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Abstract

Existing research on instruction following
largely focuses on tasks with simple instruc-
tions and short responses. In this work, we
explore multi-constraint instruction following
for generating long-form text. We create Suri,
a dataset with 20K human-written long-form
texts paired with LLM-generated backtrans-
lated instructions that contain multiple com-
plex constraints. Because of prohibitive chal-
lenges associated with collecting human prefer-
ence judgments on long-form texts, preference-
tuning algorithms such as DPO are infeasi-
ble in our setting; thus, we propose Instruc-
tional ORPO (I-ORPO), an alignment method
based on the ORPO algorithm. Instead of re-
ceiving negative feedback from dispreferred
responses, I-ORPO obtains negative feedback
from synthetically corrupted instructions gen-
erated by an LLM. Using Suri, we perform
supervised and I-ORPO fine-tuning on Mistral-
7b-Instruct-v0.2. The resulting models, Suri-
SFT and Suri-I-ORPO, generate significantly
longer texts (∼5K tokens) than base models
without significant quality deterioration. Our
human evaluation shows that while both SFT
and I-ORPO models satisfy most constraints,
Suri-I-ORPO generations are generally pre-
ferred for their coherent and informative incor-
poration of the constraints.1

1 Introduction

Improving the instruction-following abilities of
modern large language models (LLMs) is critical to
increasing their effectiveness and generalizability
for many practical applications. However, most ex-
isting instruction-following datasets (e.g., Alpaca)
contain only simple instructions that can be solved
by short model generations (Taori et al., 2023;
Conover et al., 2023; Köpf et al., 2023). What

*Now at NVIDIA
1Code & Data are available at https://github.com/

chtmp223/suri

about tasks with complex, multi-constraint instruc-
tions that can only be satisfied with long-form out-
puts (i.e., thousands of tokens), such as creating
detailed technical reports or writing engaging fic-
tional narratives?

We explore this question by conducting the first
in-depth study of long-form instruction following
with multi-constraint instructions. To facilitate our
experiments, we create a new dataset, Suri,2 using
instruction backtranslation (Li et al., 2023; Kök-
sal et al., 2023). This process involves feeding a
human-written long-form text (e.g., chapters from
a novel) into an LLM to generate instructions that
could have been followed to create the text. The
resulting dataset, Suri, consists of 20K texts paired
with LLM-generated instructions, each containing
≈10 semantic and stylistic constraints (Figure 1).

How can we use Suri to improve an LLM’s long-
form instruction following abilities? While super-
vised fine-tuning (SFT) has been quite effective
for short-form datasets (Mishra et al., 2022; Wang
et al., 2022; Sanh et al., 2022; Wei et al., 2022;
Chung et al., 2022), we observe that fine-tuned
Suri models often generate texts that are incoher-
ent and fail to satisfy constraints towards the end in
the instructions. Preference tuning methods such
as DPO (Rafailov et al., 2023) and RLHF (Ouyang
et al., 2022) are challenging to use in this setting
due to difficulties and cost in obtaining preference
judgments on long-form texts (Touvron et al., 2023;
Xu et al., 2023c). Specifically, when annotating
preferences for long texts, human annotators may
struggle to determine if different sections of the
text are faithful to the instructions while simultane-
ously considering multiple aspects of the text, such
as coherence and informativeness.

Motivated by this, we devise an alignment
method that relies on synthetically corrupted in-
structions. Specifically, we take the backtranslated

2Suri is an alpaca breed known for its long, lustrous hair.
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Corrupt

Constraints

Main Goal: Write a whimsical and 
imaginative narrative that centers 
around a young girl's journey through a 
fantastical world.

Constraints: 
- Start the narrative with the 
protagonist feeling bored with her 
current surroundings.
- Employ a tone that blends matter-of-
fact narration with elements of dry 
humor and irony.

Back-

Translate

Backtranslated Instruction xw
(LLM-generated)

Main Goal: Write a whimsical and 
imaginative narrative that centers 
around a young girl's journey through a 
fantastical world.

Constraints: 
- Start the narrative with the 
protagonist without any prior feelings of 
boredom with her surroundings.
- Employ a tone that is consistently 
serious and devoid of humor.

Corrupted Instruction xl
(LLM-generated)

Suri-I-ORPO

Suri-SFT

Alice was beginning to get very 
tired of sitting by her sister
on the bank, and of having nothing 
to do: once or twice she had
peeped into the book her sister was 
reading, but it had no pictures or 
conversations in it, “and what is the 
use of a book,” thought Alice 
“without pictures or conversation?”

Response y
(Human-written)

Figure 1: Our work consists of two stages. First, we construct the Suri dataset using gold responses sampled from
three existing datasets that include creative writing and open web text, along with backtranslated instruction xw

and corrupted instruction xl. Second, we fine-tune Mistral-7B-Instruct-v0.2 on Suri, resulting in two variations:
Suri-I-ORPO (via I-ORPO) and Suri-SFT (via supervised fine-tuning).

instruction xw and corrupt its constraints using an
LLM such that the gold response does not satisfy
the corrupted constraints (for example, see xl in
Figure 1). We then develop a variant of the Odds
Ratio Preference Optimization objective (Hong
et al., 2024, ORPO) to use these corrupted instruc-
tions as negative feedback. We refer to this align-
ment method as Instructional ORPO, or I-ORPO
for short.

We conduct a series of automatic and human
evaluations on generations from SFT and I-ORPO-
tuned models to validate our method. Compared
to the base model, Mistral-7b-Instruct-v0.2 (Jiang
et al., 2023), both SFT and I-ORPO significantly
increase the generation length from 1K to 5K to-
kens. Our fine-tuned models also improve the
ability to differentiate between correct and cor-
rupted instructions by at least 10% while main-
taining low levels of n-gram repetitions in the text.
We find that LLM judges, such as GPT-4o (Ope-
nAI, 2024), Gemini-1.5-Pro (Team et al., 2024),
and Claude-3.5-Sonnet (Anthropic, 2024), can-
not reliably evaluate long-form responses, which
makes human evaluation crucial for assessing the
constraint-following capabilities of our generations.
Annotators note that our fine-tuned models effec-
tively follow given constraints, with I-ORPO being
preferred to our SFT model for its ability to incor-
porate constraints coherently, informatively, and
enjoyably.

2 The Suri Dataset

We focus on the task of long-form writing, both
fictional and non-fictional, under multiple con-
straints. When using an LLM for a complex writing
task, users might have many constraints in mind
and expect lengthy, detailed responses in the form
of books, blog posts, etc. This task is particu-
larly challenging for current LLMs, which struggle
with generating coherent long-form outputs (Guan
et al., 2021; Wang et al., 2023a), and this difficulty
can be amplified when multiple constraints are in-
volved. Recent instruction-following datasets have
featured multi-constraint instructions (Xu et al.,
2024; Malaviya et al., 2024) and long-form re-
sponses (Köksal et al., 2023; Chen et al., 2024b),
but none has integrated these two elements (Table
1). We bridge this gap by creating Suri, which
features complex instructions with multiple con-
straints and lengthy gold responses (2-5K words,
about 3-6K tokens).

