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Abstract

We introduce a structured chain-of-thought
(SCoT) prompting approach to generating
content-grounded multi-turn question-answer
conversations with a pre-trained large language
model (LLM). At the core of our proposal is
a structured breakdown of the complex task
into a number of states in a state machine, so
that actions corresponding to various subtasks,
e.g., content reading and utterance generation,
can be executed in their own dedicated states.
Each state leverages a unique set of resources,
including prompts and (optionally) additional
tools, to augment the generation process. Au-
tomatic evaluation shows that SCoT prompting
with designated states for hallucination mitiga-
tion can increase agent faithfulness to ground-
ing documents by up to 16.8%. When used as
training data, our open-domain conversations
synthesized from only 6 Wikipedia-based seed
demonstrations train strong conversational QA
agents. In out-of-domain evaluation, for exam-
ple, we observe improvements of up to 13.9%
in F1-score against ground truth over target do-
main gold data when the latter is augmented
with our generated examples.

1 Introduction

Despite enormous advances in large language
model (LLM) capabilities in recent years, their no-
torious propensity to hallucinate, i.e., generate text
that are factually inconsistent with existing knowl-
edge, remains an open issue (Xu et al., 2023b; Bang
et al., 2023; Huang et al., 2023; Xu et al., 2024).
Of particular interest to us in this paper are what
OpenAI (2023) characterize as closed-domain hal-
lucinations, whereby models fail to generate text
that can be supported by a given document even
when they are explicitly instructed to do so (Xu
et al., 2023b; Qiu et al., 2023; Maynez et al., 2020).
Despite being powerful generators, LLMs can thus
be unreliable readers, especially in the absence of
extensive instruction tuning.

Document:
Title: Harry Potter
Text: Harry Potter is a series of seven fantasy novels written by 
British author J. K. Rowling. The novels chronicle the lives of a 
young wizard, Harry Potter, and his friends Hermione Granger 
and Ron Weasley, all of whom are students at Hogwarts 
School of Witchcraft and Wizardry. The main story arc 
concerns Harry's conflict with Lord Voldemort, a dark wizard 
who intends to become immortal, overthrow the wizard 
governing body known as the Ministry of Magic and subjugate 
all wizards and Muggles (non-magical people). Continued...

Conversation:

User: Tell me about Harry Potter.
Agent: Harry Potter is a series of seven fantasy novels written 
by British author J. K. Rowling. It tells the story of Harry Potter 
and his friends, who are all young wizards.

User: What happens in the story?
Agent: The main story arc concerns Harry's conflict with Lord 
Voldemort. Voldemort is a dark wizard who intends to become 
immortal and subjugate all wizards and Muggles (non-magical 
people).

User: Does Harry have any siblings?
Agent: Sorry, I can't find an answer in the document.

User: Tell me more about his friends.
Agent: Hermione Granger and Ron Weasley are Harry's friends. 
They are all students at Hogwarts School of Witchcraft and 
Wizardry.

User: Are there any movies based on the series?
Agent: Sorry, I can't find an answer in the document.

Figure 1: A multi-turn QA conversation grounded in a
document. If the document does not have an answer to
a user query, the agent acknowledges so in its response.

Here we focus on closed-domain hallucination
in pre-trained LLMs in the specific context of con-
versational question answering (QA) (Choi et al.,
2018; Reddy et al., 2019; Adlakha et al., 2022), and
its mitigation through inference-time augmentation.
Concretely, given a document, we want to generate
a multi-turn QA conversation between a user and an
agent, in which the agent’s responses to the user’s
queries must be grounded in the document. The
requirements also crucially include for the agent to
be able to determine if the given document has an
answer to a query, and refrain from giving a memo-
rized or made-up answer if not. Figure 1 shows an
example. Compared to a single-turn setting (Sadat
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et al., 2023), multi-turn QA provides a more useful
backdrop for studying LLM hallucinations, as an in-
creased number of diverse user queries on a shared
topic is likely to induce agent hallucinations more
often than a single QA turn.

