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Abstract

Quantization techniques are widely used to
improve inference speed and deployment of
large language models. While a wide body of
work examines the impact of quantization on
LLMs in English, none have evaluated across
languages. We conduct a thorough analysis
of quantized multilingual LLMs, focusing on
performance across languages and at varying
scales. We use automatic benchmarks, LLM-
as-a-Judge, and human evaluation, finding that
(1) harmful effects of quantization are apparent
in human evaluation, which automatic metrics
severely underestimate: a 1.7% average drop in
Japanese across automatic tasks corresponds to
a 16.0% drop reported by human evaluators on
realistic prompts; (2) languages are disparately
affected by quantization, with non-Latin script
languages impacted worst; and (3) challeng-
ing tasks like mathematical reasoning degrade
fastest. As the ability to serve low-compute
models is critical for wide global adoption of
NLP technologies, our results urge considera-
tion of multilingual performance as a key eval-
uation criterion for efficient models.

1 Introduction

Multilingual large language models (LLMs) have
the power to bring modern language technology to
the world, but only if they are cheap and reliable.
Known as the low-resource double bind, under-
served languages and severe compute constraints
often geographically co-occur (Ahia et al., 2021),
meaning that for wide adoption, multilingual LLMs
must be highly-performant and lightweight.

With the shift towards large models, quantiza-
tion is a widely adopted technique to reduce cost,
improve inference speed, and enable wider deploy-
ment of LLMs. Work on quantization, however, is
by-and-large evaluated in English only (e.g. Xiao
et al., 2023; Ahmadian et al., 2024; Frantar et al.,
2022). No works to our knowledge have charac-

Figure 1: Automatic metrics severely underestimate
damage from quantization. Shown: 103B W4 quan-
tized Command model with group-wise scaling vs.
FP16. Avg: mMMLU, FLORES, Language Confusion
(LC). English avg: mMMLU, MGSM, monolingual LC.

terized the impact of quantization on the multilin-
gual generation capabilities expected from modern
LLMs. Ubiquitous use of compression techniques
in the real world drives urgency to the question how
are multilingual models impacted?

Our question is timely, given recent work show-
ing that compression techniques such as quanti-
zation and sparsity amplify disparate treatment of
long-tail features, which may have implications
for under-represented languages in multilingual
LLMs (Hooker et al., 2019, 2020; Ahia et al., 2021;
Ogueji et al., 2022). Indeed, many model designs
choices implicitly overfit to a handful of resource
rich languages: from tokenizer choice, to weight-
ing of training data, and to widely-used quantiza-
tion techniques. Focusing on a small subset of
high-resource languages in design degrades model
performance for overlooked languages (Schwartz
et al., 2022; Kotek et al., 2023; Khandelwal et al.,
2023; Vashishtha et al., 2023; Khondaker et al.,
2023; Pozzobon et al., 2024), introduces secu-
rity vulnerabilities (Yong et al., 2023; Nasr et al.,
2023; Li et al., 2023a; Lukas et al., 2023; Deng
et al., 2023), and unfairly passes high costs to non-
English users faced with high latency (Held et al.,
2023; Durmus et al., 2023; Nicholas and Bhatia,
2023; Ojo et al., 2023; Ahia et al., 2023).
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We analyze four state-of-the-art (SOTA) multi-
lingual LLMs across 3 different sizes ranging from
8 to 103 billion parameters and covering up to 23
languages, under various quantization techniques.
Critically, it is vital that we move beyond automatic
evaluation and gather real human feedback on per-
formance cost. We thus perform multilingual hu-
man evaluation on challenging real-world prompts
in addition to LLM-as-a-Judge and evaluation on
standard automatic benchmarks such as multilin-
gual MMLU (Hendrycks et al., 2020), MGSM (Shi
et al., 2023), and FLORES-200 (Costa-jussà et al.,
2022a). Across experimental set-ups we find that:

1. Automatic metrics severely underestimate
damage from quantization. Automatic eval-
uations estimate deterioration relative to FP16
across tasks at −0.3% (French) and −1.7%
(Japanese) vs. −16.6% and −16.0% reported
by human evaluators. See Figure 1.1

2. Quantization affects languages differently.
Degradation on automatic metrics appears
negatively correlated with training data set
size, and non-Latin script languages are more
harmed on average. Across tasks, Latin-script
languages scored −0.7% relative to FP16 for a
103B parameter model while non-Latin scripts
scored −1.9%. For a smaller 8-billion param-
eter model, scores were −3.0% vs. −3.7%.

3. Challenging tasks degrade fastest. Math-
ematical reasoning (−13.1%), performance
on real-world challenging prompts judged
by humans (−10.5%), and LLM-as-a-Judge
(−25.9%) results are severely degraded.

4. Occasionally, quantization brings benefits.
Similar to Badshah and Sajjad (2024)’s find-
ing on English tasks, we find that quantiza-
tion benefits multilingual model performance
in some cases: e.g., an average 1.3% boost
across tasks for a 35B model quantized with
W8A8. This aligns with findings on the bene-
fit of other compression methods such as spar-
sity (Ahia et al., 2021; Ogueji et al., 2022).

As the first to broadly study the impact of quan-
tization on multilingual LLMs, our work is part of
a wider body of literature that considers the impact
of model design choices on downstream perfor-
mance. Our results urge attention to multilingual
performance at all stages of system design.

1Figure excludes MGSM (not available for Korean.)

2 Background

Quantization compresses the weights and poten-
tially activations of a neural network to lower-bit
representations. Compression can be done by train-
ing the model at lower precision, known as Quanti-
zation Aware Training (QAT), or performed on the
final model weights, known as Post Training Quan-
tization (PTQ). Given the difficulties in training
LLMs especially at precision lower than 16-bits
floating point, PTQ methods which perform the
quantization single-shot without needing gradient
updates are highly desirable. Training is completed
at higher precision, then weights/activations are
quantized without further training. In this work,
we focus on post-training quantization because of
its simplicity and applicability at scale. PTQ of
LLMs can be further categorized into:

Weight-Only Quantization Weight matrices are
quantized offline and the compressed matrices are
loaded from memory during inference. Quantized
weight matrices have a smaller memory footprint
compared to FP16 (2× smaller for 8-bit and almost
4× smaller for 4-bit), enabling inference with less
compute. In memory-bound scenarios, it also en-
ables faster inference due to fewer bytes transferred
from GPU memory to the compute units.

For a weight matrix W ∈ Rdin×dout and input
X ∈ Rseq×din , if only a single scaling factor is
used for naive quantization (per-tensor), then the
quantized weights are given by:

WQ =

⌊
W

∆

⌉
, ∆ =

max(|W|)
2N−1 − 1

(1)

where ∆ ∈ R denotes the scale, N the bit precision,
|.| the absolute value over each element in W and
⌊.⌉ rounding to the nearest integer. When WQ

is used in a forward pass, it must be dequantized
for multiplication with the higher-precision input
matrix X. The result Y is Y = X∆WQ. Notably,
the multiplication by ∆ dequantizes WQ (with
error) so the result may be multiplied by the higher-
precision X. Y has the same precision as X.

A single scaling factor might not be enough if
the distribution of parameters in the weight matrix
has high variance; thus one could increase the gran-
ularity of quantization by using a scale for each
output dimension (per-column), i.e., ∆ ∈ Rdout .
However, when N is aggressively lowered to 4 bits
or lower, even per-column granularity might be in-
sufficient to cover the range of values in a column.
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The granularity can be further increased by using
a shared scale for a subset of input dimensions

called groups (g), thus the scale ∆ ∈ R
din
g

×dout . A
commonly used group size is 128.

Equation 1 gives the simplest way to quantize
the weights. For N ≤ 4 bits, using more ad-
vanced Weight-Only Quantization methods like
GPTQ (Frantar et al., 2022) or AWQ (Lin et al.,
2024) leads to better downstream performance.

Weight-and-Activation Quantization As the
name suggests, Weight-and-Activation Quantiza-
tion quantizes the model activations alongside the
weights. Unlike Weight-Only Quantization where
weights can be quantized offline, quantization of
activations happens at runtime. One could compute
the quantization scales for various activations by
using a small slice of training or validation data
(static scaling) but this method typically has large
degradation (Xiao et al., 2023). For minimal degra-
dation, it is preferred to calculate the quantization
scaling factor dynamically (dynamic scaling) for
each input on-the-fly. While quantizing activa-
tions is more difficult, reducing the precision of
the activations alongside the weights enables the
usage of specialized low-precision matrix multi-
plication hardware in modern GPUs leading to up
to 2× improvement in throughput. For a weight
matrix W ∈ Rdin×dout and input X ∈ Rseq×din ,
naive Weight-and-Activation Quantization with per-
token input granularity and per-column weight
granularity generates output Y ∈ Rseq×dout by:

WQ:,j =

⌊
W:,j

∆W
:,j

⌉
,∆W

:,j =
max(|W:,j |)
2N−1 − 1

(2)

XQi,: =

⌊
Xi,:

∆X
i,:

⌉
,∆X

i,: =
max(|Xi,:|)
2N−1 − 1

(3)

where ∆W ∈ Rdout and ∆X ∈ Rseq. In the for-
ward pass, Y is calculated as below, where ⊙ de-
notes element-wise multiplication by broadcasting
the elements to match the shape of the operands.
The multiplication in lower-precision XQWQ is
what leads to throughput gains. Multiplying by
∆W and ∆X de-quantizes the result so that Y has
the same (higher) precision as the original X.

Y = ∆X ⊙ (XQWQ)⊙∆W (4)

3 Experimental Set-up

Models We use Command R+2, Command R3,
and Aya 23 models (Aryabumi et al., 2024) as repre-
sentative of SOTA multilingual LLMs. Command
models are 103 and 35 billion parameters (R+/R).
Aya 23 models are 35 and 8 billion parameters. We
quantize the weights available on HuggingFace.

