03 6.29
Evol-Instruct 6.63 6.45 6.54
MCTS 6.71 6.61 6.66
Evol-Instruct+ 6.56 7.14 6.69
MCTS+ 6.74 7.14 6.94

Table 4: Results of different instruction-tuned models
on MT-Bench.

sions: quality, complexity, and diversity with the
EVOL_QUALITY, EVOL_COMPLEXITY, and In-
sTagger. As shown in Table 2, the Seed contains
1,000 instructions selected from the Alpaca-52K.
The Evol-Instruct contains 1,000 instructions ob-
tained through random evolution, while the MCTS
contains 1,000 instructions obtained through the
MCTS evolution. MCTS+ method can achieve the
highest scores across all evaluation metrics (Liu
et al., 2023; Lu et al., 2023), demonstrating signif-
icant improvement in quality, diversity, and com-
plexity. It outperforms the Seed, with average
scores increasing from 2.19 to 3.81. The expansion
of the instruction evolution space proves to be a
highly effective strategy for enhancing the quality
of instruction data.

4.3 Main results

The main results presented below are based on
LLM evaluations and further human evaluations
are provided in Appendix C.

Table 3 demonstrates that models fine-tuned with
data evolved from MCTS+ exhibit better perfor-
mance compared to other fine-tuning methods. In
particular, LLaMA2 and LLaMA3 can show sig-
nificant gains with MCTS+, with improvements
of 6.02% and 4.1%, respectively, over the Seed
method. Furthermore, Phi-3 and Mistral fine-
tuned with MCTS+ method outperform previous
methods across various skills, including help_base,
koala, self_instruct, oasst, and vicuna. Notably, the
Mistral model achieves a win rate of 61.24% in
help_base, surpassing the previous highest win rate
by 3.88 obtained using the Evol-Instruct method.
Overall, Mistral exhibits a 5.28% enhancement in
performance compared to the Evol-Instruct method.
These results show that MCTS effectively enhances
models’ instruction-following capabilities better
than traditional methods. Additionally, fine-tuning
with the LIMA method does not significantly im-
prove the model’s performance on Alpaca-eval,
suggesting potential generalization limitations of
manually annotated models.

1713

Model Method
Metrics

help_base koala self_instruct oasst vicuna overall

LLaMA2

Tree-instruct 51.16 51.28 60.11 42.46 43.75 49.81
Evol-Instruct 44.19 49.36 60.11 42.46 41.25 48.07
MCTS 44.96 51.92 62.23 44.84 41.25 50.00
Evol-Instruct+ 50.39 53.21 59.57 42.86 37.50 49.50
MCTS+ 49.61 51.92 63.30 44.84 42.50 51.18

Table 5: Results of different instruction-tuned models on Alpaca-Eval using Dolly as the Seed Dataset (%).

Model Method ARC-Easy ARC-Challenge HellaSwag TruthfulQA GSM8k Average

LLaMA2

Seed 80.30 52.82 77.96 29.80 13.04 50.78
Lima 80.43 53.07 78.54 31.18 14.10 51.59
Tree-instruct 80.85 53.92 78.80 33.09 13.80 52.01
Evol-Instruct 80.81 54.10 78.81 32.51 13.50 51.95
MCTS+ 81.02 54.10 78.94 33.73 13.72 52.30

Table 6: Results of different instruction-tuned models on the NLP benchmark, OpenLLM (%).

4.4 Generalization

During the expanded evolution process, with a fo-
cus on task-specific instruction data features on
Alpaca-Eval, we also evaluate the model’s perfor-
mance on the open-domain benchmark MT-Bench
and assess its capabilities on the NLP benchmark,
OpenLLM. Additionally, we consider the effective-
ness of using Dolly as a seed dataset.