We propose novel algorithms for this task (§3)
that adhere to the general notion of language model
(LM) augmentation (Yao et al., 2023; Xu et al.,
2023a; Schick et al., 2023), whereby a set of ac-
tions – each leveraging its own dedicated tools and
resources – are executed in an interleaved man-
ner to solve a complex problem. For example,
besides generating utterances, we execute inter-
mediate tasks that aim to answer questions such
as: “Is this user query answerable from the given
document?” or “Where in the document is the an-
swer?” All subtasks are performed using few-shot
in-context learning (ICL) (Brown et al., 2020), for
which we utilize task-specific instructions, exem-
plars and (optionally) supporting models.

Our proposed actions and their execution se-
quences can be collectively represented as a state
machine (§2), whose state transitions define our
different algorithms (§3). We refer to this approach
as structured chain-of-thought (SCoT) prompt-
ing, which, like ordinary chain-of-thought (CoT)
prompting (Wei et al., 2022), computes a final out-
put through a set of careful reasoning steps, but
unlike CoT, distributes those steps across desig-
nated states of a state machine. One key advantage
of the approach stems from the simplicity of its in-
dividual actions, which enables us to successfully
prompt relatively small and open-source LLMs to
generate high-quality conversations.

Leveraging open-source models such as FAL-
CON-40B (Almazrouei et al., 2023) and FLAN-UL2-
20B (Tay et al., 2023) and a small set of Wikipedia-
based exemplars that we create by hand (§3) – the
example of Figure 1 is one of them – we gener-
ate open-domain QA conversations from Wikipedia
passages using our algorithms, and evaluate them
both intrinsically and extrinsically (§4). In intrinsic
evaluation, we directly examine the quality of the
generated conversations, including their faithful-
ness to the grounding document and their overall
accuracy relative to pseudo-references provided by
a high-performance instruction-tuned MIXTRAL-
8X7B-INSTRUCT-V0.1 (Jiang et al., 2024). Auto-
matic evaluation using lexical and semantic overlap
metrics shows that our proposed mechanisms for
mitigating agent hallucination do indeed reduce
it by up to 16.8%, improving overall accuracy of

agent utterances by as much as 7.7%.
In extrinsic evaluation, we train agents with our

generated data to answer questions in multi-turn
QA conversations, and evaluate them against gold
labels using automatic lexical overlap metrics. We
report experiments with few-shot ICL and super-
vised fine-tuning (SFT) of agents on two conver-
sational QA datasets: DoQA (Campos et al., 2020)
and QuAC (Choi et al., 2018). In ICL evaluation,
our synthetic data – generated from only 6 seed
demonstrations and with a relatively small LLM –
outperforms human-labeled data, including target
domain gold data. We also observe strong perfor-
mance in SFT evaluation, which includes training
conversational QA agents only with synthetic data
as well as augmenting existing target domain gold
data with it. For example, augmenting with our
open-domain synthetic data improves agent perfor-
mance over using only target domain gold data by
an absolute 10–14%.

In summary, the following are our main contri-
butions: (i) We present novel structured chain-of-
thought prompting methods with LM augmentation
for generating document-grounded QA conversa-
tions using pre-trained LLMs; (ii) In automatic in-
trinsic evaluation, our proposed augmentations for
hallucination mitigation help the LLM agent remain
considerably more faithful to the given document;
(iii) In automatic extrinsic evaluation on grounded
conversational QA datasets, our generated conver-
sations demonstrate strong standalone performance
as well as the ability to effectively augment target
domain gold data.

2 Preliminaries

We introduce our state machine for SCoT prompt-
ing in this section, and discuss the alignment of its
states to different stages of generating a document-
grounded multi-turn QA conversation. Further im-
plementation details are provided in §3.

Let D be the set of all documents and CN the
set of QA conversations ⟨qi, ri⟩Ni=1 of length N ,
where each qi is a user utterance (a query) and
ri is a corresponding agent utterance (a response).
Our task is to map an input document d ∈ D to a
conversation cN = ⟨q1, r1, ..., qN , rN ⟩ ∈ CN such
that cN is grounded in d: cN ∼ pCN |D(· | d).