Quantization For Command R/R+ (35B/103B),
we evaluate weight-only quantization at 8-bit (W8
with per-column scaling) and 4-bit (W4-g with
group-wise scaling using GPTQ (Frantar et al.,
2022)), as well as weight-and-activation quan-
tization at 8-bit (W8A8 with per-column scaling
for weights and per-token scaling for activations).

When trained with the right hyper-parameters,
naive Weight-and-Activation Quantization has min-
imal degradation (Ahmadian et al., 2024). Oth-
erwise, SmoothQuant (Xiao et al., 2023) may
smoothen the activation distributions to be more
amenable to quantization. We explore W8A8-
SmoothQuant (W8A8 with SmoothQuant) for
Command R+ (103B) and a 4-bit weight-only quan-
tized variant with column-wise scaling (W4) to
understand the impact of scaling granularity at ex-
tremely low-bit precision. We use 128 English sam-
ples for calibration for SmoothQuant and GPTQ
(Frantar et al., 2022; Xiao et al., 2023).

For Aya 23 8B and 35B, we use bitsandbytes4 for
8-bit and 4-bit quantization. This uses LLM.int8()
(Dettmers et al., 2022)—similar to W8A8 except
it performs some computations in FP16. The 4-bit
uses the NF4 datatype (Dettmers et al., 2023) to
perform Quantile Quantization which limits degra-
dation at the expense of inference speedups.

3.1 Automatic Evaluation
We evaluate in 10 primary languages: Arabic,
French, German, English, Spanish, Italian, Por-
tuguese, Korean, Japanese, and Chinese. Quan-
tized models are compared to the original FP16
versions, and we primarily report results as rela-
tive degradation compared to this FP16 baseline:

%∆ =
scorequantized − scoreFP16

scoreFP16
∗ 100 (5)

Raw numeric results are in the Appendix. Results
are averaged over 5 runs.5

2https://docs.cohere.com/docs/command-r-plus
3https://docs.cohere.com/docs/command-r
4https://github.com/TimDettmers/bitsandbytes
5k=0, p=0.75, temp=0.3, except mMMLU, which, as a QA

eval, is run deterministically with temp=0.
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Multilingual MMLU 14,000+ multi-domain
multiple-choice questions. We translate MMLU
(Hendrycks et al., 2020) to 9 languages with
Google Translate and call it mMMLU. We mea-
sure 5-shot accuracy. Example in Table A1.

MGSM (Shi et al., 2023) Generative mathe-
matics test set manually translated from GSM8K
(Cobbe et al., 2021). Of our target languages, it is
available for German, Spanish, French, Japanese,
Chinese. We report accuracy for each language.

FLORES-200 (Costa-jussà et al., 2022b) This
well-known multi-way parallel test set evaluates
translation capabilities. We translate into and out
of English, and report SacreBLEU (Post, 2018).

Language Confusion (Marchisio et al., 2024)
These test sets assess a model’s ability to respond
in a user’s desired language. In the monolingual
setting, prompts are in language l and the model
must respond in language l. For instance, a user
prompts in Arabic, so implicitly desires an Arabic
response. In the cross-lingual variant, a prompt is
provided in English but the user requests output
in a different language l′.6 fastText (Joulin et al.,
2016) language identification is run over the out-
put. We report line-level pass rate (LPR), i.e., the
percentage of responses for which all lines in the
response are in the user’s desired language.

Aya Evaluation Aya 23 models are evaluated us-
ing an extended version of the Aya evaluation setup
(Aryabumi et al., 2024) using the unseen discrimi-
native tasks—those where there is no dataset in the
models’ training mixture from the same task cat-
egories (XWinograd (Muennighoff et al., 2023),
XCOPA (Ponti et al., 2020), XStoryCloze (Lin
et al., 2022)), mMMLU (Okapi; Dac Lai et al.,
2023), MGSM, and Belebele (Bandarkar et al.,
2023) from eval-harness (Gao et al., 2023).7

We evaluate models on languages included in the
covered 23 languages, except for the unseen tasks
where we use all available languages.8 Aya eval-
uations allow us to add: Czech, Greek, Hebrew,
Hindi, Indonesian, Dutch, Persian, Polish, Roma-
nian, Russian, Turkish, Ukrainian, Vietnamese.

6An example from the Okapi subsection of the evaluation
is: “Reply in Spanish. Explain a common misconception about
your topic. Topic: Using AI to Augment Human Capabilities”

7We follow Üstün et al. (2024): each evaluation is run once;
For FLORES, no sampling is used and metric is spBLEU.

8mMMLU: ar, de, es, fr, hi, id, it, nl, pt, ro, ru, uk, vi, zh.
MGSM: de, es, fr, ja, ru, zh. Belebele: {mMMLU} + cs, fa,
el, ja, ko, pl, tr. FLORES: {Belebele} + he.

3.2 Human Evaluation

We run human evaluation in Spanish, French, Ko-
rean, Japanese, and English.

Internal Evaluation Suite 150 diverse prompts
designed to be more complex than public evalu-
ation benchmarks. As such, we expect greater
degradation with increased quantization given the
difficulty of the samples. Prompts for all four lan-
guages are translated by humans from an English
seed prompt, ensuring that respective language-
specific subsets share the same prompts.

Aya Dolly-200 (Singh et al., 2024) We use multi-
lingual data from the Aya Evaluation Suite to assess
open-ended generation capabilities. For Korean
and Japanese, we use prompts from the Aya Dolly-
200 test set (dolly-machine-translated), which
are automatically translated from English Dolly-
15k (Conover et al., 2023) then human-curated to
avoid references requiring specific cultural or ge-
ographic knowledge. For French and Spanish, we
use dolly-human-edited, a human post-edited ver-
sion of dolly-machine-translated. For each lan-
guage, we evaluate using the first 150 prompts.

Annotation Annotations and translations were
completed by native-level speakers of the respec-
tive languages who are also fluent in English.9 The
annotation interface supports pairwise evaluation.
Annotators see a prompt and two (shuffled) com-
pletions of the FP16 model and a quantized variant
which they rate on a 5-point Likert scale, then ex-
press a preference (tie, weak preference, strong
preference). We encourage annotators to avoid ties.
Win rates are based on ranking preferences alone.

3.3 LLM/RM-as-a-Judge

Because human evaluation is costly and time-
intensive, it is common to use an “LLM-as-a-Judge”
to rate model completions (e.g. Li et al., 2023b;
Zheng et al., 2023). Reward models (RMs) can
also simulate human preference. A RM scores mul-
tiple completions given the same prompt, and the
prompt-completion pair with the higher score is
deemed preferred. We call this RM-as-a-Judge.

We assess quantized model outputs using LLM-
and RM-as-a-Judge. In the former, an LLM se-
lects a preferred response from a <instruction,
modelA_completion, modelB_completion> tu-

9Paid hourly, above min. wage of country of employment.
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Avg. FLORES Language Confusion
Rel. %∆ mMMLU MGSM En→L2 L2→En Monolingual Cross-lingual

FP16 - 66.7 - 70.6 - 37.7 - 39.6 - 99.2 - 91.5 -
W8 -0.2% 66.7 0.0% 69.9 -1.0% 37.7 0.0% 39.6 0.0% 99.2 0.0% 91.2 -0.3%
W8A8-sq -0.5% 66.3 -0.5% 69.5 -1.6% 37.8 0.2% 39.1 -1.3% 99.2 0.0% 91.5 0.1%
W8A8 -0.8% 65.6 -1.7% 69.8 -1.1% 37.7 0.0% 39.1 -1.2% 99.4 0.2% 90.4 -1.2%
W4-g -0.9% 65.7 -1.4% 68.6 -2.9% 37.8 0.4% 39.4 -0.5% 99.2 0.0% 90.5 -1.1%

103B

W4 -2.5% 63.8 -4.3% 64.4 -8.8% 37.1 -1.6% 39.0 -1.6% 99.3 0.1% 92.8 1.4%

FP16 - 59.4 - 49.8 - 32.4 - 35.5 - 98.7 - 66.5 -
W8 -0.2% 59.3 -0.1% 49.4 -0.7% 32.3 -0.2% 35.4 -0.2% 98.8 0.1% 66.3 -0.2%
W8A8 0.2% 59.3 -0.2% 47.1 -5.5% 32.9 1.6% 35.8 0.9% 99.0 0.3% 68.9 3.7%

35B

W4-g -2.8% 58.2 -2.0% 43.3 -13.1% 31.7 -1.9% 35.3 -0.7% 98.3 -0.4% 67.1 1.0%

Table 1: Per-dataset average performance across non-English languages for 103B and 35B Command models
at varying levels of quantization. %∆ the relative performance vs. FP16 [ex., for MGSM at W4-g on the 35B:
43.3−49.8

49.8 ∗ 100 = −13.1%.] Languages: ar, de, es, fr, it, ja, ko, pt, zh; except MGSM: de, es, fr, ja, zh. Any
discrepancy is due to rounding: raw scores and %∆ were calculated at full precision.

Avg. FLORES Unseen
Rel. %∆ mMMLU MGSM En→L2 L2→En Belebele Tasks

FP16 - 58.2 - 51.2 - 37.8 - 42.9 - 77.6 - 70.8 -
W8 0.1% 57.9 -0.5% 52.1 1.8% 37.9 0.3% 43.0 0.1% 77.1 -0.6% 70.6 -0.2%Aya 35B
W4 -2.9% 56.6 -2.7% 48.1 -6.0% 37.2 -1.4% 42.4 -1.2% 73.0 -5.9% 70.5 -0.3%

FP16 - 48.2 - 34.7 - 34.8 - 39.5 - 64.8 - 67.6 -
W8 0.3% 47.8 -0.9% 35.4 2.1% 34.8 0.2% 39.7 0.5% 64.6 -0.3% 67.6 0.1%Aya 8B
W4 -3.7% 46.7 -3.2% 32.1 -7.5% 34.1 -1.8% 39.1 -1.0% 59.3 -8.5% 67.5 -0.2%

Table 2: Per-dataset average performance across non-English languages for 35B and 8B Aya 23 models
at varying levels of quantization. %∆ is relative performance vs. FP16. We follow the evaluation setup of
Aryabumi et al. (2024) and evaluate on languages in the 23 languages list. On “Unseen Tasks” (XWinograd,
XCOPA, XStoryCloze), we use all the available languages. See Section 3.1 for details and language list.

ple (see Table A2). We use GPT-410 as an LLM
proxy judge following Üstün et al. (2024) and
Aryabumi et al. (2024). We randomize the or-
der of model outputs to minimize bias. For RM-
as-a-Judge, a multilingual RM scores <prompt,
completion> pairs for each model output, over
which we calculate win-rate. We report win-rates
of quantized models versus the FP16 baseline.