We collect human-written English text samples,
such as books, religious texts, and blog posts, to
serve as gold responses (y). Since gathering human-
written instructions for such lengthy responses is
difficult and expensive, we turn to instruction back-
translation (Li et al., 2023; Köksal et al., 2023), in
which an LLM is provided with a human-written
text (e.g., a short story) and prompted to generate
instructions (xw) that could have been followed
to create that text. We further corrupt the con-
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Category Dataset Size Domain Prompt
Length

Response
Length

Writing Instructions ROCStory (Mostafazadeh et al., 2016) 50K Creative Writing 36 8
WritingPrompt (Fan et al., 2018) 300K Creative Writing 28 735

Instruction-
following

Alpaca (Taori et al., 2023) 52K General Q&As 13 44

Long-form
Instruction-following

LongForm-C (Köksal et al., 2023) 28K CommonCrawl, Wikipedia,
StackExchange, Wikihow

149 298

LongAlpaca-16K (Chen et al., 2024b) 12K Science, Creative Writing, Wiki,
General Q&As

5945 218

Scrolls (Shaham et al., 2022) 120K Legal, Science, Entertainment 33506 97

Multi-constraint
Instructions

Dolomites (Malaviya et al., 2024) 2K 25 Academic Fields 235 343

Multi-constraint,
Long-form
Instruction-following

Suri (this work) 20K CommonCrawl, Creative Writ-
ing

347 4371

Table 1: Comparison of Suri with other single-turn datasets in terms of relevant data features, including writing
instructions, instruction-following datasets, and constrained instructions. The data size as well as the average length
of prompts and responses is either quoted from the original paper or calculated from publicly available subsets. Suri
is the only dataset featuring both constrained instructions and long responses (> 4K tokens) specifically designed for
text generation.

straints in xw to obtain synthetically corrupted in-
structions (xl) for our I-ORPO alignment method.
In total, Suri contains 20K single-turn examples,
each consisting of a backtranslated instruction xw,
corrupted instruction xl, and a human-written re-
sponse y. In this section, we detail our approach
to selecting high-quality text samples (§2.1) and
creating backtranslated instructions (§2.2). We also
validate our generated instructions (§2.3) and ana-
lyze the resulting dataset (§2.4).

2.1 Collecting Responses

Obtaining long-form gold responses y through
crowdsourcing or hiring experts requires signifi-
cant cost and effort. As an alternative, we sam-
ple human-written texts in equal proportions from
three existing datasets: ChapterBreak (Sun et al.,
2022), Books3 (Presser, 2020; Gao et al., 2020),
and RedPajama-Data-v2 (Computer, 2023). We
truncate the sampled texts to between 2,048 and
5,024 words, making them significantly longer than
those in existing instruction-following datasets (Ta-
ble 1). The final Suri dataset is divided into train-
ing, validation, and test sets in a 10K/5K/5K split.

ChapterBreak ChapterBreak (AO3 split) con-
tains 7,355 fanfiction stories on Archive of Our
Own (AO3), of which 6,656 texts are sampled for
Suri. We merge the individual chapters from the
cleaned text into a single document.

Books3 Books3 contains 197K books on Bibli-
otik,3 of which 6,698 texts are sampled. We use
regular expressions to filter out irrelevant metadata,
such as tables of contents and acknowledgments.

RedPajama-Data-v2 RedPajama contains over
100 billion documents from 84 CommonCrawl
dumps. Unlike ChapterBreak and Books3, which
consist primarily of books and literary narratives,
RedPajama captures the style of everyday writing
with informal textual content such as blog posts,
obituaries, and more. We apply a set of quality
filters (see Appendix A) on the 2023-06 and 2023-
14 snapshots to obtain a subset of ≈ 300K high-
quality, non-duplicated documents written in En-
glish, from which 6,646 texts are sampled.

2.2 Creating Instructions via Backtranslation

Suri includes backtranslated instructions (xw) and
corrupted instructions (xl). To create xl, con-
straints from xw are minimally edited to be partially
violated while still faithful to the overall main goal
of the instruction. These corrupted instructions
xl, along with xw and y, serve as inputs for our
I-ORPO preference tuning experiments.

Backtranslating Instructions Our extracted
gold responses do not come with accompanying

3Due to copyright concerns, we only release the titles and
IDs of the sampled data from this dataset. We provide a Python
script to extract and clean the text so that users with access to
Books3 can recreate the samples included in Suri.
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instructions. Gathering these instructions can be
costly and time-consuming, as annotators have to
synthesize the instructions from long texts. There-
fore, we use instruction backtranslation (Li et al.,
2023; Köksal et al., 2023) to generate the missing
instructions. Specifically, we prompt GPT-4-turbo4

with a gold response y to generate a corresponding
instruction xw that contains a main goal, which
summarizes the content of the text, and a list of
≈10 constraints (Table 9). These constraints can
focus on stylistic elements (how something is com-
municated through tone, language, sentence struc-
ture), semantic elements (what topics, meanings,
and concepts are included), or a combination of
both. Constraints can also be broad, applying to
large portions of the text, or specific, addressing
elements that occur only once. The result is a set of
highly detailed, multi-constraint instructions that
cover different parts of the text (xw in Figure 1).

Corrupting Instructions We want to use Suri
in our alignment experiments, which traditionally
rely on preference judgments (e.g., labeled yw and
yl pairs). However, obtaining these judgments for
long-form outputs is challenging due to the many
competing aspects to consider (e.g., faithfulness
to instructions, overall coherence, etc.). Therefore,
we focus on learning from a corrupted instruction
xl instead of from yl. To create xl, we prompt
GPT-4-turbo5 to minimally edit each constraint in
xw while preserving the original main goal (Table
10). The resulting instructions average 386 tokens,
closely matching the average length of gold instruc-
tions at approximately 411 tokens.6

2.3 Validating Instructions

To validate whether the backtranslated instructions
faithfully represent the original text, we conduct
a human evaluation on a sample of 30 (xw, y)
pairs. Three Upwork7 annotators are asked to read
through the (xw, y) pairs, highlight all text spans in
the response that support the given constraints, and
determine if the response supports the instruction
(Figure 6).

4GPT-4-turbo refers to gpt-4-0215-preview. Experi-
ment done using temperature=0.6 and top_p=0.9.

5Experiment done using model=gpt-4-0125-preview,
temperature=0.0, top_p=0.0 to ensure deterministic results.

6The first author manually reviews a random subset of
50 corrupted claims by comparing them to their correspond-
ing original versions, and confirms that the corruptions are
minimal and effective in invalidating the original constraints.

7See Appendix F for recruitment and compensation details.

Our findings indicate that, on average, about
87% of the constraints are fully satisfied, with the
remaining constraints being partially satisfied (see
Appendix F for agreement statistics). We conclude
that the backtranslated instructions are generally
faithful to the original text.

2.4 Instruction Diversity
Instructions in Suri focus primarily on long-form
text generation, particularly crafting narratives or
articles. Therefore, the key element that introduces
diversity across these instructions is the accompa-
nying list of constraints. Here, we measure the
proportion of constraints being broad/specific or fo-
cusing on semantic/stylistic elements. We prompt
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023),8 to
assign each constraint to the applicable category.
We find that semantic constraints account for more
than half of each instruction, followed by mixed
constraints (Figure 2). Broad constraints, on the
other hand, make up 56% of the total constraints.
Overall, the distribution of constraint types is rela-
tively balanced, with a stronger emphasis on broad
and semantic constraints.

Figure 2: Average percentage of different constraint
types within each instruction. The left figure categorizes
the constraints based on their content, and the right
figure refers to constraint scopes.

3 Aligning language models with Suri

Our goal is to assess whether Suri helps improve
the instruction-following capabilities of Mistral-
7B-Instruct-v0.2 for long-form text generation.

We experiment with two methods of fine-tuning
Mistral-7B-Instruct-v0.2 on Suri: supervised fine-
tuning (SFT) using (xw, y) pairs and a modi-
fied ORPO alignment (Hong et al., 2024) using
(xw, xl, y) triplets. We emphasize that preference
judgments are difficult to obtain for long-form re-
sponses due to numerous aspects of the text that

8Experiment done using greedy decoding. The first author
manually verifies an output subset.
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must be considered with respect to the instructions.
Therefore, we perform model alignment with cor-
rect instruction xw and corrupted instruction xl
instead. Full details on fine-tuning libraries, hard-
ware configurations, and hyperparameters can be
found in Appendix C.

Suri-I-ORPO Odds Ratio Preference Optimiza-
tion (ORPO) (Hong et al., 2024) combines SFT and
preference alignment by incorporating a log odds
ratio term into the negative log-likelihood loss. We
choose ORPO due to its simplicity, competitive per-
formance with other preference tuning algorithms
and the ease with which we can modify for our
setting.