Our proposed algorithms prompt specific sets of
state transitions in the state machine of Figure 2 to
generate a single utterance pair (qi, ri); a full con-
versation cN is generated by repeating the process
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Figure 2: State machine for generating a single user-agent utterance pair within a multi-turn conversation (§2).
An action (incoming arrow label) is executed in every state by few-shot prompting an LLM (§3), and an output is
generated (dotted arrows). One of multiple possible transitions then takes place (solid arrows), depending on the
algorithm being run. A grounding document and a conversation history (not in the diagram) are present in all steps.

N times. There are four states in the state machine,
each corresponding to an individual action:
• User utterance generation (uu): The next user

utterance qi in an ongoing conversation cN is
generated: qi ∼ puu(· | ⟨qj , rj⟩i−1

j=1, d).
• Question answerability classification (ac):

The current user query qi is classified as an-
swerable or unanswerable from d: ai ∼ Pac(· |
qi, ⟨qj , rj⟩i−1

j=1, d). This state captures the notion
that the assessment of the answerability of a user
query can be kept separate from generating a re-
sponse for it, which provides modularization and
added flexibility. For example, a different set
of resources can now be leveraged for question
answerability classification, such as a classifier
trained on existing QA data.

• Answer sentence selection (ss): Information
pertaining to a single user query qi is often con-
tained within a subset of all sentences in d. Be-
fore generating an agent response, it may be
advantageous to identify those sentences so that
response generation can focus more or solely on
them (Sun et al., 2023a; Adolphs et al., 2022).
In state ss, the current query qi is mapped to
relevant sentences in d: s1, ..., sM ∼ Pss(· |
qi, ⟨qj , rj⟩i−1

j=1, d).
• Agent utterance generation (au): A response

to the current query qi is generated: ri ∼ pau(· |
qi, ⟨qj , rj⟩i−1

j=1, d
∗). State au can be reached

from any of the other three states; the follow-
ing are to be noted: (i) If au is reached via
a uu→au transition, then the input document
d∗ = d; (ii) If au is reached via an ss→au tran-
sition, then d∗ may contain only the sentences
of d deemed relevant to qi in ss, or alternatively

special symbols marking those sentences; and
finally, (iii) If au is reached via an ac→au tran-
sition, then this step is deterministic whenever qi
is deemed unanswerable in ac, in which case ri
takes the form of a pre-defined no answer text.
Our methods can each be completely specified

using (i) the state transitions it executes in the state
machine, and (ii) the resources, e.g., models and
associated prompts, that it utilizes in its different
states, as we detail in §3.

3 Methods

We implement five algorithms that execute three
unique sequences of state transitions. What follows
is a description of the sequences along with how
the different algorithms implement them.
• uu→au: One of our algorithms executes this

transition to simply generate a user utterance
first and then a corresponding agent utterance,
both using a pre-trained LLM. The LLM is
prompted with state-specific prefixes and man-
ually created exemplars. Figure 3 shows an ex-
ample 1-shot prompt for state au on the left;
we use 2 exemplars in both states in practice.
This prompt poses the task simply as one of text
completion, which is what a pre-trained LLM is
trained for. The prompt for uu works similarly,
as shown in Figure 4 of Appendix A.

• uu→ac→au: We implement two algorithms
that execute this sequence. Both generate an ac-
tual agent response in state au only if the user’s
question is deemed answerable in state ac, oth-
erwise the response is a fixed pre-defined string
that indicates no answer. Both algorithms use a
pre-trained LLM in states uu and au. However,
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You are given a document with its title and 
individual sentences. Each sentence is marked 
with a sentence identifier (starting with S1). 
You are also given an ongoing conversation 
between a User and an Agent. Find the sentences 
in the document using their identifiers, if any, 
that can help answer the last user query in the 
conversation.
Document:
Title: Harry Potter
S1: Harry Potter is a series of …
S2: The novels chronicle the life of …
S3: The main story arc concerns …
…
EoD
Conversation:
User says: Tell me about Harry Potter
Agent says: Harry Potter is a …
User says: What happens in the story?
Are there sentence(s) in the above document that 
can help answer this last User query? Yes: S3

Document: 
Title: …
S1: …
…
EoD
Conversation:
User says: …
Agent says: …
…
User says: …
Are there sentence(s) in the above document that 
can help answer this last User query?