As shown in Table 4, the MCTS+ method en-
hances both the model’s single-turn and multi-turn
dialogue capabilities. The single-turn score is im-
proved from 6.25 (Seed) to 6.74 (MCTS+), while
the multi-turn score is increased from 4.54 (Seed)
to 7.15 (MCTS+). This results in an overall aver-
age score improvement from 5.90 (Seed) to 6.94
(MCTS+), highlighting the method’s effectiveness
in handling more complex, multi-turn dialogues.

Using Dolly as the seed instruction dataset, Ta-
ble 5 shows that the MCTS+ method can achieve
the best performance, with a 3% improvement
compared to the Evol-Instruct method. Specifi-
cally, the overall score is improved from 48.07%
(Evol-Instruct) to 51.18% (MCTS+). In individ-
ual metrics, MCTS+ can improve the help_base
from 44.19 to 49.61, koala from 49.36% to 51.92%,
self_instruct from 60.11% to 63.30%, oasst from
42.46% to 44.84%, and vicuna from 41.25% to
42.50%.

As shown in Table 6, despite being fine-tuned on
very different instruction-following prompts, the
model’s capabilities in NLP tasks show a slight
improvement, with a 1.5% increase compared to

Model Method Overall (%)

LLaMA2

Evol-Instruct 46.46
MCTS 47.89
Evol-Instruct+ 49.32
MCTS+ 51.61

LLaMA3

Evol-Instruct 57.08
MCTS 57.52
Evol-Instruct+ 58.12
MCTS+ 60.37

Phi-3

Evol-Instruct 56.09
MCTS 57.64
Evol-Instruct+ 59.44
MCTS+ 62.36

Mistral

Evol-Instruct 57.52
MCTS 57.57
Evol-Instruct+ 60.11
MCTS+ 62.80

Table 7: Ablation study results on Alpaca-Eval (%).

the seed method.

4.5 Ablation Experiment
Our method can be proved effective in two key ar-
eas: expanding the action space and using MCTS
evolution. As shown in Table 7, models with ex-
panded action space (denoted as + methods) con-
sistently outperform those without it, regardless
of using random or MCTS evolution. For exam-
ple, the Mistral using the MCTS+ method shows a
3.72% improvement over the Evol-Instruct method.
Additionally, data evolved through MCTS main-
tains high quality, further improving the instruction-
following abilities of the model. The Phi-3 model,
using MCTS evolution, improves performance by
1.5% before action space expansion and by 2.92%
after expansion.

1714

5 Conclusion

In this paper, we introduce a novel framework
that leverages the power of MCTS combined with
heuristic evaluation to synthesis high-value instruc-
tion data. Our statistical analysis validates the
framework’s effectiveness in synthesizing high-
value data. By fine-tuning open-source models
with these evolved instructions, models achieve
competitive competitive performance compared to
previous methods.

Limitations

We need to acknowledge that the process of us-
ing LLMs for evolving instructions with MCTS is
opaque and incurs API costs. Knowledge distilla-
tion might balance the trade-off between expenses
and synthesizing high-quality instructions. On the
other hand, we have demonstrated the effectiveness
of MCTS-evolved instructions under low-resource
conditions. Further exploration of scaling laws
could enhance our understanding of the framework.

Acknowledgments

This work was supported by the Zhejiang Provin-
cial Natural Science Foundation of China un-
der Grant No. LZ23F020009, the NSFC project
(No. 62072399), MoE Engineering Research Cen-
ter of Digital Library, China Research Centre on
Data and Knowledge for Engineering Sciences
and Technology, the Fundamental Research Funds
for the Central Universities (No. 226-2024-00170),
and Ant Group. We also express our sincere grati-
tude to anonymous reviewers for their invaluable
feedback and constructive comments.

References
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-

son, and Dmitry Lepikhin. 2023. Palm 2 technical
report. ArXiv, abs/2305.10403.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Ziru Chen, Michael White, Raymond Mooney, Ali
Payani, Yu Su, and Huan Sun. 2024b. When is tree
search useful for llm planning? it depends on the
discriminator. arXiv preprint arXiv:2402.10890.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm. Company Blog of Databricks.