We assess the outputs of quantized models over
the Internal Evaluation Suite and Aya Dolly-200
described in Section 3.2. We use the same prompt
and completion pairs as in human evaluation, which
provides the ability to relate LLM/RM-as-a-Judge
performance with human evaluation.

4 Results

To clearly see the many-faceted impact of quanti-
zation, we discuss our results by quantization level
(§4.1), by task (§4.2), by language (§4.3), by model
size (§4.4), and by quantization strategy (§4.5). We

10turbo (gpt-4-1106-preview): https://platform.
openai.com/docs/models/gpt-4-turbo-and-gpt-4

then report LLM-as-a-Judge and RM-as-a-Judge
(§4.6) and human evaluation results (§4.7).

4.1 By Quantization Level

How do different levels of quantization affect down-
stream performance?

Command R (35B) and R+ (103B) In Table 1,
we aggregate results of each metric for each level of
quantization. We average scores across languages,
then calculate the relative percentage drop from
FP16.11 We discuss results of W8, W8A8, and
W4-g quantization, which are variants available for
both Command model sizes. Most results follow
intuition: greater quantization leads to larger per-
formance degradation: −0.2% for W8, −0.8% for
W8A8, and −0.9% for W4-g of the 103B model.
An exception is W8A8 for the 35B which shows a
slight boost overall due to higher performance on
translation and language confusion evaluations.

11Ex. For 103B W4-g MGSM, scores were: {de: 71.2, es:
75.7, fr: 69.0, ja: 58.0, zh: 68.9}, thus the average score was
68.6—a 2.9% drop from FP16 ( 68.6−70.6

70.6
= −0.029).
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ar de es fr it ja ko pt zh Avg Ltn/IE ¬
W8 0.0% 0.1% 0.0% 0.0% 0.0% 0.1% 0.0% -0.4% -0.2% -0.1% -0.1% -0.1%
W8A8-sq -0.6% 0.2% -0.3% 0.1% -0.6% -0.3% -0.1% -0.7% -0.8% -0.3% -0.3% -0.4%
W8A8 -1.3% -0.9% -0.5% -0.5% -0.8% -0.3% -1.3% -0.8% -0.9% -0.8% -0.7% -0.9%
W4-g -0.8% -0.2% -0.4% 0.1% -0.4% -0.4% -0.6% -1.2% -0.9% -0.5% -0.4% -0.7%

103B

W4 -1.0% -0.6% 0.1% -0.8% -1.2% -1.4% -2.9% -0.8% -2.3% -1.2% -0.7% -1.9%

W8 0.3% -0.5% -0.1% -0.2% -0.4% 0.3% -0.1% 0.1% -0.3% -0.1% -0.2% 0.0%
W8A8 2.0% 2.5% 0.7% 1.0% 1.2% 1.1% 0.9% 1.4% 1.0% 1.3% 1.3% 1.3%35B
W4-g -1.1% -1.1% 0.1% -0.3% -0.1% -2.3% -1.4% -0.6% -1.3% -0.9% -0.4% -1.5%

Table 3: Per-language relative performance (%∆) vs. FP16, averaged over mMMLU, FLORES, and Language
Confusion tasks. Ltn/IE are Latin-script/Indo-European languages: de, es, fr, it, pt. ¬ are the rest: ar, ja, ko, zh.

de es fr ja zh Avg Ltn/IE ¬
W8 0.1% -0.1% -0.3% -0.4% -0.2% -0.2% -0.1% -0.3%
W8A8-sq 0.4% -0.9% -0.1% -0.3% -1.2% -0.4% -0.2% -0.8%
W8A8 -0.4% -1.0% -0.6% -0.1% -1.3% -0.7% -0.6% -0.7%
W4-g -0.5% -0.5% -0.3% -1.7% -1.1% -0.8% -0.4% -1.4%

103B

W4 -2.3% -1.1% -1.7% -3.0% -3.5% -2.3% -1.7% -3.3%

W8 -0.6% -0.3% -0.1% -0.4% 0.0% -0.2% -0.3% -0.2%
W8A8 1.3% -0.6% 0.3% -0.3% 0.0% 0.1% 0.3% -0.2%35B
W4-g -3.7% -1.8% -1.7% -3.8% -4.0% -3.0% -2.4% -3.9%

Table 4: Per-language relative performance (%∆) vs.
FP16, averaged over MGSM, mMMLU, FLORES,
and Language Confusion tasks. Ltn/IE are Latin-
script/Indo-European: de, es, fr. ¬ are the rest: ja, zh.

Aya 23 Models Table 2 shows the aggregated
results for Aya 23 models on the extended Aya
evaluations at W8, and W4 quantization. We find
a similar trend with Command models where W4
often leads to a larger drop compared to W8, consis-
tent across tasks and languages. W8, however, does
not substantially drop performance in any task.

4.2 By Task

Are tasks differently affected by quantization?

Results here reference Tables 1 and 2, with full
raw and relative results in Appendix A.2. Mathe-
matical reasoning (MGSM) is strikingly affected
by quantization. Relative performance of the 35B
W4-g model is a dismal −13.1%, with as poor
as −17.3% in Chinese. MGSM and Belebele are
most greatly degraded for Aya 23 models with W4
quantization, dropping 7.5% and 8.5% on the 8B.
mMMLU is the next most greatly degraded task.
On FLORES, the 103B model is more sensitive to
quantization in the L2→En direction than L2→En,
though we see the opposite for the smaller 35B
and Aya 23 models at W4. Quantization does
not noticeably impact unseen discriminative tasks
(XWinograd, XCOPA, XStoryCloze: Table A18).

There are some fleeting performance boosts:
+1.8–2.1% on MGSM and mild improvements on

FLORES with W8 on Aya models, and a similar
translation boost of the 35B Command model at
W8A8. Quantization generally has no effect or
causes mild improvement on the monolingual lan-
guage confusion task, and cross-lingual language
confusion performance is boosted with greater
quantization in some cases.

4.3 By Language

Are languages differently affected by quantization?

Table 3 averages performance over mMMLU,
FLORES, and Language Confusion tasks. Table 4
further includes MGSM for supported languages.
Metrics are on different scales, so we average rel-
ative change (%∆) rather than raw scores.12 We
separate into languages written in the Latin/Roman
script (also the subset of Indo-European languages;
Ltn/IE) versus the rest (¬Ltn/IE).

W4-g causes considerable degradation across
languages for the 35B Command model. A relation-
ship with language is apparent: ¬Ltn/IE languages
typically degrade more. Chinese, Japanese, and Ko-
rean are particularly harmed by W4 on the 103B.
The effect is seen consistently across all automatic
metrics for Command, with limited exception. Ta-
ble 6 is discussed more thoroughly in Section 4.5,
but also shows this discrepancy. In the Appendix,
we see the same for Aya 23 models at W4.

Interestingly, W8A8 of the 35B Command
model helps on average across all languages. The
magnitude is primarily due to an increase on cross-
lingual language confusion. W8 also aids Aya 23
on MGSM (Table A6) for ¬Ltn/IE languages, and
across languages on FLORES (Table A16).

12Ex. to arrive at −1.3% for 103B W8A8 in Ara-
bic, we average relative performance for mMMLU,
FLORES En↔L2, and Language Confusion tasks:
Avg({−2.2%,−1.0%,−1.3%, 0.0%,−1.8%}) = −1.3%.
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Avg Rel. %∆ mMMLU MGSM Lang. Conf. (Mono)
en Ltn/IE All en Ltn/IE All en Ltn/IE All en Ltn/IE All

W8 0.1% -0.3% -0.3% 0.0% 0.0% 0.0% 0.3% -0.7% -1.0% 0.0% -0.1% 0.0%
W8A8-sq -1.2% -0.6% -0.7% -0.1% -0.4% -0.5% -3.4% -1.3% -1.6% 0.0% -0.1% 0.0%
W8A8 -0.3% -0.7% -0.8% -0.7% -1.3% -1.7% 0.0% -0.9% -1.0% -0.1% 0.0% 0.2%
W4-g -2.0% -0.9% -1.5% -1.7% -1.1% -1.5% -4.4% -1.8% -3.0% 0.0% 0.1% 0.0%

103B

W4 -3.7% -3.9% -4.3% -3.3% -3.9% -4.4% -7.9% -8.0% -8.8% 0.0% 0.1% 0.1%

W8 -0.1% -0.2% -0.2% -0.1% -0.1% -0.1% -0.3% -0.6% -0.8% 0.1% 0.1% 0.1%
W8A8 0.2% -1.6% -1.8% 0.0% 0.0% -0.2% 0.0% -4.9% -5.6% 0.7% 0.0% 0.3%35B
W4-g -1.2% -4.8% -5.2% -1.8% -1.5% -2.0% -2.2% -12.2% -13.1% 0.4% -0.6% -0.4%

Table 5: Relative performance of quantized Command models in English vs. other languages. All non-English
languages (All), non-English Latin-script/Indo-European languages (Ltn/IE).

How does training data size affect performance?