The original algorithm learns from preference
judgments, requiring access to chosen and rejected
responses in the (x, yw, yl) format. Since our
dataset contains gold and corrupted instructions
instead, we modify ORPO so that the algorithm ac-
cepts (xw, xl, y). We refer to this modified method
as Instructional Odds Ratio Preference Optimiza-
tion (I-ORPO), where the modified loss is calcu-
lated as:

LI-ORPO = E(xw,xl,y) [LSFT + λ · LI-OR] (1)

where

LI-OR = − log σ

(
log

oddsθ(y|xw)
oddsθ(y|xl)

)
(2)

oddsθ(y|x) =
Pθ(y|x)

1− Pθ(y|x)
(3)

In the original ORPO formulation, the model
is learning if the log probability of Pθ(yw|x), de-
noted logps(yw|x), increases and log probability
of Pθ(yl|x), denoted logps(yl|xw), decreases after
a number of training steps, resulting in the log odds
ratio increasing. In I-ORPO, the same y is used
for both instruction types. Therefore, the model
is learning if the log probabilities logps(y|xw) and
logps(y|xl) diverge while logps(xw) and logps(xl)

remain stable. We observe this trend in Figure 3.
Loss derivation and analysis are in Appendix D.

We perform I-ORPO fine-tuning with LoRA on
Mistral-7B-Instruct-v0.2 for two epochs, using a
learning rate of 5e-5, λ of 0.4, and a LoRA rank and
alpha of 16. We do not observe signs of the model
learning with full-model tuning, so we choose to
use LoRA fine-tuning instead. To minimize noise
and improve the model’s ability to distinguish be-
tween gold and corrupted instructions, we include
a single constraint in each instruction, xw and xl.

Figure 3: ORPO training curve. Left figure documents
the log probability of the chosen and rejected prompts
over 3 epochs. Right figure shows the log probability
of the response given the chosen and rejected prompts
over 3 epochs. A divergence between logps(y|xw) and
logps(y|xl) is observed after 0.5 training epoch.

Suri-SFT We perform LoRA supervised fine-
tuning (Hu et al., 2021) on Mistral-7B-Instruct-v0.2
for two epochs using a learning rate of 5e-5, with a
LoRA rank and alpha of 16. For each instruction
xw, we include a varying number of constraints to
expose the model to different instruction formats.
We do not use full-model tuning to match the I-
ORPO training setting.

For both Suri-SFT and Suri-I-ORPO, we set
the number of epochs to 2, which is determined by
a manual inspection of model generations at each
epoch checkpoint. We observe that as the num-
ber of epochs increases from 1 to 5, both the re-
sponse length and the number of 5-gram repetitions
increase, indicating a trade-off between response
length and repetition. After reviewing 30 gener-
ations at each epoch, we select the configuration
that produces the most coherent responses and min-
imal repetition. Based on these criteria, the optimal
number of epochs is 2, which balances the trade-off
between response length and response quality.

4 Automatic Evaluation

Our automatic assessment demonstrates that both
Suri-I-ORPO and Suri-SFT increase the length of
the generated texts while maintaining a reasonable
level of repetition. Compared to baseline models,
Suri-I-ORPO is more likely to assign higher log
probabilities to tokens in the response given the
correct instruction than the corrupted instruction.
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4.1 Suri-I-ORPO and Suri-SFT generate
substantially longer text.

We measure the average number of tokens9 in gen-
erations from our fine-tuned models (Suri-I-ORPO
and Suri-SFT) and compare them to baseline mod-
els, including Mistral-7B-Instruct-v0.2, Llama-3-
8B-Instruct (AI@Meta, 2024), and Mixtral-8x7B-
Instruct-v0.1 (Jiang et al., 2024). For faster infer-
ence, we use vLLM (Kwon et al., 2023) to generate
outputs from the backtranslated instruction xw.10

Proprietary models like GPT-4 and Claude are ex-
cluded due to their maximum generation output
limit of 4,096 tokens,11 whereas open-weight mod-
els allow for outputs of arbitrary maximum length.

Figure 4: Average number of tokens in generations from
baseline open-source models (Llama-3-8B-Instruct,
Mixtral-8x7B-Instruct-v0.1, Mistral-7B-Instruct-v0.2)
and our fine-tuned models (Suri-I-ORPO, Suri-SFT).

Our fine-tuned models, Suri-SFT and Suri-I-
ORPO, generate significantly longer outputs com-
pared to the open-weight baselines, with an aver-
age of approximately 4,800 and 5,100 tokens per
generation, respectively (Figure 4). These lengths
exceed the maximum generation capacity of pro-
prietary models, which is limited to around 4,096
tokens. Among the baselines, Mixtral produces
the longest generations, averaging over 1,500 to-
kens, while Mistral-Instruct generates the shortest
outputs, around 1,100 tokens per generation.

9Measured using tiktoken package (https://github.
com/openai/tiktoken) with “o200k_base” encoding.

10Experiment done using greedy decoding,
max_token=10K. Inference prompts specify that 5K
tokens should be generated.

11Claude documentation; OpenAI documentation

4.2 Suri-I-ORPO and Suri-SFT do not
degenerate into repetitions at longer
sequences.

We analyze the presence of repetitions in model
generations. Since LLMs often degrade into rep-
etitions over longer sequences, this measurement
helps us identify when and how the model starts
producing repetitive content. Previous work (Li
et al., 2016; See et al., 2019) measures unigram, bi-
gram, and trigram repetitions. However, we are in-
terested in sentence-level repetitions, such as when
the same phrase is repeated in a dialogue at the start
of each sentence. Therefore, we measure 5- and
10-gram repetitions to capture these higher-level
patterns. We count a repetition when a specific
n-gram appears at least three times in the text.

I-
ORPO

SFT Mistral-
Instruct

Llama-
Instruct

Mixtral-
Instruct

5-gram 24% 29% 12% 26% 31%
10-gram 3% 3% 1% 2% 5%

Table 2: Percentage of generations containing n-gram
repetitions out of 5K generations from the test set
(rounded to the nearest whole number).

Figure 5: Average percentage of 5-gram repetitions
before and after 2,048 tokens in each generation from
I-ORPO and SFT models.

Despite having the longest generations, Suri-I-
ORPO and Suri-SFT maintain a low percentage
of generations with n-gram repetitions (Table 2).
Among the baseline models, Mistral-Instruct has
the lowest percentage of generations with repeti-
tion, possibly because its generations are also the
shortest. Surprisingly, Llama-Instruct and Mixtral-
Instruct, with their short generations, possess a
greater proportion of generations with n-gram rep-
etitions compared to our fine-tuned models.

We further examine the percentage of 5-gram
repetitions, normalized by the length of each text,
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generated by our fine-tuned models. As shown in
Figure 5, the percentage of 5-gram repetitions does
not increase after 2,048 tokens, indicating that our
fine-tuned models do not exhibit degradation in
longer sequences.

4.3 I-ORPO improves ranking accuracy
To understand the capabilities of models to dif-
ferentiate between correct and corrupted instruc-
tions, we evaluate ranking accuracy (See et al.,
2019; Chen et al., 2024a). This involves measur-
ing the percentage of cases in which the model
assigns a higher probability to the gold response
under the correct instruction than under the cor-
rupted version. We calculate the sum of token
log probabilities in the response given the previ-
ous tokens, denoted by logps(y|x), and determine
accuracy based on the proportion of times when
logps(y|xw) > logps(y|xl). A higher accuracy
indicates that the model is more sensitive to the
instructions and can determine which instruction is
the correct instruction for the given response.

We use Hugging Face’s Transformers (Wolf
et al., 2020) to access the probability distribution
over vocabulary and measure the impact of instruc-
tion specificity on ranking accuracy across five dif-
ferent settings, which are defined by the number of
all constraints included (M constraints in total) and
the number of those included constraints that are
corrupted: (M,M), (M,M/2), (M,1), (M/2,M/2),
(1,1). For example, in the (M, M/2) setting, both
instructions include all constraints, but only half of
the constraints are violated.

Instruction
Specificity

I-
ORPO

SFT Mistral-
Instruct

Llama-
Instruct

Mixtral-
Instruct

(M,M) 100.0 99.8 90.6 65.7 66.5
(M,M/2) 100.0 99.2 92.1 57.5 60.4
(M,1) 98.3 91.0 90.4 47.7 55.2
(M/2,M/2) 99.9 97.8 79.7 60.0 57.4
(1,1) 98.4 81.2 62.5 50.9 48.5

Table 3: Ranking accuracy on the Suri test set across
five levels of instruction specificity. Percentages are
rounded to one decimal place.