Rémi Coulom. 2006. Efficient selectivity and backup
operators in monte-carlo tree search. In International
conference on computers and games, pages 72–83.
Springer.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen,
Weinan Zhang, and Jun Wang. 2023. Alphazero-like
tree-search can guide large language model decoding
and training. arXiv preprint arXiv:2309.17179.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

1715

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/

Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968.
A formal basis for the heuristic determination of min-
imum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107.

Mengkang Hu, Yao Mu, Xinmiao Yu, Mingyu Ding,
Shiguang Wu, Wenqi Shao, Qiguang Chen, Bin
Wang, Yu Qiao, and Ping Luo. 2023. Tree-planner:
Efficient close-loop task planning with large language
models. arXiv preprint arXiv:2310.08582.

Aditi Jha, Sam Havens, Jeremey Dohmann, Alex Trott,
and Jacob Portes. 2023. Limit: Less is more for in-
struction tuning across evaluation paradigms. arXiv
preprint arXiv:2311.13133.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In European conference
on machine learning, pages 282–293. Springer.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richárd Nagyfi, et al. Openassis-
tant conversations-democratizing large language
model alignment. corr, abs/2304.07327, 2023. doi:
10.48550. arXiv preprint arXiv.2304.07327.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B Hashimoto. 2023a. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
GitHub repository.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, and Chang Zhou. 2023. #
instag: Instruction tagging for diversity and complex-
ity analysis. arXiv preprint arXiv:2308.07074.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
an instruction-following llama model (2023). URL
https://github. com/tatsu-lab/stanford_alpaca.

Gemini Team. 2023. Gemini: A family of highly capa-
ble multimodal models.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. arXiv preprint arXiv:2404.12253.

1716

http://arxiv.org/abs/2310.06825
https://github.com/tatsu-lab/alpaca_eval
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805

Evan Frick Lisa Dunlap Banghua Zhu Joseph E. Gon-
zalez Ion Stoica Tianle Li*, Wei-Lin Chiang*. 2024.
From live data to high-quality benchmarks: The
arena-hard pipeline.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,
and Dianhui Chu. 2024. A survey on data se-
lection for llm instruction tuning. arXiv preprint
arXiv:2402.05123.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi,
Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. 2023. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023a. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Yang Xu, Yongqiang Yao, Yufan Huang, Mengnan
Qi, Maoquan Wang, Bin Gu, and Neel Sundaresan.
2023b. Rethinking the instruction quality: Lift is
what you need.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter
Abbeel, and Yang Gao. 2021. Mastering atari games
with limited data. Advances in Neural Information
Processing Systems, 34:25476–25488.

Xiao Yu, Maximillian Chen, and Zhou Yu. 2023.
Prompt-based monte-carlo tree search for goal-
oriented dialogue policy planning. arXiv preprint
arXiv:2305.13660.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023a. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023b.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Fei Huang, Yongbin Li, and Nevin L Zhang. 2023.
A preliminary study of the intrinsic relationship be-
tween complexity and alignment. arXiv preprint
arXiv:2308.05696.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Minghao Li, Fei Huang, Nevin L Zhang, and Yongbin
Li. 2024. Tree-instruct: A preliminary study of the
intrinsic relationship between complexity and align-
ment. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 16776–16789.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023a. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint
arXiv:2310.04406.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023b. Lima: Less is more for align-
ment. arXiv preprint arXiv:2305.11206.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor Bursztyn, Ryan A Rossi, Somdeb Sarkhel,
and Chao Zhang. 2023. Toolchain*: Efficient action
space navigation in large language models with a*
search. arXiv preprint arXiv:2310.13227.