Training mixtures for Command and Aya 23
models are not released, so a definitive relation-
ship between data set size and downstream perfor-
mance cannot be determined. Instead, we might
assume the training data follows the distribution
from well-known large multilingual corpora. In
Figure 2, we correlate per-language relative per-
formance vs. FP16 from Table 3 with amount of
data in mC4 (Xue et al., 2021).13 The correlation
between downstream performance and data set size
is stronger as quantization becomes more extreme:
from R2 = 0.24 for W8 to R2 = 0.63 with W4.

Figure 2: Data size in mC4 (Xue et al., 2021) vs. avg.
perf. under quantization. Table 3, Command 103B.

How does performance compare to English?

Table 5 shows relative performance of quantized
Command 103B and 35B models in English vs.
other languages for tasks which could be evalu-
ated in English.14 Under most settings, English

13https://github.com/allenai/allennlp/
discussions/5265. Correlation with size in tokens
from Xue et al. (2021)’s Table 6 shows similar R2. Data size
by lang. (GB): [ar: 57, de: 347, es: 433, fr: 318, it: 162, ja:
164, ko: 26, pt: 146, zh: 39]. English excluded as it cannot be
averaged with FLORES & cross-lingual Language Confusion.

14FLORES / cross-lingual Language Confusion cannot be.

degrades less than the average of all others. The
largest gap is on MGSM for the 35B, where the
model is very sensitive to W8A8 and W4-g quanti-
zation outside of English. Results for the Aya 23
models are in Table A17, where performance is
worse on average for non-English languages at W4,
while being less consistent at W8.

4.4 By Model Size

How do model size and quantization level interact?

Across evaluations at the most extreme quanti-
zation (W4/W4-g), smaller models are more sen-
sitive: W4-g variants of 103B and 35B Command
record −0.9% and −2.8% performance relative to
FP16 on average, with a stark difference of −2.9%
vs. −13.1% on MGSM. Aya 23 35B/8B record
−2.9% vs. −3.7% on average, with their largest
gap occurring in Belebele (−5.9% vs. −8.5%).
(Refer back to Tables 1 and 2.)

4.5 By Quantization Strategy

How do techniques like SmoothQuant and group-
wise scaling affect downstream performance?

Table 6 shows the effect of using SmoothQuant
and Group-Wise scaling strategies. We evalu-
ate variants of the 103B Command model with
SmoothQuant (W8A8-sq), and a more naive W4
variant using per-column quantization instead of
group-wise scaling. We compare W8A8-sq to
W8A8, and W4-g to W4.

On average and across mMMLU, MGSM, and
FLORES, Group-Wise scaling greatly improves
over column-wise W4, recovering over 6 percent-
age points lost on MGSM for Ltn/IE languages.
SmoothQuant has a similar effect on average and
for mMMLU, though to a lesser degree. That
said, SmoothQuant harms MGSM scores slightly,
and Group-Wise scaling degrades cross-lingual lan-
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FLORES Language Confusion
Avg. Rel. % mMMLU MGSM En → L2 L2 → En Monolingual Cross-lingual

Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬ Ltn/IE ¬
W8A8 -0.7% -1.0% -1.3% -2.1% -0.9% -1.3% -0.1% 0.1% -1.0% -1.6% 0.0% 0.4% -0.9% -1.6%
W8A8-sq -0.4% -0.7% -0.4% -0.8% -1.3% -1.9% 0.2% 0.0% -1.1% -1.6% -0.1% 0.1% 0.1% 0.0%

W4 -1.9% -3.3% -3.9% -4.9% -8.0% -10.2% -1.3% -2.0% -1.1% -2.3% 0.1% 0.1% 2.9% -0.4%
W4-g -0.6% -1.4% -1.1% -1.9% -1.8% -4.9% 0.2% 0.7% -0.3% -0.8% 0.1% -0.1% -0.9% -1.3%

Table 6: Effect of mitigation strategies on W8A8 and W4 quantization on the 103B model. Percentage points
off FP16 baseline for W8A8-sq vs. naive W8A8 and W4-g vs. W4, broken down by Latin-script/Indo-European
languages (Ltn/IE) versus others (¬). Avg. Rel. % reports averaged performance all datasets.

fr es ja ko Avg Ltn/IE ¬
LLM RM LLM RM LLM RM LLM RM LLM RM LLM RM LLM RM

W8 1.0% -0.7% -10.2% 7.5% -5.4% 5.4% 7.5% -5.8% -1.8% 1.6% -4.6% 3.4% 1.0% -0.2%
W8A8-sq -18.4% -5.1% -3.7% 4.1% 2.0% 4.7% 3.7% -5.1% -4.1% -0.3% -11.0% -0.5% 2.9% -0.2%
W4-g -10.5% -17.0% -16.6% 2.0% -15.3% 0.0% -5.8% -15.6% -12.1% -7.7% -13.6% -7.5% -10.5% -7.8%

Internal

W4 -30.2% -20.4% -33.0% -17.0% -21.7% -20.0% -18.6% -27.6% -25.9% -21.2% -31.6% -18.7% -20.2% -23.8%

W8 -1.3% 2.0% 7.3% -4.0% -6.0% -5.3% 2.7% 2.0% 0.7% -1.3% 3.0% -1.0% -1.7% -1.7%
W8A8-sq -15.3% -8.7% 8.7% -8.0% -1.3% 1.3% -8.0% -4.7% -4.0% -5.0% -3.3% -8.3% -4.7% -1.7%
W8A8 -3.4% 2.7% 13.3% -3.3% 2.7% -1.3% 5.3% -3.3% 4.5% -1.3% 5.0% -0.3% 4.0% -2.3%

Dolly

W4-g -7.4% -2.7% -4.0% 4.7% -15.3% -15.3% -11.3% -5.3% -9.5% -4.7% -5.7% 1.0% -13.3% -10.3%

Table 7: Relative performance vs. FP16 of 103B quantized models according to LLM/RM-as-a-Judge over
Internal and Aya Dolly subsampled test sets. Raw win-rates in Table A21.

guage confusion. We again observe that ¬Ltn/IE
languages suffer more in nearly all cases.

On cross-lingual language confusion, strategies
aimed to retain performance have different effects:
SmoothQuant recovers all lost from naive W8A8,
but Group-Wise scaling is actively damaging. In
contrast, W4 benefits Ltn/IE and Arabic on cross-
lingual language confusion, but worsens the rest.15

Thus, while the quantization strategies tend to
aid performance overall, there may be adverse ef-
fects on specific tasks. More research is needed
to understand this, but it is intriguing to consider
the effect that lower-precision might have on the
ability to produce output in a desired language, and
maintain that language once decoding begins.

4.6 LLM/RM-as-a-Judge

Table 7 shows relative performance of quantized
variants of the 103B Command model evaluated
with LLM- and RM-as-a-Judge.16 In nearly all
cases, the LLM and RM agree that W4 and W4-
g severely harm performance on our challenging
Internal test set. Performance is also severely de-
graded for ¬Ltn/IE languages on Dolly with W4-g,
and French with W8A8-sq. On average across lan-
guages, the LLM and RM agree on the ranking of
model quality over Internal. Results on the easier

15Full results in are Table A20.
16Calculation: Quantized Win Rate−50

50
, as 50 is the expected win-

rate of two FP16 models compared.

Dolly test set are less clear-cut: The LLM reports
greater degradation for Internal than Dolly overall,
but the RM disagrees for W8 and W8A8-sq. Per-
haps Dolly prompts are easy enough that models
output similar responses, creating more noise in the
judgments; future work could examine this hypoth-
esis. Furthermore, on multiple instances, the LLM
and RM disagree on whether performance improves
or worsens, given the same setting. Comparisons
between the two differing methods of automated
evaluation are worthy of further study.

4.7 Human Evaluation

non-English Stats

fr es ja ko en avg Ltn/IE ¬
W8 -7.4% 0.6% 7.4% -12.0% -4.0% -2.8% -3.4% -2.3%
W8A8-sq -9.4% -7.4% -2.0% 4.0% 6.6% -3.7% -8.4% 1.0%Internal
W4-g -16.6% -4.6% -16.0% -4.6% -7.4% -10.5% -10.6% -10.3%

W8 0.6% -5.4% 12.0% 0.0% -6.0% 1.8% -2.4% 6.0%
W8A8-sq -7.4% -8.6% 0.0% -3.4% 2.0% -4.8% -8.0% -1.7%Dolly
W4-g -9.4% -1.4% 2.6% -8.0% -10.0% -4.1% -5.4% -2.7%

Table 8: Relative performance vs. FP16 of 103B quan-
tized models according to human evaluators over In-
ternal and Aya Dolly subsampled test sets.

Human evaluation paints a similar picture in Ta-
ble 8, with some outliers. Average performance
drops steadily across evaluated languages on the
Internal test set, which has more difficult prompts.
The sharpest decline is in French, with −16.6% at
W4-g. Curiously, there is an initial 7.4% boost for
Japanese with W8, but it falls to −16.0% with more
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extreme quantization. Interestingly, human annota-
tors generally prefer outputs of quantized models
on Dolly prompts in Japanese, too, but disprefer
those in other languages. We see more pronounced
degradation on Internal overall, with an average
relative drop of 5.7% versus 2.4% for Dolly.

5 Related Work

Impact of Compression on Multilingual Tasks
There is a scarcity of research examining the impact
of compression and quantization on multilingual
tasks. Paglieri et al. (2024) examine multilingual
calibration sets, but their evaluation is English-only.
Ramesh et al. (2023) study compression vis-a-vis
multilingual fairness, showing that performance dif-
fers across languages and dimensions. Kharazmi
et al. (2023) show that recovering compression-
caused performance loss of LSTMs is harder mul-
tilingually than monolingually. In machine trans-
lation, distillation has varied effects by language
related to priors such as amount of synthetic data
used and confidence of the teacher models, while
quantization exhibits more consistent trends across
languages (Diddee et al., 2022). To our knowl-
edge, ours is the first to study quantized LLMs for
open-ended multilingual generation.