Here is a document broken down into its title and text:
Title: Harry Potter
Text: Harry Potter is a series of …
EoD
What follows is a conversation between a User and an 
Agent. The User asks a number of different questions 
about the topic of the document. The Agent answers those 
based solely on the content of the document. If the 
document does not contain information that can answer the 
User’s query, then the Agent says “Sorry, I can’t find an 
answer in the document.” Here is the conversation:
User says: Tell me about Harry Potter. EoU
Agent says: Harry Potter is a … EoA
…
User says: Are there any movies based on the series? EoU
Agent says: Sorry, I can’t find an answer in the 
document. EoA

Here is a document broken down into its title and text:
Title: …
Text: …
EoD
What follows is a conversation between a User and an 
Agent. The User asks a number of different questions 
about the topic of the document. The Agent answers those 
based solely on the content of the document. If the 
document does not contain information that can answer the 
User’s query, then the Agent says “Sorry, I can’t find an 
answer in the document.” Here is the conversation:
User says: … EoU
Agent says: … EoA
…
User says: … EoU
Agent says: 

Figure 3: Prompts for states au and ss. Left: Agent utterance generation (au) with a pre-trained LLM. Right:
Answer sentence selection (ss) with an instruction-following LLM. This diagram only shows 1-shot prompts for
brevity; we use more demonstrations in practice (see Appendix A).

the two differ in their implementation of ac, for
which one utilizes the same LLM and the other
leverages a separate classifier fine-tuned on pre-
existing QA data. Separate prompts containing
both answerable and unanswerable exemplars
are used for the two types of models, which we
show in Figures 5 and 6 of Appendix A.

• uu→ac→ss→au: Finally, two of our algo-
rithms execute all four steps of the state machine.
Upon classifying a question as answerable in
state ac, relevant sentences are selected from
the grounding document in state ss, which is
provided as input to the step of au. One of
the algorithms utilizes the same pre-trained LLM

in all four states; the other uses an instruction-
tuned model in states ac and ss as these two
states correspond to actions that are more akin
to classification tasks. Figure 3 shows a prompt
for ss that instructs a FLAN-UL2-20B model to
select sentences using their identifiers.

The above methodology enables us to study the
reading and generation aspects of our task sepa-
rately and in a controlled manner, and better un-
derstand where pre-trained LLMs need the most
assistance. For example, we can explore the fol-
lowing questions directly: (a) Is it useful to break
down the task into reading (ac, ss) and generation

(uu, au) stages where SCoT prompting can be uti-
lized? and (b) In the reading and reasoning states
of ac and ss, can a pre-trained LLM perform the
corresponding tasks by itself, or is a different set
of tools needed?

4 Experiments

We write 6 simple Wikipedia-based QA conversa-
tions with a total of 32 user turns and an equal
number of agent turns; 20 of the user queries are
answerable and 12 are unanswerable from their
respective passages. The example of Figure 1 is
representative of the distribution; other titles in-
clude “Table Tennis” and “Evolution”. We then
prompt LLMs with these as exemplars to synthesize
new data from additional Wikipedia passages.

In this section, we first analyze and evaluate
our generated datasets intrinsically. To assess their
practical utility, we then train conversational QA

agents with each and evaluate those agents on dif-
ferent test sets. As stated before, each generation
algorithm is uniquely specified by its three compo-
nents: (a) the generator: we use FALCON-40B to
generate all user and agent utterances; (b) the state
transition sequence: the sequence of state transi-
tions taken by the algorithm in the state machine;
and (c) the assistant: some algorithms addition-
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State
Transitions Assistant %