1717

https://lmsys.org/blog/2024-04-19-arena-hard/
https://lmsys.org/blog/2024-04-19-arena-hard/
http://arxiv.org/abs/2312.11508
http://arxiv.org/abs/2312.11508

A Benchmark Details

Alpaca-Eval (Li et al., 2023b) is a comprehen-
sive evaluation framework incorporating examples
from diverse datasets, including self-instruct (Wang
et al., 2022), open-assistant (Köpf et al.), Vicuna
(Chiang et al., 2023) and Koala (Geng et al., 2023).
This framework uses English instructions across
multiple categories and tasks to evaluate model
performance in real-world scenarios.

MT-Bench (Zheng et al., 2024) is a benchmark
designed to assess models’ multi-turn conversa-
tional and instruction-following abilities. It con-
tains 80 high-quality, multi-turn questions that
represent common use cases. The development
of MT-Bench is informed by eight categories of
user prompts: writing, roleplay, extraction, reason-
ing, math, coding, stem knowledge, and humani-
ties/social sciences knowledge.

B Evolution Prompts

We designed the evolution prompts to serve as the
action space. As shown in Figure 6, it demon-
strates a complete evolution prompt. By adding
10-20 words at each step, we ensure the iterative
enhancement of the instruction data. Additionally,
we presented the case of evolution action, as shown
in 8.

C Human Eval

We conducted a blind pairwise comparison be-
tween two models: one trained on data generated
by MCTS and the other on data generated through
random evolution (Evol-Instruct). For this eval-
uation, we recruited 3 well-educated annotators.
Each annotator was presented with two responses:
one from the MCTS-based model and one from the
random evolution-based model, with their sources
randomly shuffled to ensure anonymity. The anno-
tators evaluated each response based on the follow-
ing criteria (Xu et al., 2023a): (1) Relevance, (2)
Knowledgeability, (3) Reasoning, (4) Calculation,
and (5) Accuracy. They judged which response
was superior for each comparable instance. To esti-
mate the win rate, we compared the frequency of
model wins with MCTS. As shown in Figure 5, the
model trained on MCTS-generated data achieved
significantly better results than the model trained
on randomly evolved data. This demonstrates the
effectiveness of the MCTS method.

D Case Study

We present a case study in Figure 7 to show the iter-
ative evolution of a seed instruction. Starting with
the seed instruction, "Name the three Baltic states,"
we progressively refine it to, "Can you please tell
me the names of the three Baltic states and ex-
press excitement while sharing them? You can
also describe their location on a map.". This pro-
cess, guided by evaluation models, enhances the
efficiency of evolving instructions. High-value in-
structions are identified and used as the basis for
further evolution. Examples of instructions before
and after the evolution are provided in Table 9.

1718

Figure 5: Manual evaluation of the results on Alpaca-eval.

I want you act as a Prompt Rewriter.
Your objective is to rewrite a given prompt into a more complex version
which those famous AI systems (e.g., ChatGPT and GPT4) find a bit harder to handle.
But the rewritten prompt must be reasonable and must be understood and
responded by humans.
Your rewriting cannot omit the non-text parts such as the table and code in
#Given Prompt#:. Also, please do not omit the input in #Given Prompt#.
You should complicate the given prompt using the following method:
Add one or more constraints where necessary into #Given Prompt# to define its
limitations and boundaries.
You should try your best not to make the #Rewritten Prompt# become verbose,
#Rewritten Prompt# can only add 10 to 20 words into #Given Prompt#.
‘#Given Prompt#’, ‘#Rewritten Prompt#’, ‘given prompt’ and ‘rewritten prompt’
are not allowed to appear in #Rewritten Prompt#
#Given Prompt#: <Here is instruction> #Rewritten Prompt#:

Figure 6: The Evolution Prompt: Add Key Constraints.

1719

Evolution Action Instruction Evolution Case

Add Global and Local Goals

Original: "Please help me write an article about climate change."
Evolved: "Please help me write an article about climate change,
aiming to educate readers on the causes and effects of climate change
and suggest individual actions to combat it."

Add Key Constraints
Original: "Please help me design a website."
Evolved: "Please help me design a website that supports mobile
access, and meets accessibility standards."