Multilingual data is an example of long tail data.
Prior work shows that compression techniques like
quantization and sparsity amplify disparate treat-
ment of long-tail rare features (e.g. Hooker et al.,
2019; Ahia et al., 2021; Ogueji et al., 2022; Hooker
et al., 2020). Similar to our observation of occa-
sional performance gain, Ogueji et al. (2022) show
that sparsity-based compression sometimes makes
a model better suited to the downstream task. Ahia
et al. (2021) find that sparsity preserves machine
translation performance on frequent sentences, but
disparately impacts infrequent sentences. Badshah
and Sajjad (2024) also report some performance
gain at lower precision.

Quantization of LLMs Recent work to improve
quantized LLMs solely focuses on English mod-
els and data for tuning and evaluation (e.g. Ah-
madian et al., 2024; Dettmers et al., 2022; Xiao
et al., 2023; Bondarenko et al., 2024; Gong et al.,
2024). Dettmers and Zettlemoyer (2023) perform a
fine-grained sweep across bit-widths (3-8 bit), data
types and quantization methods, and recommended
4-bit as the optimal size-performance trade-off, but
do not evaluate multilingually. Huang et al. (2024)
extensively analyze quantized LLaMA3 models in

English. Badshah and Sajjad (2024) examine the
effect of 4-bit NormalFloat (Dettmers et al., 2023)
and 8-bit LLM.int8() (Dettmers et al., 2022) on
across model sizes and a variety of English tasks,
finding that larger models are more resilient to
quantization and performs better than smaller mod-
els at higher precision. Even the most recent (e.g.
Li et al., 2024; Liu et al., 2024) omit multilinguality
without acknowledging the limitation.

Model design choices We consider how design
choices like quantization impact performance for
users of different languages. A wider body of work
examines how design choices impact performance
on underrepresented features or subgroups. Zhuang
et al. (2021) and Nelaturu et al. (2023) find that
hardware choice incurs disparate impact on un-
derrepresented features. Wang et al. (2022) show
that distillation imposes similar trade-offs, and that
harm to the long-tail can be mitigated by modifying
the student-teacher objective. Ko et al. (2023) show
that ensembling disproportionately favors underrep-
resented attributes. Differential privacy techniques
like gradient clipping and noise injection also dis-
proportionately impact underrepresented features
(Bagdasaryan and Shmatikov, 2019).

6 Conclusion & Future Work

We examine widely adopted quantization tech-
niques for model compression and ask, How does
quantization impact different languages? We per-
form an extensive study in state-of-the-art mul-
tilingual LLMs—from 8 billion to 103 billion
parameters—in 20+ languages using automatic
metrics, LLM/RM-as-a-Judge, and human evalua-
tion. We find that: (1) Damage from quantization is
much worse than appears from automatic metrics:
even when not observed automatically, human eval-
uators notice it. (2) Quantization affects languages
to varying degrees, with non-Latin script languages
more severely affected on automatic benchmarks.
(3) Challenging tasks degrade fast and severely (e.g.
mathematical reasoning and responses to realistic
challenging prompts). On a bright note, quantiza-
tion occasionally brings performance benefits.

Our results urge attention to multilingual perfor-
mance at all stages of system design and might be
extended to consider, for instance, languages ex-
cluded from training and out-of-distribution tasks.
By minding the impact on long-tail features, we’ll
build better systems to serve the world.
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7 Limitations

Generality of findings Due to the number of
methods, languages, and benchmarks we examine,
we focus our evaluation on models from two fami-
lies (Command R/R+ and Aya 23). As we observe
similar trends across these models, our findings
are likely to generalize to other LLMs. Neverthe-
less, models that have been optimized differently or
trained with a focus on specific tasks such as code
or mathematical reasoning may behave differently.

Under-represented languages For our study, we
focused on languages that were supported by the
models we evaluated. Performance deterioration is
likely even larger for languages that are not in the
pre-training data, or are severely under-represented.
For such languages, evaluation is also more chal-
lenging due to poor availability of benchmark data
and human annotators.
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Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020.
Xcopa: A multilingual dataset for causal common-
sense reasoning. pages 2362–2376.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Luiza Pozzobon, Patrick Lewis, Sara Hooker, and Beyza
Ermis. 2024. From one to many: Expanding the
scope of toxicity mitigation in language models.
Preprint, arXiv:2403.03893.

Krithika Ramesh, Arnav Chavan, Shrey Pandit, and
Sunayana Sitaram. 2023. A comparative study on the
impact of model compression techniques on fairness
in language models. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15762–
15782, Toronto, Canada. Association for Computa-
tional Linguistics.

Reva Schwartz, Apostol Vassilev, Kristen Greene, Lori
Perine, Andrew Burt, Patrick Hall, et al. 2022. To-
wards a standard for identifying and managing bias
in artificial intelligence. NIST special publication,
1270(10.6028).

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das,
and Jason Wei. 2023. Language models are multi-
lingual chain-of-thought reasoners. In The Eleventh
International Conference on Learning Representa-
tions.

Shivalika Singh, Freddie Vargus, Daniel Dsouza,
Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mat-
aciunas, Laura OMahony, Mike Zhang, Ramith
Hettiarachchi, Joseph Wilson, Marina Machado,
Luisa Souza Moura, Dominik Krzemiński, Hakimeh
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A Appendix

A.1 Prompts for mMMLU and
LLM-as-a-Judge

The following are multiple choice questions (with answers)
about clinical knowledge.

다음중파제트병에대한설명으로옳은것은무엇입니까?
A.긴뼈가휘어지는것이특징
B.척수압박은흔한합병증이다
C.심부전은알려진합병증이아니다
D.병적골절은특징이아닙니다.
Answer: B
...

Table A1: mMMLU prompt. Following Achiam et al.
(2023), letter choices and “Answer” are kept in English.
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Example Prompt

I want you to create a leaderboard of different large-language models. To do so, I will give you the conversations (prompts)
given to the models, and the responses of two models. Please rank the models based on which responses would be preferred by
humans. All inputs and outputs should be python dictionaries.

Here is the prompt:
{

"conversation": """User: La tomate est-elle un fruit ou un légume?""",
}

Here are the outputs of the models:
[

{
"model": "model_1",
"answer": """La tomate est un fruit. Plus précisément, il s’agit d’un fruit charnu, issu de la transformation de l’ovaire de la

fleur du plant de tomate."""
},
{
"model": "model_2",
"answer": """La tomate est un fruit du point de vue botanique, car elle contient des graines et se développe à partir de la

fleur d’une plante. Cependant, en cuisine, on considère souvent la tomate comme un légume en raison de son utilisation dans des
plats salés et de sa saveur moins sucrée par rapport à d’autres fruits."""

}
]

Now please rank the models by the quality of their answers, so that the model with rank 1 has the best output. Then return a list
of the model names and ranks, i.e., produce the following output:
[

{’model’: <model-name>, ’rank’: <model-rank>},
{’model’: <model-name>, ’rank’: <model-rank>}

]

Your response must be a valid Python dictionary and should contain nothing else because we will directly execute it in Python.
Please provide the ranking that the majority of humans would give.

Table A2: Example Input for LLM-as-a-Judge. Template derived from Li et al. (2023b):
https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/evaluators_configs/
gpt-3.5-turbo-1106_ranking/ranking_prompt.txt
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A.2 Automatic Tasks - Full Results

de es fr ja zh en non-en avg

103B

FP16 72.6 76.6 70.6 63.0 70.2 84.0 70.6
W8 72.8 75.9 69.5 61.3 70.2 84.2 69.9
W8A8-sq 73.4 73.8 69.6 62.9 67.7 81.1 69.5
W8A8 74.1 73.9 69.8 63.4 68.0 84.0 69.8
W4-g 71.2 75.7 69.0 58.0 68.9 80.3 68.6
W4 64.6 71.3 66.5 56.1 63.5 77.4 64.4

35B

FP16 56.6 57.3 51.8 38.8 44.4 58.5 49.8
W8 55.9 56.6 52.1 37.4 45.1 58.3 49.4
W8A8 54.2 53.4 49.9 35.8 42.0 58.5 47.1
W4-g 47.2 51.0 47.1 34.3 36.7 57.2 43.3

Table A3: Command model MGSM results. (Acc.)

non-en stats

de es fr ja zh en avg Ltn/IE ¬
W8 0.3% -0.9% -1.6% -2.7% -0.1% 0.3% -1.0% -0.7% -1.4%
W8A8-sq 1.1% -3.7% -1.5% -0.1% -3.6% -3.4% -1.6% -1.3% -1.9%
W8A8 2.1% -3.5% -1.1% 0.6% -3.2% 0.0% -1.0% -0.9% -1.3%
W4-g -1.9% -1.3% -2.3% -7.9% -1.9% -4.4% -3.0% -1.8% -4.9%

103B

W4 -11.0% -7.0% -5.9% -10.9% -9.6% -7.9% -8.8% -8.0% -10.2%

W8 -1.3% -1.1% 0.6% -3.7% 1.6% -0.3% -0.8% -0.6% -1.0%
W8A8 -4.4% -6.8% -3.6% -7.6% -5.4% 0.0% -5.6% -4.9% -6.5%35B
W4-g -16.7% -10.9% -9.0% -11.5% -17.3% -2.2% -13.1% -12.2% -14.4%

Table A4: Relative performance (%∆) vs. FP16 for Command Models on MGSM. Ltn/IE: Latin-script/Indo-
European languages: de, es, fr. ¬: ja, zh.

de es fr ja ru zh en non-en Avg

FP16 61.6 58.4 55.6 22.8 58.0 50.8 68.4 51.2
Aya-23-35b W8 54.4 61.2 60.4 24.4 57.2 55.2 66.4 52.1

W4 58.8 54.8 54.8 18.4 53.6 48.4 66.0 48.1

FP16 40.4 45.2 38.8 12.8 38.0 32.8 48.0 34.7
Aya-23-8b W8 39.6 45.6 38.8 13.6 38.8 36.0 45.6 35.4