Has Answer
%

Extracted
Faithfulness Cls-Acc-MIXTRAL-I F1-MIXTRAL-I

Lexical WeCheck A UA HM A UA HM
uu→au N/A 74.9 19.0 83.3 71.8 87.8 44.0 58.6 46.3 44.0 45.1

uu→ac→au
None 69.6 17.3 83.8 72.8 82.4 49.4 61.8 43.0 49.4 46.0

FLAN-UL2-20B 47.6 20.9 93.6 86.5 68.7 85.9 76.3 37.8 85.9 52.7

uu→ac→ss→au
None 58.4 58.5 90.5 80.6 67.1 55.5 60.7 30.7 55.5 39.5

FLAN-UL2-20B 51.9 50.8 96.5 88.6 74.2 85.6 79.5 38.2 85.6 52.8

Table 1: Key statistics and LLM-as-reference evaluation results for data synthesized by a few-shot prompted
FALCON-40B model, optionally assisted by a few-shot prompted FLAN-UL2-20B model in states ac and ss (if
applicable). Accuracy of classification into answerable/unanswerable classes (Cls-Acc) and F1-scores are computed
against pseudo-references provided by a prompted MIXTRAL-8X7B-INSTRUCT-V0.1 model. A/UA: the class of
answerable/unanswerable questions; HM: the harmonic mean of the two previous columns.

ally use a FLAN-UL2-20B model in states ac and
ss (if applicable) to augment generation. We use
nucleus sampling (p=.9) (Holtzman et al., 2020)
for user utterance generation and greedy decoding
in all other steps. Details of model prompting at
different stages of generation are provided in Ap-
pendix A.

All evaluations reported in this section are au-
tomatic, where we compare generated texts algo-
rithmically with references such as human-written
utterances or grounding documents. While hu-
man assessment of the generated texts is almost
always more accurate at the level of individual
texts, we opt for large-scale and extensive (both in-
trinsic and extrinsic) automatic evaluation instead,
as long multi-turn conversations are expensive to
annotate at scale for the results to be statistically
reliable. Moreover, the grounded nature of our task
inherently limits the extent to which an accurate
response can differ from its ground truth.

4.1 Intrinsic Evaluation and Analysis

We sample 1, 000 Wikipedia passages and generate
a conversation from every passage using each of
our five algorithms; every conversation consists of
5 user and 5 agent utterances. Table 1 shows the re-
sults of our intrinsic analysis of this data. The first
two columns provide two basic statistics: the %
of user queries that are responded with an answer
(as opposed to no answer) and the % of answers
that are completely extracted from the given pas-
sage, i.e., without any abstraction. We observe that:
(a) algorithms that transit through states ac and ss,
i.e., those that explicitly reason about query answer-
ability and answer sentences, deem more questions
as unanswerable, with the FLAN-UL2-20B assistant
predicting thus more often than FALCON-40B, and
(b) algorithms that search for relevant sentences
(ss) often copy document sentences verbatim in
the answer, exhibiting the least abstraction.

Next we evaluate the faithfulness of the gen-

erated agent answers to the grounding document
using two metrics: (a) the lexical precision of the
answer with respect to the document after stop-
word removal and stemming, and (b) the WeCheck
(Wu et al., 20223) factual consistency score of the
same. Note that this evaluation only concerns ac-
tual answers and not the no answer responses, as
we aim to exclusively measure hallucination with it.
The results of Table 1 clearly indicate that both an-
swerability classification (ac) and answer sentence
selection (ss) improve agent faithfulness through
SCoT prompting, and use of the FLAN-UL2-20B as-
sistant leads to more faithful generation than using
FALCON-40B in these steps. Overall, we observe
an improvement of up to 16.8% over the simplest
algorithm defined by the uu→au transition.

Finally, we take an LLM-as-a-reference approach
to assessing the overall quality of our gener-
ated data as follows: We first prompt a high-
performance MIXTRAL-8X7B-INSTRUCT-V0.1
model (MIXTRAL-I from here on) to generate agent
utterances for all user queries in our synthetic data.
MIXTRAL-I is given the queries along with their
conversation histories, as generated by the original
algorithm. We then evaluate the original agent ut-
terances against the ones generated by MIXTRAL-I.
We observed this evaluation strategy to be gener-
ally more reliable than asking MIXTRAL-I to judge
generated utterances. In essence, we measure the
extent to which our different processes behave like
a high-performance instruction-tuned LLM.