Add Task Requirements
Original: "Please help me prepare a meeting report."
Evolved: "Please help me prepare a meeting report including next
quarter’s sales strategy recommendations."

Add Problem-Solving Skills
Original: "Please help me solve this math problem. "
Evolved: "Please help me solve this math problem and explain each
step and the mathematical principles used. "

Add Reasoning Complexity
Original: "Please provide some productivity tips."
Evolved: "Please provide some productivity tips, considering differ-
ent work environments. Explain why these tips are effective."

Add Domain Knowledge

Original: "Please explain blockchain technology."
Evolved: "Please provide a detailed explanation of blockchain tech-
nology from an IT perspective, including its principles, applications,
and future trends."

Add Life Topics
Original: "Please give me some healthy eating advice."
Evolved: "Please give me some healthy eating advice, especially for
people who exercise regularly."

Add Real-World Applications
Original: "Please explain artificial intelligence."
Evolved: "Please explain artificial intelligence and provide examples
of its applications in education, customer service, and business."

Add Emotional Expression
Original: "Please help me plan a trip."
Evolved: "Please help me plan an exciting trip, including some
unique attractions and experiences to ensure the journey is fun."

Format the Input Style
Original: "Please give me some investment advice."
Evolved: "As a financial advisor, please give me some stock invest-
ment advice, especially beginner strategies."

Format the Output Style
Original: "Please summarize this article."
Evolved: "Please summarize this article in a report format, including
main points, supporting data, and conclusions."

Refine the Factuality

Original: "Please describe the process of recycling."
Evolved: "Please accurately describe the process of recycling plastic
bottles, including the collection, sorting, cleaning, shredding, and
reprocessing steps."

Create a New One
Original: "Please give me some time management advice."
Evolved: "Please give me some advice on how to manage time
efficiently throughout the day."

Table 8: Examples of Evolution Action

1720

Seed Instruction Evolved Instruction

Create a list of ingredients to make a
traditional lasagna.

Can you compile a tantalizing list of ingredients for
both a traditional and a vegetarian lasagna recipe,
each with no more than 10 ingredients, ensuring they
are both delicious and visually appealing?

Generate a conversation between two
friends talking about a dream they shared

Generate a detailed conversation between two
friends talking about a vivid and exciting dream they
shared last night.

Create a list of ten shared characteristics
between birds and reptiles.

Can you generate a list of ten common traits shared
by avian and reptilian species, utilizing biological
taxonomy and comparative anatomy?

Name five famous French writers.

Imagine you are preparing a presentation for a
literary seminar. Can you name five famous French
writers from the 19th and 20th centuries, provide
brief biographical information for each, and cite at
least one notable work? Emphasize their
contributions to French culture and literature, and
highlight the impact of their works on the global
literary community.

What are the best methods for controlling
finances?

Can you identify and implement the most effective
and sustainable methods for managing personal
finances in today’s technology-driven society? This
should include detailed budgeting techniques and
saving strategies that leverage modern financial tools
and apps.

Table 9: Seed and Evolved Instructions with MCTS.

Name the three Baltic states.

Can you please tell me the names of
the three Baltic states?

names of the three Baltic states.

Can you tell me the names of the three
Baltic states and share them with

excitement?
Please provide the names of the three

Baltic states.

Can you please tell me the names of the
three Baltic states and express excitement
while sharing them? you can describe their

location on a map.

List the names of three countries in the
Baltic region and describe their location on

a map.

Can you please tell me the names of
the three Baltic states, along with their

capital cities?

Can you please tell me the names of the
three Baltic states and express excitement

while sharing them? Additionally, describe
their location on a map. The goal is to
provide an engaging and informative

answer that sparks curiosity about these
countries.

Formatting Input Style

ADD Requirements

ADD Emotion

ADD Goals

ADD Requirements

Figure 7: A Case of Instruction Evolution with MCTS.

1721