W4 39.6 42.0 34.0 7.2 33.6 36.0 42.4 32.1

Table A5: Aya 23 language-specific results for MGSM (5-shot).

non-en Stats

de es fr ja ru zh en Avg Ltn/IE ¬

Aya-23-35b W8 -11.7% 4.8% 8.6% 7.0% -1.4% 8.7% -2.9% 2.7% 0.6% 4.8%
W4 -4.5% -6.2% -1.4% -19.3% -7.6% -4.7% -3.5% -7.3% -4.0% -10.5%

Aya-23-8b W8 -2.0% 0.9% 0.0% 6.2% 2.1% 9.8% -5.0% 2.8% -0.4% 6.0%
W4 -2.0% -7.1% -12.4% -43.8% -11.6% 9.8% -11.7% -11.2% -7.1% -15.2%

Table A6: Relative performance (%∆) vs. FP16 for Aya 23 models on MGSM (5-shot). Ltn/IE are non-English
Latin-script/Indo-European languages: de, es, fr. ¬ are the rest: ja, ru, zh.
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ar cs de el es fa fr hi id it ja ko nl pl pt ro ru tr uk vi zh en non-en Avg

35b
FP16 78.9 78.2 77.1 76.4 81.0 75.8 81.9 65.6 77.8 79.8 75.9 73.3 77.7 75.8 83.8 78.9 79.6 74.1 77.6 78.3 81.2 84.7 77.6
W8 77.3 78.8 77.2 76.6 80.8 74.9 82.4 65.6 77.6 80.8 74.8 73.7 77.6 74.8 82.9 77.1 78.9 72.0 77.2 77.0 80.3 84.6 77.1
W4 73.8 74.9 73.2 70.8 77.0 71.4 78.1 61.0 73.9 76.2 71.7 67.4 73.0 70.4 80.1 74.3 73.3 68.2 73.0 71.4 78.8 83.2 73.0

8b
FP16 65.6 61.9 65.6 64.0 67.0 63.6 69.6 54.3 67.4 65.7 65.2 61.7 63.8 61.3 69.1 65.7 69.7 58.1 66.8 62.3 72.2 77.0 64.8
W8 64.3 61.8 64.8 63.0 67.4 63.9 70.4 54.2 67.4 64.6 65.4 61.4 64.3 59.8 68.7 65.4 68.7 58.1 67.0 63.7 71.8 76.1 64.6
W4 61.9 57.0 61.6 57.7 61.1 58.2 65.7 49.8 64.7 58.3 60.7 51.1 60.7 54.9 62.0 59.8 63.9 50.1 61.0 58.8 66.2 73.8 59.3

Table A7: Aya 23 language-specific results for Belebele. (Accuracy)

non-En Stats

ar cs de el es fa fr hi id it ja ko nl pl pt ro ru tr uk vi zh en Avg Ltn ¬

35b
W8 -2.0% 0.7% 0.1% 0.2% -0.3% -1.2% 0.7% 0.0% -0.3% 1.3% -1.5% 0.5% -0.1% -1.3% -1.1% -2.3% -0.8% -2.8% -0.4% -1.7% -1.1% -0.1% -0.6% -0.6% -0.7%
W4 -6.5% -4.3% -5.0% -7.4% -4.9% -5.7% -4.6% -7.0% -5.0% -4.5% -5.6% -8.0% -6.0% -7.0% -4.4% -5.8% -7.8% -7.9% -5.9% -8.8% -3.0% -1.7% -6.0% -5.7% -6.3%

8b
W8 -1.9% -0.2% -1.2% -1.6% 0.7% 0.5% 1.3% -0.2% 0.0% -1.7% 0.3% -0.4% 0.9% -2.5% -0.6% -0.4% -1.4% 0.0% 0.3% 2.1% -0.6% -1.2% -0.3% -0.1% -0.5%
W4 -5.6% -7.9% -6.1% -9.9% -8.8% -8.4% -5.6% -8.4% -4.1% -11.2% -7.0% -17.1% -4.9% -10.5% -10.3% -9.0% -8.3% -13.8% -8.7% -5.7% -8.3% -4.2% -8.5% -8.1% -9.1%

Table A8: Relative performance (%∆) vs. FP16 for Aya 23 models on Belebele. Ltn are non-English Latin-script
languages: cs, de, es, es, fr, id, it, nl, pl, pt, ro, tr, vi. ¬ are the rest.

ar de es fr it ja ko pt zh en non-en Avg

103B

FP16 64.0 68.3 68.7 68.0 69.3 64.4 62.3 70.0 65.0 75.7 66.7
W8 64.1 68.3 68.7 68.1 69.4 64.3 62.3 69.9 65.0 75.7 66.7
W8A8-sq 63.5 67.9 68.8 68.0 69.1 63.6 61.8 69.2 64.9 75.6 66.3
W8A8 62.6 67.1 68.2 67.4 68.3 62.9 60.8 68.7 64.1 75.2 65.6
W4-g 62.9 67.5 68.2 67.6 68.6 62.8 61.1 68.6 64.0 74.4 65.7
W4 60.5 65.7 66.5 65.4 66.6 61.1 59.3 66.7 62.1 73.2 63.8

35B

FP16 56.5 60.7 62.3 61.8 62.0 56.4 54.8 62.0 57.9 67.7 59.4
W8 56.5 60.6 62.2 61.8 61.9 56.4 54.7 62.1 57.9 67.7 59.3
W8A8 56.4 60.5 62.5 61.9 62.0 55.8 54.5 61.8 58.1 67.7 59.3
W4-g 55.4 59.7 62.0 61.0 60.7 54.4 53.2 60.8 56.6 66.5 58.2

Table A9: mMMLU scores for Command Models. (Accuracy)

non-en Stats

ar de es fr it ja ko pt zh en Avg Ltn/IE ¬
W8 0.2% 0.0% 0.0% 0.1% 0.1% -0.2% 0.0% -0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
W8A8-sq -0.8% -0.6% 0.1% 0.1% -0.3% -1.3% -0.8% -1.1% -0.2% -0.1% -0.5% -0.4% -0.8%
W8A8 -2.2% -1.8% -0.7% -1.0% -1.5% -2.3% -2.4% -1.8% -1.4% -0.7% -1.7% -1.3% -2.1%
W4-g -1.7% -1.2% -0.7% -0.6% -1.0% -2.5% -1.9% -2.0% -1.5% -1.7% -1.5% -1.1% -1.9%

103B

W4 -5.5% -3.8% -3.1% -3.9% -3.8% -5.1% -4.8% -4.8% -4.4% -3.3% -4.4% -3.9% -4.9%

W8 0.0% -0.2% -0.2% 0.0% -0.2% 0.0% -0.2% 0.2% 0.0% -0.1% -0.1% -0.1% 0.0%
W8A8 -0.2% -0.3% 0.3% 0.2% 0.0% -1.1% -0.5% -0.3% 0.3% 0.0% -0.2% 0.0% -0.4%35B
W4-g -1.9% -1.6% -0.5% -1.3% -2.1% -3.5% -2.9% -1.9% -2.2% -1.8% -2.0% -1.5% -2.7%

Table A10: Relative performance (%∆) vs. FP16 for Command Models on mMMLU. Ltn/IE are non-English
Latin-script/Indo-European languages: de, es, fr, it, pt. ¬ are the rest: ar, ja, ko, zh.

ar de es fr hi id it nl pt ro ru uk vi zh en non-en Avg

FP16 53.9 60.4 61.6 62.0 47.8 58.9 61.5 60.3 62.0 59.7 57.8 56.3 55.3 57.5 66.7 58.2
Aya-23-35b W8 53.8 60.0 61.7 61.7 47.4 58.7 61.1 60.0 61.6 59.1 57.5 56.1 54.9 57.5 66.2 57.9

W4 52.3 58.7 60.3 60.4 45.7 57.4 59.8 58.6 60.5 57.7 56.5 55.0 53.8 56.1 65.2 56.6

FP16 45.1 50.0 50.9 51.0 39.7 48.8 50.7 49.7 50.8 49.9 47.8 46.8 46.5 47.1 54.6 48.2
Aya-23-8b W8 44.9 49.9 50.5 50.6 39.4 48.5 50.2 49.4 50.6 49.2 47.4 46.3 45.7 46.4 54.2 47.8

W4 43.9 48.4 49.4 49.0 38.4 47.5 49.1 47.9 49.1 48.0 46.2 45.6 44.9 46.1 53.4 46.7

Table A11: Aya 23 language-specific results for mMMLU (Okapi). (Accuracy)
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non-En Stats

ar de es fr hi id it nl pt ro ru uk vi zh en Avg Ltn ¬

Aya-23-35b
W8 -0.2% -0.7% 0.2% -0.4% -0.7% -0.3% -0.6% -0.5% -0.6% -1.1% -0.6% -0.3% -0.8% -0.1% -0.6% -0.5% -0.5% -0.4%
W4 -3.1% -2.8% -2.0% -2.5% -4.4% -2.5% -2.7% -2.8% -2.5% -3.3% -2.2% -2.2% -2.7% -2.6% -2.2% -2.7% -2.6% -2.9%

Aya-23-8b
W8 -0.5% -0.3% -0.8% -0.8% -0.9% -0.6% -1.0% -0.7% -0.4% -1.4% -0.9% -1.1% -1.7% -1.5% -0.8% -0.9% -0.8% -1.0%
W4 -2.7% -3.3% -2.9% -3.9% -3.4% -2.6% -3.2% -3.7% -3.3% -3.8% -3.4% -2.7% -3.5% -2.2% -2.1% -3.2% -3.4% -2.9%

Table A12: Relative performance (%∆) vs. FP16 for Aya Models on mMMLU (Okapi). Ltn are non-English
Latin-script languages: de, es, fr, id, it, nl, pt, ro, vi. ¬ are the rest.