Importantly, the presence of both answerable
and unanswerable questions in our task calls for
an evaluation protocol that incorporates the two
individual classes and also assesses holistically on
both. We measure lexical unigram precision and
recall (after stopword removal and stemming) in
the answerable class (as deemed by MIXTRAL-I)
and compute a final F1-score; for the unanswerable
class, a second F1-score is computed where pre-
cision and recall are both 1 if the agent response
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Generator State
Transitions Assistant F1-HM F1

(A)
F1

(UA)
None (0-shot) N/A N/A 26.1±4.5% 54.0 17.2

HUMAN N/A N/A 46.6±5.5% 67.3 35.7

FALCON-40B

uu→au N/A 38.4±4.6% 67.9 26.8

uu→ac→au
None 41.0±2.9% 67.5 29.5

FLAN-UL2-20B 54.6∗±2.5% 64.5 47.4

uu→ac→ss→au
None 45.1±2.0% 64.9 34.6

FLAN-UL2-20B 52.4∗±3.6% 63.7 44.6

Table 2: In-domain performance of LLAMA-2-13B-CHAT as the QA Agent on our seed demonstrations when
prompted with various datasets. Asterisks (*) indicate improvement over human-annotated data.

indicates that the question is unanswerable, oth-
erwise both are 0. We use the harmonic mean of
the two F1-scores as our final evaluation metric to
reward class-balanced performance.

The last three columns of Table 1 show the per-
formances of all five algorithms. The three and
four-step SCoT-prompted algorithms augmented
with a FLAN-UL2-20B assistant have the best com-
bined scores. On a closer look, the improvements
from these approaches can be attributed to a big
jump in performance in the unanswerable class,
trading off much less accuracy in the answerable
class. We also look at the related metric of answer-
ability classification accuracy (Cls-Acc in Table 1)
and observe a clear correlation with F1-score: algo-
rithms with better overall performances are those
that are better and more balanced at question an-
swerability classification. These results crucially
suggest that the primary source of hallucination in
FALCON-40B in our data is misclassification, as it
often produces answers to unanswerable questions.

4.2 Extrinsic Evaluation

4.2.1 Setup
Our extrinsic evaluation involves training QA

agents with our generated data to produce re-
sponses to user queries in an ongoing conversation,
and evaluating the agents on unseen test sets. We
use two conversational QA datasets in our exper-
iments: DoQA (Campos et al., 2020) and QuAC

(Choi et al., 2018). DoQA (v2.1) has a training set
of 1, 037 conversations containing 4, 612 dialogue
turns; the test set has 1, 200 dialogues, with more
than 4 turns on average per dialogue in three dif-
ferent domains: Cooking, Travel and Movies. For
Wikipedia-based QuAC, we use the official dev set
of 1, 000 conversations as our test set, and split
the official train set of 11, 567 conversations into
10, 567 for training and 1, 000 for validation. QuAC

has 7.2 turns per dialogue on average. We refer to
the original papers for more detailed statistics.

We evaluate all generated data using both few-
shot prompting and supervised fine-tuning of QA

agents, as described in the next two sections. Our
evaluation metric is the F1-score of §4.1.

4.2.2 Few-Shot Prompting

In few-shot evaluation, a trainee QA agent re-
ceives inference-time supervision in the form of
in-context learning (ICL) demonstrations, which
are sampled from our generated data. The agent is
then asked to produce a response to a user query in
an ongoing gold conversation based on a ground-
ing document, similarly to state au of our state
machine (§2). Given the limited amount of super-
vision that can be provided through ICL, we use an
existing open-domain chat model LLAMA-2-13B-
CHAT (Touvron et al., 2023) (LLAMA2-C hence-
forth) in our few-shot evaluation experiments.

Our first ICL evaluation re-uses the 6 seed
demonstrations for an in-domain roundtrip assess-
ment as follows: Given a 1000-dialogue synthetic
dataset from §4.1 as the population of demonstra-
tions, we run c evaluation cycles, each consisting
of r rounds of evaluation. In each round, we uni-
formly sample (a) 2 document-conversation pairs
from our synthetic dataset, and (b) one of the 32
user queries from the seed demonstrations along
with its grounding document and conversation his-
tory. We then prompt LLAMA2-C with the syn-
thetic demonstrations to generate an agent response
for the seed query, and evaluate against the gold
response. An evaluation cycle is complete when
all r rounds in it have ended and the results have
been averaged. Our final results consist of an av-
erage F1-score over the c cycles. Table 2 shows
evaluation results for c = 3 and r = 1000. Stan-
dard deviations are reported as a % of the mean
for comparability across methods. We first observe
that all 2-shot results are better than the 0-shot re-
sults, indicating that LLAMA2-C can benefit from
runtime demonstrations. Second, our methods that
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Generator State
Transitions Assistant F1-HM F1