Suri-I-ORPO shows at least a 10% improve-
ment in ranking accuracy over the baseline
Mistral-Instruct across all instruction specificity set-
tings, with Suri-SFT following closely (Table 3).
Mistral-Instruct remains a strong baseline, achiev-
ing the highest ranking accuracy among the three
baseline models. In contrast, Llama-3-7b-Instruct
and Mixtral-8x7b-Instruct perform the worst, trail-

ing Suri-I-ORPO by up to 50%. We observe that
settings with more constraints in the instruction,
namely (M,M), (M,M/2), and (M,1), generally lead
to better performance. This trend suggests that see-
ing more constraints helps the model better differ-
entiate between correct and corrupted constraints.

4.4 LLM judges are unreliable for evaluating
constraint satisfaction in long-form
generation.

We experiment with using LLMs to evaluate
whether texts generated by our fine-tuned mod-
els follow the given constraints. Specifically,
we provide GPT-4o (OpenAI, 2024), Gemini-
1.5-Pro (Team et al., 2024), and Claude-3.5-
Sonnet (Anthropic, 2024) with a constraint and
a generated text from our models and prompt it to
determine whether the text fully satisfies, partially
satisfies, or does not satisfy the constraint (Table
16).12 We then compare these results with judg-
ments from three Upwork annotators on 30 texts
generated by Suri-SFT on the test set (obtained us-
ing the same procedure as in Section 2.3). GPT-4o
agrees with human annotators only 39% of the time,
with a significant 16% disagreement between satis-
faction and no satisfaction (Table 4). Claude-3.5-
Sonnet and Gemini-1.5-Pro lagging significantly
behind, with Claude agreeing with humans only
24% of the time, and Gemini 13% of the time. No-
tably, Gemini refuses to annotate 39% of the time,
even when all safety filters have been disabled. We
conclude that LLM judges do not align well with
long-form human annotation, consistent with the
findings of Xu et al. (2024) and Kim et al. (2024).

5 Human Evaluation

While our automatic assessments provide insights
into the lexical information of the text, they do not
capture its semantic content. Therefore, we con-
duct a human evaluation to determine if and how
the constraints are satisfied by the outputs of Suri-
SFT and Suri-I-ORPO. Human evaluation on 30
test set generations reveals that while both fine-
tuned models satisfy constraints, Suri-I-ORPO is
preferred by humans for its ability to seamlessly
incorporate the constraints into the final outputs.

12Experiment done using OpenAI API for GPT-4o and Ver-
tex API for Claude-3.5-Sonnet and Gemini-1.5-Pro. Tempera-
ture is set to 0.0 and the maximum number of generated tokens
is set to 4096 for all models.
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Category GPT-4o Claude-3.5-Sonnet Gemini-1.5-Pro

Agreement with human’s majority vote 39% 24% 13%
Partial satisfaction - No satisfaction 23% 6% 2%
Satisfaction - Partial satisfaction 22% 63% 1%
Satisfaction - No satisfaction 16% 7% 45%

Table 4: Types of agreement and disagreement between GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro, and human
judges on 30 generations from Suri-SFT.

Suri-SFT Suri-I-ORPO

Satisfied 67% 68%
Partially Satisfied 17% 16%
Not Satisfied 16% 16%

Table 5: Average percentage of satisfied constraints in
Suri-SFT and Suri-I-ORPO generations. Percentages
are rounded to the nearest whole number.

5.1 Suri-I-ORPO and Suri-SFT are effective
at satisfying constraints.

Since GPT-4o judgments do not align with human
annotations, we rely on human evaluation to de-
termine how often Suri-I-ORPO and Suri-SFT
follow the given constraints. This evaluation fol-
lows a similar setup as Section 2.3, where anno-
tators assess whether each constraint is satisfied,
partially satisfied, or not satisfied by the genera-
tions. Two Upwork annotators complete 30 tasks,
each containing a generation with around ten con-
straints, totaling 321 constraints. The generations
are lengthy, averaging 4,000 words, and complex,
with constraints spread throughout the text. Anno-
tators spend approximately 20-25 minutes on each
annotation and are paid $200 in total for the task.

On average, Suri-I-ORPO and Suri-SFT meet
most of the included constraints, achieving satisfac-
tion rates of 67-68% and partial satisfaction rates
of 16-17% (Table 5). Both models have the same
proportion of unsatisfied constraints, accounting
for 16% of the total constraints. Annotators often
note that narratives produced by Suri-SFT contain
inconsistent plot events and sometimes leave the
narrative incomplete, resulting in some final con-
straints not being met. We attribute this behavior
to the fact that some of the gold responses are trun-
cated to between 2,048 and 5,024 words, which
might omit the end of the original narrative. On the
other hand, Mistral-I-ORPO produces narratives
with coherent endings but can sometimes be too
verbose, making it difficult to determine whether
some constraints are satisfied.

5.2 Suri-I-ORPO are preferred over
Suri-SFT for coherent and informative
constraint satisfaction.

In this evaluation, we are interested in how our
fine-tuned models satisfy constraints in Suri. We
ask two annotators to compare text generations
from Suri-SFT and Suri-I-ORPO with respect to
a given constraint based on the following criteria:

• Informativeness: Which generation provides
more details about the constraint?

• Coherence: Which generation effectively inte-
grates the constraint with the rest of the text?

• Readability/Enjoyability: Which text sample
is easier to read overall?

The annotators also provide detailed justifica-
tions for their choices in each aspect of their judg-
ments (see Figure 7).

Coherence Informativeness Enjoyability/Readability

72% 73% 67%

Table 6: Win rate of Suri-I-ORPO over Suri-SFT in
terms of coherence, enjoyability, and informativeness.

Human annotators consistently prefer Suri-I-
ORPO to Suri-SFT for about 60-70% of the time
across all three categories: coherence, informa-
tiveness, and enjoyability. Annotators note that
Suri-SFT often suffers from repetitive ideas, con-
fusing plot points, and a lack of proper conclusions.
In contrast, while Suri-I-ORPO texts occasionally
exhibit inconsistencies, they generally read more
naturally, include interesting details, and are devoid
of the robotic structure or flowery language often
found in other LLM generations.

6 Related Work

Instruction Following Datasets Open-ended in-
struction tuning involves fine-tuning LLMs to fol-
low user instructions and generate high-quality
text (Wei et al., 2021; Askell et al., 2021; Ouyang
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et al., 2022; Liu et al., 2023; Rafailov et al.,
2023). Single-turn instruction-following datasets
can be constructed by manual annotation, where
instruction-response pairs are curated by hu-
mans (Conover et al., 2023; Rajani et al., 2023;
Zhou et al., 2024). Another approach is distillation
from proprietary LLMs, which can be done via
techniques like Self-instruct (Wang et al., 2023c)
to augment responses for each instruction (Taori
et al., 2023; Xu et al., 2023a,b), Instruction Back-
translation to generate instructions given gold re-
sponses (Köksal et al., 2023; Li et al., 2023),
or leveraging metadata to generate both instruc-
tions and responses (Yin et al., 2023). While re-
cent work has constructed instruction-following
datasets with long-form responses (Xiong et al.,
2023; Chen et al., 2024b; Bai et al., 2024) or multi-
ple constraints (Xu et al., 2024; Zhou et al., 2023;
Malaviya et al., 2024), no prior effort has explored
combining these two elements in single-turn in-
structions (see Table 1). Suri is the first dataset to
feature both complex instructions and long-form
responses over 5k words.

Alignment Aligning language models with
instruction-following data is crucial for ensuring
that they respond to user instructions in a help-
ful and harmless manner (Askell et al., 2021;
Mishra et al., 2022; Sanh et al., 2022; Chung et al.,
2022; Wang et al., 2023b). Popular preference
tuning methods, such as RLHF, DPO, KTO, and
ORPO (Ouyang et al., 2022; Rafailov et al., 2023;
Ethayarajh et al., 2024; Hong et al., 2024), achieve
this by fine-tuning the models on human judgments
of response quality (Kreutzer et al., 2018; Stien-
non et al., 2022; Ziegler et al., 2020; Ramamurthy
et al., 2023). However, collecting preferences for
long-form responses is challenging due to the many
competing aspects of the texts that need to be con-
sidered, such as instruction faithfulness and coher-
ence (Xu et al., 2023c; Kim et al., 2024; Xu et al.,
2024), which prompts us to experiment with pref-
erence tuning on correct and correct instructions.