English → L2 L2 → English

ar de es fr it ja ko pt zh Avg ar de es fr it ja ko pt zh Avg

103B

FP16 27.1 40.0 30.1 50.6 33.1 33.1 29.1 51.0 45.1 37.7 45.0 46.3 33.4 48.6 36.5 29.5 33.0 52.2 32.1 39.6
W8 27.2 40.0 30.0 50.7 33.1 33.2 29.1 50.9 45.1 37.7 45.2 46.3 33.4 48.5 36.5 29.5 33.0 52.1 32.0 39.6
W8A8-sq 26.8 40.3 30.0 51.0 33.0 33.1 29.3 51.2 45.1 37.8 44.5 46.2 32.9 48.1 35.9 29.3 32.5 51.6 31.2 39.1
W8A8 26.9 39.8 30.0 50.9 33.0 33.7 29.0 51.1 45.1 37.7 44.4 45.9 33.1 47.9 36.2 29.2 32.5 51.8 31.4 39.1
W4-g 27.3 40.4 30.1 51.0 33.0 33.9 29.3 50.9 44.7 37.8 44.9 46.4 33.2 48.4 36.3 29.3 32.7 52.0 31.6 39.4
W4 26.9 39.1 29.9 50.0 32.8 32.8 27.9 50.3 44.0 37.1 44.2 45.8 33.1 47.9 36.0 29.0 32.3 51.8 30.9 39.0

35B

FP16 20.1 33.5 27.8 44.5 29.7 27.0 22.7 45.5 40.4 32.4 38.4 41.2 31.8 43.1 34.0 26.2 28.4 48.1 28.4 35.5
W8 20.0 33.4 27.8 44.5 29.7 26.9 22.9 45.3 40.3 32.3 38.3 41.1 31.7 43.0 34.0 26.4 28.2 48.0 28.2 35.4
W8A8 21.2 34.1 27.8 45.1 30.0 27.6 23.1 46.1 40.8 32.9 38.5 42.2 31.7 43.5 34.2 26.5 28.6 48.6 28.7 35.8
W4-g 18.8 32.9 27.7 43.9 29.6 26.0 22.1 45.1 39.7 31.7 38.3 41.4 31.0 43.1 34.0 25.5 28.1 48.0 28.0 35.3

Table A13: Full results on FLORES for Command Models. (SacreBLEU)

English → L2 L2 → English

ar de es fr it ja ko pt zh Avg Ltn/IE ¬ ar de es fr it ja ko pt zh Avg Ltn/IE ¬
W8 0.1% 0.1% -0.4% 0.2% 0.1% 0.3% -0.2% -0.3% 0.1% 0.0% -0.1% 0.1% 0.4% -0.1% -0.1% -0.1% -0.1% -0.1% 0.0% -0.1% -0.1% 0.0% -0.1% 0.1%
W8A8-sq -1.1% 0.8% -0.4% 0.7% -0.2% 0.2% 0.7% 0.3% 0.1% 0.1% 0.2% 0.0% -1.2% -0.1% -1.4% -1.0% -1.8% -0.7% -1.6% -1.1% -2.9% -1.3% -1.1% -1.6%
W8A8 -1.0% -0.4% -0.5% 0.5% -0.4% 1.8% -0.4% 0.1% 0.0% 0.0% -0.1% 0.1% -1.3% -0.8% -1.1% -1.4% -1.0% -1.2% -1.7% -0.8% -2.1% -1.3% -1.0% -1.6%
W4-g 0.7% 1.0% -0.3% 0.8% -0.3% 2.6% 0.5% -0.3% -0.8% 0.4% 0.2% 0.7% -0.3% 0.2% -0.6% -0.3% -0.6% -0.7% -0.9% -0.3% -1.4% -0.6% -0.3% -0.8%

103B

W4 -0.8% -2.2% -0.7% -1.3% -0.9% -0.8% -4.3% -1.5% -2.3% -1.6% -1.3% -2.0% -1.8% -1.1% -0.8% -1.4% -1.6% -1.7% -2.2% -0.7% -3.6% -1.7% -1.1% -2.3%

W8 -0.7% -0.4% -0.1% 0.0% 0.0% -0.2% 0.7% -0.4% -0.2% -0.1% -0.2% -0.1% -0.2% -0.2% -0.5% -0.3% 0.0% 0.8% -0.5% -0.1% -0.6% -0.2% -0.2% -0.1%
W8A8 5.5% 1.9% 0.1% 1.4% 0.9% 2.1% 1.9% 1.4% 0.9% 1.8% 1.1% 2.6% 0.5% 2.5% -0.6% 0.9% 0.5% 1.1% 0.8% 1.1% 1.0% 0.9% 0.9% 0.8%35B
W4-g -6.7% -1.9% -0.4% -1.3% -0.4% -3.9% -2.8% -0.7% -1.7% -2.2% -1.0% -3.8% -0.1% 0.6% -2.5% 0.0% -0.1% -2.8% -1.1% -0.2% -1.4% -0.8% -0.5% -1.3%

Table A14: Relative performance (%∆) vs. FP16 for Command Models on FLORES. Ltn/IE are Latin-
script/Indo-European languages: de, es, fr, it, pt. ¬ are the rest: ar, ja, ko, zh.

English→L2
ar cs de el es fa fr he hi id it ja ko nl pl pt ro ru tr uk vi zh Avg

FP16 40.0 39.1 42.5 36.3 32.1 33.4 54.1 39.5 31.9 44.7 36.6 28.7 25.5 33.4 30.7 53.1 43.3 38.9 33.8 38.2 41.0 34.0 37.8
Aya-23-35b W8 40.0 39.0 42.9 36.2 32.2 33.7 53.9 40.0 32.3 44.8 36.5 28.9 25.5 33.6 30.9 53.2 43.4 38.7 33.8 38.3 41.4 33.8 37.9

W4 39.3 38.0 42.5 36.0 32.0 32.6 53.3 39.1 31.2 44.6 36.1 28.2 25.1 32.9 30.0 52.8 42.6 38.3 33.2 37.8 40.8 33.1 37.3

FP16 36.3 35.7 39.3 34.0 31.5 30.0 51.0 35.0 27.2 43.4 34.7 24.9 22.0 32.2 28.4 50.2 41.6 35.0 29.1 34.2 39.0 30.1 34.8
Aya-23-8b W8 36.5 36.1 39.5 33.9 31.4 30.4 51.4 35.0 27.0 43.2 34.8 24.8 22.2 32.1 28.5 50.0 42.0 34.9 28.9 34.3 39.0 30.6 34.8

W4 35.4 35.0 39.2 33.4 31.2 29.6 50.2 33.3 26.4 42.8 34.3 24.3 21.5 31.8 28.0 49.8 40.9 34.2 28.1 33.7 38.5 29.4 34.1

L2→English
FP16 46.4 45.3 48.9 42.4 37.7 41.3 50.6 48.3 42.7 48.5 40.5 33.7 35.3 37.7 36.4 54.8 49.5 41.6 42.2 44.8 41.4 34.8 42.9

Aya-23-35b W8 46.4 45.4 49.0 42.2 37.3 41.4 50.7 48.6 42.9 48.7 40.5 34.0 35.1 37.5 36.4 54.8 49.5 41.7 42.2 45.0 41.5 34.9 43.0
W4 45.7 44.9 48.5 41.8 37.5 40.5 50.4 47.3 41.8 48.0 40.8 33.1 34.4 37.2 35.8 54.3 49.2 41.6 41.4 44.2 40.9 34.2 42.4

FP16 42.4 42.0 46.5 38.7 35.4 36.5 48.1 43.7 37.4 45.5 37.9 29.9 30.9 35.8 33.6 51.7 46.7 38.6 36.9 41.2 38.2 31.6 39.5
Aya-23-8b W8 42.1 42.5 46.7 39.2 35.5 36.8 48.1 44.2 37.7 45.5 38.2 30.0 31.3 35.6 33.7 52.0 46.6 38.5 37.0 41.6 38.4 31.9 39.7

W4 41.4 42.2 46.2 38.1 35.8 36.7 47.4 42.8 36.2 44.7 38.5 29.7 30.1 35.7 33.1 51.9 46.1 38.3 35.7 40.7 37.6 31.6 39.1

Table A15: Aya 23 language-specific results for FLORES. spBLEU with FLORES200 tokenizer.

English→L2
ar cs de el es fa fr he hi id it ja ko nl pl pt ro ru tr uk vi zh Avg Ltn ¬

W8 -0.1% -0.2% 1.1% -0.1% 0.2% 0.7% -0.4% 1.2% 1.3% 0.3% -0.4% 0.6% 0.0% 0.6% 0.7% 0.3% 0.4% -0.6% 0.1% 0.2% 0.9% -0.8% 0.3% 0.3% 0.3%
Aya-23-35b

W4 -1.7% -2.7% 0.0% -0.7% -0.4% -2.4% -1.4% -1.0% -2.0% -0.2% -1.5% -2.0% -1.5% -1.4% -2.2% -0.5% -1.6% -1.6% -1.8% -1.1% -0.5% -2.7% -1.4% -1.2% -1.7%

W8 0.5% 1.1% 0.6% -0.3% -0.4% 1.3% 0.8% -0.1% -0.9% -0.3% 0.2% -0.2% 1.0% -0.1% 0.2% -0.5% 0.9% -0.1% -0.7% 0.0% 0.0% 1.7% 0.2% 0.2% 0.3%
Aya-23-8b

W4 -2.5% -2.0% -0.3% -1.7% -1.0% -1.4% -1.6% -5.1% -3.1% -1.2% -1.3% -2.1% -2.0% -1.1% -1.3% -0.9% -1.8% -2.1% -3.6% -1.7% -1.1% -2.2% -1.9% -1.4% -2.4%

L2→English
W8 0.0% 0.3% 0.2% -0.5% -1.1% 0.3% 0.3% 0.7% 0.4% 0.3% 0.0% 0.8% -0.7% -0.5% 0.1% -0.1% -0.1% 0.3% -0.1% 0.4% 0.2% 0.2% 0.1% 0.0% 0.2%