(A)
F1

(UA)
None (0-shot) N/A N/A 30.5±0.0% 28.7 32.6

HUMAN (Wikipedia) N/A N/A 46.0±0.6% 38.3 57.7
HUMAN (DoQA) N/A N/A 46.2±0.9% 49.6 43.2

FALCON-40B (Wikipedia) uu→ac→ss→au FLAN-UL2-20B 50.4∗±0.9% 40.4 66.8

(a) DoQA (Cooking) Results

None (0-shot) N/A N/A 39.2±0.0% 44.4 35.1
HUMAN (Wikipedia) N/A N/A 53.6±2.2% 51.9 55.4

HUMAN (QuAC) N/A N/A 50.1±0.7% 56.5 45.1
FALCON-40B (Wikipedia) uu→ac→ss→au FLAN-UL2-20B 56.5∗±2.7% 52.4 61.3

(b) QuAC Results

Table 3: Performance of LLAMA-2-13B-CHAT as a QA Agent on two external benchmarks when few-shot prompted
with various datasets. Data generated by our 4-step algorithm outperforms human-written demonstrations.

execute SCoT prompting with dedicated actions
for question answerability classification and an-
swer sentence selection, especially with a FLAN-
UL2-20B assistant, perform the best. As in §4.1,
they achieve a better balance between answerable
and unanswerable class performance. The human
demonstrations are sampled from our seed data so
that the test query is from a different conversation.
Interestingly, two of our methods outperform hu-
man demonstrations, likely due to the (much larger)
synthetic datasets containing more topically similar
passages with test instances.

Next we evaluate on the DoQA (Cooking) and
QuAC test sets. The setup is similar as before, with
one difference: instead of randomly sampling an
instance from the test set in each round, we evalu-
ate on all test instances to complete a cycle.1 We
report results from only the best-performing syn-
thetic datasets in Table 3. The four-step algorithm
with a FLAN-UL2-20B assistant produces the best
synthetic data for ICL on both test sets, again out-
performing our seed demonstrations. Interestingly,
the synthetic data improves performance on the
unanswerable class even over target domain human-
labeled data, resulting in less hallucination and bet-
ter overall results.

In summary, we observe in both in-domain
and out-of-domain evaluation that SCoT prompting
methods that leverage a FLAN-UL2-20B assistant
to reduce hallucination perform the best for ICL.

4.2.3 Supervised Fine-Tuning (SFT)
To further examine the utility of our generated data,
next we fine-tune a pre-trained LLM (FALCON-7B)
on each dataset with QLoRA (Dettmers et al., 2023),

1For QuAC training, we are able to use only one conversa-
tion – often longer than the other datasets – as demonstration
before the input length reaches the limit for FALCON-40B.

and evaluate on the test sets of DoQA and QuAC.
Given the relatively high cost of SFT experiments
involving our suite of five algorithms, we adopt the
following two-stage process for evaluation: 1. Com-
pare all five algorithms by (1a) training a FALCON-
7B model on relatively small amounts of data from
each and (1b) evaluating on validation sets; and
2. Assess the utility of the two best algorithms
identified in step 1 more closely by (2a) generating
more data with each to fine-tune a new FALCON-7B

model and (2b) evaluating on test sets.

In our implementation of step 1 (details in Ap-
pendix B), the five 1000-conversation datasets of
§4.1 are re-used as training data. The evaluation
identifies the simplest uu→au algorithm and the
most advanced uu→ac→ss→au with a FLAN-
UL2-20B assistant as the two best algorithms on the
two validation sets (see Table 5 of Appendix B). In-
terestingly, despite generating the least faithful con-
versations among our different algorithms (§4.1),
and unlike in few-shot prompting (§4.2.2), the two-
step algorithm performs strongly in SFT, indicating
that SFT can be more robust to noisy training data
than ICL as long as there is useful signal in it.