7 Conclusion

In this work, we investigate the challenge of com-
plex instruction following for generating long-form
text. We introduce Suri, a dataset of long human-
written responses accompanied by backtranslated
and corrupted instructions. We demonstrate the
effectiveness of Suri in improving the constraint-
following capabilities of LLMs for long-form gen-

eration through supervised fine-tuning and I-ORPO.
Human and automated evaluations show that our
models generate high-quality, long-form responses
while effectively satisfying constraints.

Limitations

Fine-tuning additional LLMs on Suri While
we demonstrate the effectiveness of Suri and I-
ORPO on Mistral-7b-Instruct-v0.2, we have yet to
experiment with fine-tuning other models on our
dataset using I-ORPO.

Impact of surface features on I-ORPO Even
though I-ORPO works well on our dataset, we
would like to explore how surface features, such
as instruction length and the degree of informa-
tion overlap between the instruction and response,
affect its performance.

Impact of truncating gold responses In our ex-
periments, we truncate gold responses to lengths
between 2,048 and 5,024 words to make fine-tuning
more cost-effective and computationally efficient.
However, our released code includes an option that
allows users to recover the full response text, and
thus bypass the truncated version if needed.

Ranking accuracy on out-of-domain datasets
We report the ranking accuracy on the Suritest set,
where Suri-SFT and Suri-I-ORPO may have an
advantage over the baseline models due to their
fine-tuning on Suri.

Ethical Considerations

Our human evaluation receives approval from an in-
stitutional review board. All annotators (US-based,
fluent in English) gave their informed consent and
participated with an hourly compensation of $16,
which meets the minimum wage in our state. Sci-
entific artifacts are implemented according to their
intended usage.
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A Quality Filters for RedPajama-Data-v2

Upon initial examination, we observe a significant presence of news and religious text in the corpus.
Therefore, in addition to the following quality filters, we also downsample news and religious articles by
excluding any article containing a source domain on our blocklist (BernhardClemm, 2023) or more than
0.05% of words from a religious dictionary (The Association of Religion Data Archives, 2023) to ensure
the diversity of the gold responses. Table 7 and 8 show the quality filters used in RedPajama-Data-v2.

Tags Values Descriptions Categories

ccnet_language_score > 0.65 score of the language identification
model

CCNet

ccnet_perplexity (35, 350) perplexity of an LM trained on
Wikipedia

CCNet

rps_doc_books_importance > 0 Given a bag of {1,2}-wordgram model
trained on Books p, and a model trained
on the source domain q, This is the log-
arithm of the ratio p(doc)/q(doc).

ML
Heuris-
tics

rps_doc_curly_bracket 0 The ratio between the number of oc-
currences of ’{’ or ’}’ and the number
of characters in the raw text. Some
pages inadvertently contained code.
Since the curly bracket, "{" appears
in many programming languages (such
as Javascript, widely used on the web)
but not in natural text, we removed any
pages that contained a curly bracket.

Natural
Lan-
guage

rps_doc_frac_no_alph_words 0.3 The fraction of words that contain no
alphabetical character.

Natural
Lan-
guage

rps_doc_lorem_ipsum 0 The ratio between the number of occur-
rences of ’lorem ipsum’ and the number
of characters in the content after nor-
malisation.

Natural
Lan-
guage

rps_doc_unigram_entropy ≥ 3 The entropy of the unigram distribution
of the content. This measures the diver-
sity of the content and is computed us-
ing sum(-x / total * log(x / total)) where
the sum is taken over counts of unique
words in the normalised content.

Natural
Lan-
guage

Table 7: Quality Signals used to filter RedPajamas Dataset - Part 1
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Tags Values Descriptions Categories

rps_doc_word_count (2048, 5024) The number of words in the content
after normalisation.

Natural
Lan-
guage

rps_lines_javascript_counts 0 The number of occurrences of the
word "javascript" in each line. Many
of the scraped pages contained warn-
ings stating that Javascript should be
enabled so we removed any line with
the word Javascript.

Natural
Lan-
guage

rps_doc_frac_chars_dupe_10grams 0.1 The fraction of characters in duplicate
word ngrams.

Repeti-
tivenessrps_doc_frac_chars_dupe_5grams 0.15

rps_doc_frac_chars_dupe_6grams 0.14
rps_doc_frac_chars_dupe_7grams 0.13
rps_doc_frac_chars_dupe_8grams 0.12
rps_doc_frac_chars_dupe_9grams 0.11
rps_doc_frac_chars_top_2gram 0.2
rps_doc_frac_chars_top_3gram 0.18
rps_doc_frac_chars_top_4gram 0.16

rps_doc_ldnoobw_words 0 The number of sequences of
words that are contained in
the List-of-Dirty-Naughty-
Obscene-and-Otherwise-Bad-
Words blocklist. The block-
list is obtained from https:
//github.com/LDNOOBW/List-
of-Dirty-Naughty-Obscene-and-
Otherwise-Bad-Words

Sensitive
/ toxic
content

rps_doc_ut1_blacklist 0 A categorical id corresponding
to the list of categories of the
domain of the document. Cate-
gories are obtained from the UT1
blacklist. The list is obtained from
https://dsi.ut-capitole.fr/
blacklists/: [’adults’, ’phishing’,
’dating’, ’gambling’, ’filehosting’,
’aggressif’, ’ddos’, ’mixed_adult’,
’chat’, ’arjel’]

Sensitive
/ toxic
content

Table 8: Quality Signals used to filter RedPajamas Dataset - Part 2
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B Prompts

In this section, we show prompts to generate and analyze Suri in Table 9, 10, 11, 12. Table 16 shows the
prompt used for our experiment with LLM judges.

Prompt: Instruction Backtranslation/Reverse-engineering

Assume the author of the provided text followed a detailed set of instructions to produce their work. Your task is to infer
what those original instructions may have been by composing your own set of instructions that could recreate key aspects
of the given text.

Your response must include:

1. An overarching instruction under the "Main Instruction" section that summarizes the goal of the instructions.

2. One bulleted list of specific constraints under the "Constraints" section that reflect the order of happenings/ideas in
the original text. Constraints should focus on either stylistic elements (how something is communicated through
tone, language, sentence structure), semantic elements (what topics, meanings, and concepts are included), or a
combination of both. You should include specific elements from the text, but avoid using direct quotes. Aim for a
fair balance of semantic, stylistic and mixed constraints.

• Examples of stylistic constraints are "incorporate humor when discussing serious topics" or "use short, choppy
sentences for emphasis."

• Examples of semantic constraints are "describe a supportive mother and absent father" or "mention an
impressionist painting with a leopard."

• Mixed constraints blend stylistic and semantic elements, like "discuss impressionist art with an enthusiastic
tone."

### Document:
{text}

### Your response:

Table 9: Prompt to reverse-engineer/backtranslate instructions. The placeholder {text} will be replaced with
collected gold responses. Our instruction backtranslation experiment cost ≈ $2K US dollars.
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Prompt: Corrupt backtranslated instructions

You are given an instruction text that includes a main instruction and a list of constraints. Your task is to make minimal
edits to violate each constraint. Your resulting constraints should be coherent with one another and also with the main
instruction.

[Examples]
Main Instruction: Write a story on the life and death of Bob, who is a run-of-the-mill blue-collar worker in Texas, USA.
Constraints:

• Use a first-person perspective that centers on the protagonist’s perspective. → Use a third-person perspective that
ensures a broad and neutral view of the narrative.

• Include cliffhangers at the end of each chapter to encourage readers to continue reading. → Do not include
cliffhangers at the end of each chapter to encourage smooth readings.

[Provided Instruction]
{instructions}

When modifying the constraints, keep the following in mind:

1. Ensure that your resulting constraints are coherent with one another and also with the main instruction. However,
the original and modified constraints should be mutually exclusive and difficult to achieve simultaneously.

2. Modify every constraint, but leave the main instruction unchanged.

3. Your response should contain the original main instruction, followed by each original constraint and your minimally
modified version. Format each constraint as: Original constraint → Your modified constraint.