Aya-23-35b
W4 -1.6% -0.9% -1.0% -1.4% -0.4% -2.0% -0.4% -2.0% -2.2% -1.1% 0.8% -1.6% -2.7% -1.5% -1.5% -0.9% -0.5% 0.1% -2.0% -1.5% -1.4% -2.0% -1.2% -0.9% -1.7%

W8 -0.6% 1.3% 0.4% 1.3% 0.3% 0.8% 0.1% 1.1% 0.6% 0.0% 0.7% 0.3% 1.4% -0.4% 0.4% 0.6% -0.1% -0.3% 0.3% 0.8% 0.6% 0.8% 0.5% 0.4% 0.6%
Aya-23-8b

W4 -2.2% 0.6% -0.6% -1.6% 1.2% 0.4% -1.3% -2.1% -3.2% -1.8% 1.5% -0.6% -2.7% -0.3% -1.3% 0.5% -1.2% -0.9% -3.2% -1.4% -1.6% -0.1% -1.0% -0.6% -1.4%

Table A16: Relative performance (%∆) vs. FP16 for Aya Models on FLORES. Ltn are Latin-script languages:
cs, de, es, fr, id, it, nl, pl, pt, ro, tr, vi. ¬ are the rest.
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Avg Rel. %Delta mMMLU MGSM Belebele
en Ltn All en Ltn All en Ltn All en Ltn All

W8 -1.2% -0.2% 0.5% -0.6% -0.5% -0.5% -2.9% 0.6% 2.7% -0.1% -0.6% -0.6%
Aya-23-35b

W4 -2.5% -4.1% -5.3% -2.2% -2.6% -2.7% -3.5% -4.0% -7.3% -1.7% -5.7% -6.0%

W8 -2.3% -0.4% 0.5% -0.8% -0.8% -0.9% -5.0% -0.4% 2.8% -1.2% -0.1% -0.3%
Aya-23-8b

W4 -6.0% -6.2% -7.6% -2.1% -3.4% -3.2% -11.7% -7.1% -11.2% -4.2% -8.1% -8.5%

Table A17: Relative performance of quantized Aya 23 models in English vs. other languages. All non-English
languages (All), non-English Latin-script languages (Ltn).

Avg XSC XCOPA XWNG

FP16 70.8 65.1 62.8 84.4
Aya-23-35b W8 70.6 65.0 62.9 83.9

W4 70.5 64.8 62.3 84.5

FP16 67.6 62.3 59.8 80.7
Aya-23-8b W8 67.6 62.4 60.0 80.6

W4 67.5 62.3 59.6 80.6

Table A18: Performance of quantized Aya 23 models on unseen discriminative tasks. XStoryCloze (XSC),
XCOPA, and XWinograd (XWNG).

Monolingual Cross-Lingual
ar de es fr it ja ko pt zh en Avg ar de es fr it ja ko pt zh Avg

103B

FP16 99.3 100.0 99.3 99.6 100.0 98.6 100.0 98.3 97.9 100.0 99.2 93.0 90.6 91.2 91.6 93.0 93.1 91.1 88.3 91.3 91.5
W8 99.0 100.0 99.5 99.4 99.8 99.2 99.8 97.8 98.5 100.0 99.2 92.6 91.1 91.7 91.4 92.9 92.8 91.3 87.4 89.7 91.2
W8A8-sq 99.4 100.0 99.3 99.6 100.0 98.6 100.0 97.7 98.4 100.0 99.2 93.3 91.5 91.4 92.4 92.1 93.3 92.1 87.6 90.0 91.5
W8A8 99.3 100.0 99.5 99.8 100.0 99.0 99.8 98.1 99.1 99.9 99.4 91.3 89.3 91.0 91.1 91.8 93.0 89.3 87.3 89.2 90.4
W4-g 99.1 100.0 99.6 99.9 100.0 97.4 100.0 98.1 98.9 100.0 99.2 90.6 89.9 90.7 91.7 93.1 92.8 90.6 85.4 89.6 90.5
W4 99.4 100.0 99.4 99.7 99.8 99.6 99.0 98.9 98.4 100.0 99.3 95.8 94.3 95.9 93.8 93.6 92.6 88.9 90.5 89.7 92.8

35B

FP16 99.2 97.0 98.1 99.2 99.6 99.6 99.0 99.0 97.7 98.8 98.7 58.8 59.6 69.0 73.0 63.6 66.3 69.2 64.2 74.6 66.5
W8 99.7 97.0 98.1 98.9 100.0 99.8 99.0 99.3 97.4 98.9 98.8 59.8 58.6 69.2 72.8 62.3 66.8 68.7 64.3 74.5 66.3
W8A8 99.9 98.0 97.1 98.9 100.0 100.0 100.0 99.0 98.4 99.5 99.0 61.0 63.9 72.1 75.1 66.2 68.3 70.1 67.4 76.3 68.9
W4-g 99.4 95.0 96.5 99.9 100.0 99.8 97.0 98.3 98.6 99.2 98.3 60.4 59.3 72.8 73.3 64.8 65.4 70.4 64.6 73.0 67.1

Table A19: Language Confusion scores for Command Models. (Line-level pass rate (LPR))

Monolingual
ar de es fr it ja ko pt zh en Avg Ltn/IE ¬

W8 -0.3% 0.0% 0.2% -0.2% -0.2% 0.6% -0.2% -0.5% 0.6% 0.0% 0.0% -0.1% 0.2%
W8A8-sq 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -0.6% 0.5% 0.0% 0.0% -0.1% 0.1%
W8A8 0.0% 0.0% 0.2% 0.2% 0.0% 0.4% -0.2% -0.2% 1.2% -0.1% 0.2% 0.0% 0.4%
W4-g -0.2% 0.0% 0.3% 0.4% 0.0% -1.2% 0.0% -0.2% 1.0% 0.0% 0.0% 0.1% -0.1%

103B

W4 0.0% 0.0% 0.1% 0.1% -0.2% 1.0% -1.0% 0.6% 0.5% 0.0% 0.1% 0.1% 0.1%

W8 0.5% 0.0% 0.0% -0.3% 0.4% 0.2% 0.0% 0.3% -0.3% 0.1% 0.1% 0.1% 0.1%
W8A8 0.7% 1.0% -0.9% -0.3% 0.4% 0.4% 1.0% 0.0% 0.7% 0.7% 0.3% 0.0% 0.7%35B
W4-g 0.2% -2.1% -1.6% 0.7% 0.4% 0.2% -2.0% -0.7% 0.9% 0.4% -0.4% -0.6% -0.2%

Cross-lingual
W8 -0.5% 0.5% 0.5% -0.2% -0.1% -0.3% 0.3% -1.0% -1.8% -0.3% 0.0% -0.6%
W8A8-sq 0.3% 1.0% 0.2% 0.9% -0.9% 0.2% 1.1% -0.8% -1.4% 0.1% 0.1% 0.0%
W8A8 -1.8% -1.5% -0.2% -0.6% -1.2% -0.2% -1.9% -1.1% -2.3% -1.2% -0.9% -1.6%
W4-g -2.6% -0.8% -0.6% 0.1% 0.1% -0.3% -0.5% -3.3% -1.8% -1.1% -0.9% -1.3%

103B

W4 3.0% 4.0% 5.1% 2.3% 0.6% -0.5% -2.4% 2.5% -1.8% 1.4% 2.9% -0.4%

W8 1.7% -1.6% 0.2% -0.3% -2.0% 0.8% -0.8% 0.3% -0.2% -0.2% -0.7% 0.4%
W8A8 3.8% 7.2% 4.4% 2.9% 4.1% 3.1% 1.2% 5.0% 2.3% 3.8% 4.7% 2.6%35B
W4-g 2.8% -0.5% 5.4% 0.5% 1.9% -1.3% 1.7% 0.6% -2.2% 1.0% 1.6% 0.3%

Table A20: Relative performance (%∆) vs. FP16 for Command Models on Language Confusion metrics.
Ltn/IE are non-English Latin-script/Indo-European languages: de, es, fr, it, pt. ¬ are the rest: ar, ja, ko, zh.
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A.3 RM/LLM-as-a-Judge and Human Evaluation - Full Results

fr es ja ko
LLM RM LLM RM LLM RM LLM RM

W8 50.5 49.7 44.9 53.7 47.3 52.7 53.7 47.1
W8A8-sq 40.8 47.5 48.1 52.0 51.0 52.4 51.9 47.5
W4-g 44.8 41.5 41.7 51.0 42.4 50.0 47.1 42.2Internal

W4 34.9 39.8 33.5 41.5 39.2 40.0 40.7 36.2

W8 49.3 51.0 53.7 48.0 47.0 47.3 51.3 51.0
W8A8-sq 42.3 45.7 54.3 46.0 49.3 50.7 46.0 47.7
W8A8 48.3 51.3 56.7 48.3 51.3 49.3 52.7 48.3Dolly

W4-g 46.3 48.7 48.0 52.3 42.3 42.3 44.3 47.3

Table A21: LLM/RM-as-a-Judge Raw win-rates of 103B quantized models vs. FP16 over Internal and Aya Dolly
subsampled test sets.

non-English Stats

fr es ja ko en avg Ltn/IE ¬
W8 46.3 50.3 53.7 44.0 48.0 48.6 48.3 48.9
W8A8-sq 45.3 46.3 49.0 52.0 53.3 48.2 45.8 50.5Internal
W4-g 41.7 47.7 42.0 47.7 46.3 44.8 44.7 44.9

W8 50.3 47.3 56.0 50.0 47.0 50.9 48.8 53.0
W8A8-sq 46.3 45.7 50.0 48.3 51.0 47.6 46.0 49.2Dolly
W4-g 45.3 49.3 51.3 46.0 45.0 48.0 47.3 48.7

Table A22: Human evaluation raw win-rates of 103B quantized models vs. FP16 over Internal and Aya Dolly
subsampled test sets.
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