[Your response]

Table 10: Prompt used to violate backtranslated instructions. The placeholder {instructions} are replaced with
instructions that are produced with Prompt 9.

Prompt: Assign constraint type (semantic, stylistic, mixed) to each constraint

You are a helpful assistant. You are given a constraint that you need to determine if it is a stylistic, semantic, or mixed
constraint. Stylistic constraint emphasizes stylistic elements (how something is communicated through tone, language,
sentence structure). Stylistic constraints focus on semantic elements (what topics, meanings, and concepts are included).
Mixed constraints include both stylistic and semantic elements.

### Examples:
Constraint: Incorporate humor when discussing the morbid, gut-wrenching scene of the protagonist’s death. Use short,
choppy sentences to create a sense of urgency and panic.
Your response: Stylistic

Constraint: The story must end with the protagonist’s death in a car accident.
Your response: Semantic

Constraint: Using a first-person perspective, write a story on the life and death of Bob, a blue-collar worker in Texas, USA.
Your response: Mixed

Constraint: Include cliffhangers at the end of each chapter to encourage readers to continue reading.
Your response: Stylistic

### Constraints:
Constraint: {constraint}

### Your response:

Table 11: Prompt to assign constraint type (semantic, stylistic, mixed) to each constraint. The placeholder
{constraint} will be replaced with a single constraint in each backtranslated instruction.
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C Modeling Experiment Details

All experiments are done using Flash-Attention 2 (Dao, 2024), DeepSpeed ZeRO 3 (Rasley et al., 2020),
PEFT (Mangrulkar et al., 2022), TRL library (von Werra et al., 2020), and Alignment Handbook (Tunstall
et al., 2023). Chat templates are as follows:

<|user|>
{Instruction }</s>

<|assistant|>
{Response}</s>

The training configurations (Table 13) are mostly similar for SFT and ORPO. We vary the learning
rate (5e-4 to 5e-7), optimizer (8-bit vs. 32-bit), LoRA rank, and alpha (8 to 64), but none of these
hyperparameters results in better generations.
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D I-ORPO Loss Derivation

The derivation of LI-OR closely resembles that of the original ORPO loss, with d = (xw, xl, y) ∼ D.

∇θLI-OR = δ(d) · h(d) (4)

δ(d) =

(
1 +

oddsθ(y|xw)
oddsθ(y|xl)

)−1

(5)

h(d) =
∇θ logPθ(y|xw)
1− Pθ(y|xw)

− ∇θ logPθ(y|xl)
1− Pθ(y|xl)

(6)

The gradient of LI-OR is the product of two terms: δ(d), which regulates the strength of parameter
updates, and h(d), which widens the contrast between logps(y|xw) and logps(y|xl). Specifically, as the
odds ratio increases, δ(d) converges to 0. On the other hand, h(d) has two gradients: ∇θ logPθ(y|xw),
which minimizes logPθ(y|xw), and ∇θ logPθ(y|xl), which maximizes logPθ(y|xl). Additionally, 1−
Pθ(y|xw) accelerates the update in the direction that maximizes Pθ(y|xw). Following ORPO (Hong et al.,
2024), suppose that g(xw, xl, y) =

oddsθ(y|xw)
oddsθ(y|xl)

, we derive the loss as in 22.
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∇θLI−OR = ∇θ log σ

(
log

(
oddsθ(y|xw)
oddsθy|xl)

))
(7)

=
1

σ(log g(xw, xl, y))
· ∇θσ(log g(xw, xl, y)) (8)

=
1

σ(log g(xw, xl, y))
· σ(log g(xw, xl, y))(1− σ(log g(xw, xl, y)))∇θ log g(xw, xl, y) (9)

= (1− σ(log g(xw, xl, y))) · ∇θ log g(xw, xl, y) (10)

= σ(− log g(xw, xl, y)) · ∇θ log g(xw, xl, y) (11)

=

(
1 +

oddsθ(y|xw)
oddsθ(y|xl)

)−1

· ∇θ log
oddsθ(y|xw)
oddsθ(y|xl)

(12)

=

(
1 +

oddsθ(y|xw)
oddsθ(y|xl)

)−1

· ∇θ log

(
P (y|xw)

1− P (y|xw)
1− P (y|xl)
P (y|xl)

)
(13)

∇ log
(

P (y|xw)
1−P (y|xw)

1−P (y|xl)
P (y|xl)

)
can be rewritten as:

= ∇θ log

(
P (y|xw)
P (y|xl)

1− P (y|xl)
1− P (y|xw)

)
(14)

= ∇θ log

(
P (y|xw)
P (y|xl)

1− P (y|xl)
1− P (y|xw)

)
(15)

= ∇θ log
P (y|xw)
P (y|xl)

− (∇θ log(1− Pθ(y|xw))−∇θ log(1− Pθ(y|xl))) (16)

= ∇θ log
P (y|xw)
P (y|xl)

−
(∇θ(1− Pθ(y|xw))

1− Pθ(y|xw)
− ∇θ(1− Pθ(y|xl))

1− Pθ(y|xl)

)
(17)

= ∇θ log
P (y|xw)
P (y|xl)

−
(−∇θ(Pθ(y|xw))

1− Pθ(y|xw)
− −∇θ(Pθ(y|xl))

1− Pθ(y|xl)

)
(18)

= ∇θ log
P (y|xw)
P (y|xl)

−
(−Pθ(y|xw)∇θ logPθ(y|xw)

1− Pθ(y|xw)
− −Pθ(y|xl)∇θ logPθ(y|xl)

1− Pθ(y|xl)

)
(19)

= ∇θ log
P (y|xw)
P (y|xl)

− (−oddsθ(y|xw) · ∇θ logPθ(y|xw) + oddsθ(y|xl) · ∇θ logPθ(y|xl)) (20)

= ∇θ logPθ(y|xw)(1 + oddsθ(y|xw))−∇θ logPθ(y|xl)(1 + oddsθ(y|xl)) (21)

The final equation is:

∇θLI−OR =

(
1 +

oddsθ(y|xw)
oddsθ(y|xl)

)−1

· (∇θ logPθ(y|xw)(1 + oddsθ(y|xw))−

∇θ logPθ(y|xl)(1 + oddsθ(y|xl)))
(22)

=
1 + oddsθ(y|xw)
1 + oddsθ(y|xw)

oddsθ(y|xl)

· ∇θ logPθ(y|xw)−
1 + oddsθ(y|xl)
1 + oddsθ(y|xw)

oddsθ(y|xl)

· ∇θ logPθ(y|xl) (23)

=

(
1 +

oddsθ(y|xw)
oddsθ(y|xl)

)−1

·
(∇θ logPθ(y|xw)

1− Pθ(y|xw)
− ∇θ logPθ(y|xl)

1− Pθ(y|xl)

)
(24)
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E Preference Prompting

In this evaluation, we provide the model with the gold response y and both instructions xw and xl. We
then prompt the model to choose the instruction most relevant to the gold text, following Bai et al. (2022)
and Lee et al. (2023). The model should output ‘1’ if the first instruction generates the text and ‘2’
otherwise (Table 14). Next, we compare the log probabilities of the model outputting ‘1’ and ‘2’. If the log
probability for ‘1’ is higher, we assume the model prefers whichever instruction came first in the prompt.
The performance metric is determined by how often the model prefers the correct instruction, regardless
of the order in which the correct instruction is presented. We experiment with Mistral-7b-Instruct-v0.2,
Suri-I-ORPO, Suri-SFT, Mixtral-8x7b-Instruct-v0.1, Llama-3-7b-Instruct. All experiments use the
Huggingface implementation with greedy decoding.

We observe that all models suffer from “first instruction bias", where the model always outputs the first
instruction as the correct instruction, regardless of whether that instruction is actually xw or not.
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F Human Evaluation

F.1 Recruitment

We recruit human annotators, all of whom are fluent in English, from Upwork (https://www.upwork.
com) for our human evaluation. Each task is assigned to two annotators, except for Instruction Validation,
which involves three annotators. Annotators are compensated at a rate of $16 per hour and generally
work an average of 12 hours per task. All annotators have signed consent forms, and our study has been
approved by our institutional review boards (IRB).

F.2 Annotation

Figure 6 shows the LabelStudio interface for annotating instruction validity/constraint satisfaction. Figure
7 features the interface for comparing text generations based on how they satisfy a given constraint.
Annotators note that the interfaces are user-friendly.

Figure 6: LabelStudio interface for annotating the validity of instructions. Annotators begin by carefully reading
through the provided constraint and highlighting all the relevant text spans in the response supporting the constraint
specified in the instruction. They then indicate whether the highlighted text satisfies the given constraint in the
follow-up question.

F.3 Annotator agreement in the instruction validity and constraint satisfaction evaluation

F.3.1 Power Analysis
We conduct a power analysis (Card et al., 2020) on our human evaluation data to estimate the number of
text generations needed to achieve a power of 0.80 with a significance cutoff of 0.05 for our evaluation.

1. Evaluation 1 - Annotators rate text on constraint satisfaction (yes, no, partially): For this task, we
estimated the effect size using Cohen’s w and employed a Chi-square goodness of fit test to determine
the necessary number of text samples. We found that only 14.99 samples are needed to achieve a

1746

https://www.upwork.com
https://www.upwork.com


Figure 7: LabelStudio interface for comparing generated text. Annotators begin by carefully reading through the
provided constraint. They then highlight all the relevant text spans in the response that support the constraint
specified in the instruction. After that, annotators answer questions on the informativeness, enjoyability, and
coherence of the provided texts. We shuffle the generations in each task to prevent bias.
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power of 0.80. In addition, with our current sample size of 30, we achieve a power of 0.9820, which
exceeds the acceptable threshold of 0.80.

2. Evaluation 2 - Annotators indicate preference between text from model 1 and model 2: For this task,
we estimated the effect size using Cohen’s h and used a z-test to calculate the required number of text
samples. We determined that 23.17 samples are needed to reach a power of 0.80. With our sample
size of 30, we achieve a power of 0.8902, which is above the acceptable threshold of 0.80.

While we evaluate 30 text samples for the first task, each text sample is evaluated with respect to
approximately 10 constraints from the instructions, as we aim to account for constraints towards the end
that are often missed by the models. Therefore, each annotator must evaluate a total of 321 (constraint,
text) samples. This process is costly, with each annotator compensated $200 and taking ≈ 15 hours to
complete the task.

F.3.2 Annotators’ Agreement
We note that Krippendorff’s Alpha remains low across evaluation tasks, suggesting little to no agreement
among the annotators. We attribute this pattern to the fact that our generations are long (≈4k words on
average), making it hard for annotators to follow the narrative sometimes. Final statistics reported in the
paper is averaged between the annotators.

Table 15 further shows disagreement types for the instruction validity and constraint satisfaction
evaluation.
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G Generations from Mistral-Instruct, Suri-SFT, and Suri-ORPO

We show generations from Mistral-Instruct, Suri-SFT, and Suri-ORPO in Table 17.

H Comparable training setup for Suri-SFT and Suri-I-ORPO

Here, we report the results for Suri-SFT-single, where we fine-tune Mistral-Instruct-7B-v0.2 using the
same instruction setup as I-ORPO (including only one constraint in the instruction). Table 18 demonstrates
that Suri-SFT-single underperforms Suri-I-ORPO in all aspects. While Suri-SFT-single does generate
longer text compared to the baseline models, it exhibits more repetitions and lower ranking accuracy than
both Suri-I-ORPO and Suri-SFT. Our qualitative analysis of 30 text samples generated by Suri-SFT-
single shows that the generations contain more gibberish, satisfy fewer constraints, and are generally
harder to read. These findings reinforce our original claim that I-ORPO outperforms SFT.

I Fine-tuning on Suri does not significantly degrade performance in short-form
instruction following tasks

We measure the performance of Suri-I-ORPO and Suri-SFT on popular benchmarks using lm-evaluation-
harness (Gao et al., 2024). Our findings indicate that our fine-tuned models do not significantly degrade
the performance of the baseline instruct model (Table 19). In fact, they slightly improve performance on
most benchmarks, with the exceptions of HellaSwag, WinoGrande, and Arc-challenge.

J GPT-4o-mini’s performance on Suri

We note that although GPT-4o-mini produces less repetitive text, it can generate only an average of
1,134 tokens, which is still lower than Mixtral-8x7B-Instruct (Table 20). The higher repetition rate in
the fine-tuned models may simply be due to these models generating longer text. Upon analyzing 30
generation samples from GPT-4o-mini, we observe that while the model can satisfy the constraints, it still
suffers from formulaic generation and unnatural incorporation of those constraints.
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Prompt: Assign constraint scope (broad, specific) to each constraint

You are a helpful assistant. You are given a constraint that you need to determine if it is a specific or broad constraint.
Specific constraints focus on an element that can be found in a specific part of the text. Broad constraints focus on an
element that can be found throughout the text.

### Examples:
Constraint: Throughout the narrative, use a first-person perspective that centers on the protagonist’s perspective.
Your response: Broad

Constraint: Include cliffhangers at the end of the first chapter to encourage readers to continue reading.
Your response: Specific

Constraint: Introduce a new character in the middle of the story to add depth to the narrative.
Your response: Specific

Constraint: Include cliffhangers at the end of each chapter to encourage readers to continue reading.
Your response: Broad

### Constraints:
Constraint: { xw constraint}

### Your response:

Table 12: Prompt to assign constraint scope (broad/specific) to each constraint. The placeholder {xw constraint} is
replaced with a single constraint from each backtranslated instruction.

Configurations Values

Hardware (Training and Inference) 4xA100s
Tracking wandb

lora_r 16
lora_alpha 16
lora_dropout 0.05
beta (for ORPO only) 0.4
gradient_accumulation_steps 1
gradient_checkpointing True
learning_rate 5.0e-5
lr_scheduler_type cosine
max_length 15024
max_completion_length 15000
max_prompt_length 5000
num_train_epochs 2
optim adamw_torch
per_device_train_batch_size 1

Table 13: Training details for SFT and ORPO
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Prompt: p(preference|prompt) evaluation

You are an expert instruction rater. You will be given a text and two instructions, one of which is used to generate the text.
Read through the text carefully, then determine which of the two instructions was used to generate the text. Answer only
with "1" if the first instruction is correct, or "2" if the second instruction is correct. DO NOT give any reasoning.

### Text:
{text}

### First Instruction:
{ins1}

### Second Instruction:
{ins2}

Which instruction is correct? Answer only with "1" if the first instruction is correct, or "2" if the second instruction is
correct. DO NOT give any reasoning.

Your response:

Table 14: Prompt used in the p(preference|prompt) evaluation. The {text} placeholder is replaced with gold
responses, while the placeholders {ins1} and {ins2} are replaced with the correct and corrupted instructions,
respectively. To mitigate any potential ordering bias, the order of the correct and corrupted instructions is shuffled.
We will consider a response correct only if the model chooses the correct instruction, regardless of the ordering.

Types Krippendorff’s
alpha

Satisfied vs
Partially
Satisfied

Partially Satis-
fied vs Not Sat-
isfied

Satisfied vs
Not Satis-
fied

Instruction Validation (Section 2.3) 0.1 0.30 0.03 0.0
Constraint Satisfaction - Suri-SFT (Section 5) 0.0 0.52 0.24 0.24
Constraint Satisfaction - Suri-I-ORPO (Section 5) 0.2 0.60 0.34 0.06
I-ORPO vs SFT - Coherence (Section 5) 0.0 - - -
I-ORPO vs SFT - Informativeness (Section 5) 0.0 - - -
I-ORPO vs SFT - Enjoyability (Section 5) 0.1 - - -

Table 15: Types of disagreement among annotators in the instruction validation and constraint satisfaction tasks.
Most disagreements arise over whether the text fully or partially satisfies the constraints.
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Prompt: LLM evaluation

You will be given a text and its corresponding instruction, which contains the text’s main goal and a constraint. Determine
whether the text satisfies the constraint (not the main goal). You should return your answer (Yes/No/Partially) along with
your reasoning and a quote in the text that supports your reasoning (the quote should not contain any double quotation
marks). Your answer should contain 3 fields: "answer", "reasoning", and "quote". DO NOT output anything else other
than the response, which starts with "«" and ending with "»".

# Example 1: The text satisfies the constraint.
- Main goal: Write a first-person narrative describing a serene morning in a remote village.
- Constraint: You must not use the letter ’e’.
- Text: Dawn cracks with a yawn. On a hill, a hut sits, tranquil. Bright light climbs, casting gold on grass. In this calm
morning, air is cool, birds sing softly. I stroll down paths, sipping hot cocoa, watching day start. Such is this dawn’s charm,
lifting spirits, as world awakens.
- Your response: «"answer": "Yes", "reasoning": "The text does not contain any ’e’, which satisfies the constraint.",
"quote": "Dawn cracks with a yawn..."»

# Example 2: The text does not satisfy the constraint.
- Main goal: Compose a narrative that takes place entirely within the confines of a single, small room.
- Constraint: The story must not include any direct interaction or communication with other characters, whether through
dialogue, notes, or any form of digital communication.
- Text: Sarah sat quietly in the corner of the small, dimly lit library room, surrounded by towering bookshelves filled with
dusty volumes. Her focus was broken by a soft knock on the door. "Sarah, are you there?" her friend Emily’s voice called
out gently from the other side. Sarah, startled yet relieved to hear a familiar voice, responded, "Yes, I’m here, Emily. Just
give me a moment, I’ll open the door." They spent the next hour talking about the books Sarah had been reading and their
plans for the weekend, making the small room feel a lot less lonely.
- Your response: «"answer": "No", "reasoning": "The text includes a dialogue between Sarah and Emily, while the
constraint specifies that the story must not include any direct interaction.", "quote": "’Sarah, are you there?’ her friend
Emily’s voice called out gently from the other side. Sarah, startled yet relieved to hear a familiar voice, responded, ’Yes,
I’m here, Emily. Just give me a moment, I’ll open the door.’"»

# Example 3: The text only satisfies part of the constraint.
- Main goal: Write a short story in which the protagonist meets an animal.
- Constraint: The walk should take place in a public space in a summer day.
- Text: As John strolled through the park one crisp autumn morning, he noticed the usual red and gold leaves blanketing
the path. Today, however, a stray dog, thin and shivering, approached him. He hesitated, then offered his hand for the dog
to sniff. It flinched at first, but soon warmed up to him. As they walked together, John wondered if he should take it home
or find its owner.
- Your response: «"answer": "Partially", "reasoning": "The text mentions that the character walks in a park, which satisifies
the constraint that the setting is a public place. However, the walk takes place in an autumn morning, which violates
the constraint that the walk takes place in a summer day", "quote": "As John strolled through the park one crisp autumn
morning, he noticed the usual red and gold leaves blanketing the path..."»

# Instruction
## Main Goal
{goal}

## Constraint
{constraint}

# Text
{text}

DO NOT output anything else other than the response, which starts with "«" and ending with "»".

# Your response

Table 16: Prompt to evaluate whether a text follows a constraint or not. {goal}, {constraint}, and {text} are
placeholders that will be replaced with actual content.
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Constraint Suri-I-ORPO Suri-SFT Mistral-Instruct

Detail the on-
set of a serious,
life-altering ill-
ness, including
the initial diag-
nosis and the
impact it had
on the quality
of life and daily
activities of the
person.

Being diagnosed with MSA often means a rapid
decline, and it didn’t take long for it to rob Eliza-
beth of her steady gait and coordination. There
were numerous falls, steps hit, food dropped.
There was depression, panic, and the wrenching
witness to a vibrant, funny, independent woman
being stripped of her abilities. Slowly, as she
grew more debilitated, we made adjustments. She
stopped driving, which was an excruciating blow
to her. She then lost her ability to use her laptop.
She struggled to get into the shower, and then
used a shower chair. She used a wheelchair, and
then an electric scooter. She became a master of
calling an ambulance before her body decided to
keep her upright.

She was diagnosed with advanced pulmonary
hypertension in July of 2013, immediately after
heart failure, which was the result of an array of
intestinal diseases and surgeries that dated back to
2001...For several years, she was able to continue
attending to her business and loved entertaining
friends and partying at home. However, as her
illness advanced, it became impossible for her to
live the life that she loved. She was no longer
able to play her beloved music, do needle point,
bake, cook or garden. She struggled to even go
for walks, even though she had many appoint-
ments at local hospitals and clinics. She became
primarily housebound, with only short trips to the
grocery store or to see a pet warden. She was re-
duced to having nearly 24hrs a day of assistance,
administration of a nebulizer, and hospice nurses
intervening if her symptoms increased.

But the seasons turned, and so did
Amelia’s fate. One fateful autumn
day, she received the news that
would forever change her life: a
diagnosis of a degenerative neuro-
logical condition. The prognosis
was grim, a cruel reminder that
even the strongest among us are
mortal. Her once nimble hands
could no longer hold a pen to
write her poetry, her once steady
legs could no longer carry her
to tend to her garden. Her light
began to dim, and the darkness
of her illness cast a long, tragic
shadow over her life.

Begin the narra-
tive with a de-
tailed descrip-
tion of the set-
ting, emphasiz-
ing the time of
day, the condi-
tion of the sea,
and the imme-
diate surround-
ings to estab-
lish a strong
sense of place.

The ship cut through the waves as evening fell.
The sky was painted the colors of a summer sun-
set, deepening to pink, orange, purple, and green
in the west as the sun sank toward the horizon.
The air was warm, redolent with salt, and the
ship rocked with the weight of the cargos that it
carried in its hold. Ahead, the Pale Horse sped
through the waves, its white sails snapping in
the wind that billowed from the west. A flock of
seabirds wheeling above the ship took no notice
of its passage. Nearby, two smaller vessels fol-
lowed, one with a low, curving bow that gave it
an almost feminine grace in the breeze, the other
a large merchant ship, weighed down with grain
and other trade items. To the south east, the Pale
Horse’s sister ship, the Red Lion, was already out
of sight.

The sun was going down, a pink glow still cov-
ering the horizon, but its fading light made the
water look almost pitch black. A light surf broke
against the stones of the harbor’s seawall. High
on the shore, where the promontory formed a
horseshoe shape, there was a small port, and be-
yond that the main wall of the city, the tower of
the Castello Giustinian, and the cathedral could
be seen against the blackening sky. Here, off-
shore, there were only the dark blue waters of the
Adriatic. There was no color, no life, and the sea
stretched away for miles.

The evening sun began its descent
towards the western horizon, cast-
ing long shadows on the undulat-
ing waters of the River Tiber. The
air, thick with the fragrant bou-
quet of jasmine and rose from the
gardens of Palazzo Borgia, was
tinged with a hint of chill as au-
tumn’s tender tendrils crept closer
to the heart of the Italian Penin-
sula.

Table 17: Example generations from Suri-I-ORPO, Suri-SFT, Mistral-Instruct. All three generations make a
decent attempt at following the given constraint.

Metric Suri-SFT-Single Suri-I-ORPO

Average number of tokens in test set generation 4007 5102
Number of test set generations with 5-gram repetitions 32% 24%
Number of test set generations with 10-gram repetitions 4% 3%
Ranking accuracy [(M,M), (M,M/2), (M, 1), (M/2,M/2), (1, 1)] [99, 94, 65, 96, 76] [100, 100, 98, 100, 98]

Table 18: Comparison of Suri-SFT-Single and Suri-I-ORPO performance metrics

Model MMLU HellaSwag WinoGrande PIQA Arc-e Arc-c GSM8K GPQA

I-ORPO 62.81% 80.31% 72.69% 80.63% 81.99% 53.67% 42.23% 31.25%
SFT 57.79% 80.21% 71.82% 81.18% 82.03% 53.07% 41.09% 30.25%
Mistral-7b-instruct-v2 (baseline) 58.73% 83.67% 73.48% 80.25% 81.36% 54.44% 42.08% 26.34%

Table 19: Comparison of model performance across various tasks

Model GPT-4o-mini Suri-I-ORPO

Average number of tokens in test set generation 1134 5102
Number of test set generations with 5-gram repetitions 6% 24%
Number of test set generations with 10-gram repetitions 1% 3%

Table 20: Comparison between GPT-4o-mini and Suri-I-ORPO on test set generations.
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