For step 2, we generate 10, 000 conversations
with each of the above two algorithms. Table 4
presents a detailed comparison of performances
on all four DoQA and QuAC test sets. First of
all, our synthetic datasets demonstrate strong stan-
dalone performance (S1 and S2) on most test sets
when compared to target domain training data. We
also show cross-domain performances of DoQA

and QuAC on each other for comparison, where
we observe their training sets to lag well behind
our synthetic data, which was also not generated
specifically for any of the two domains.

A closer look at the answerable (A) and unan-
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Training Set
Evaluation Sets

DoQA Cooking DoQA Movies DoQA Travel QuAC
A UA HM A UA HM A UA HM A UA HM

D: DoQA GOLD 26.4 60.1 36.6 20.8 71.1 32.2 25.1 63.3 35.9 22.1 73.1 34.0
Q: QuAC GOLD 10.2 90.6 18.3 7.1 95.5 13.2 8.1 97.2 15.0 35.0 85.6 49.7
S1: uu→au 22.8 65.2 33.8 19.0 59.4 28.8 19.0 67.0 29.6 38.6 43.1 40.7
S2: uu→ac→ss→au 19.2 85.8 31.3 14.2 90.4 24.5 18.1 87.5 29.9 28.4 82.8 42.3
S3: 50% S1 ∪ 50% S2 22.5 71.9 34.3 18.4 77.1 29.7 18.9 78.0 30.5 37.2 49.3 42.4
D augmented w/ S3 40.7 66.3 50.4 34.2 66.4 45.1 39.9 66.2 49.8 –
Q augmented w/ S3 – – – 49.8 75.0 59.8

Table 4: F1-scores of FALCON-7B models fine-tuned (with QLoRA) on various training datasets (§4.2.3).

swerable (UA) class performances reveals the same
disparity between S1 and S2 as before (e.g., in Ta-
ble 1): S1 performs better on answerable queries
and S2 on unanswerable ones. We therefore also
consider a 50:50 mixture of the two as a third train-
ing set (10, 000 conversations), termed S3 in the
table, to find out how well they complement each
other. The results confirm the strength of their com-
bination, as the mixture outperforms the individual
datasets on all test sets.

Our final SFT evaluation measures the ability of
our synthetic data to augment in-domain gold data,
for which we fine-tune the model trained on S3 –
the best synthetic dataset – further on target do-
main training examples separately for DoQA and
QuAC. As indicated by the results in Table 4 (last
2 rows), this augmentation provides a strong boost
to results in both domains over training only on
gold data, with improvements ranging from 10.1%
to 13.9%. These remarkable results showcase the
out-of-domain utility of our synthetic data derived
from only 6 simple Wikipedia-based demonstra-
tions. We discuss other methods of augmentation
that we experimented with in Appendix B.

5 Related Work

Chain-of-thought (CoT) prompting (Wei et al.,
2022) showed that LLMs can be few-shot prompted
(Brown et al., 2020) to produce intermediate rea-
soning steps, or “thoughts”, which can improve
their performance. Prompts were created manu-
ally and were application-specific (see (Wei et al.,
2022, Appendix G)). Chain-of-verification (CoVe)
(Dhuliawala et al., 2023) adopted a structured ap-
proach to CoT for answer verification and error
correction, splitting the thought process into ver-
ification planning and execution steps that utilize
their own prompts, finally producing a rewritten
response with reduced hallucination. Also related
is the recitation-augmented CoT approach of Sun
et al. (2023b), which recites related knowledge

stored in the LLM’s parameters before answering
a question. Other structured CoT prompting work
include ReAct (Yao et al., 2023) and ReWoo (Xu
et al., 2023a), which leverage LLM-powered agents
to solve complex tasks through interleaved steps,
with use of external tools such as search engines.

The proposed approach draws inspiration from
the above studies, but aims to solve the complex
task of multi-turn content-grounded conversation
generation, focusing on the key associated require-
ments of determining question answerability and
knowledge selection. More importantly, we pro-
duce synthetic data that can train agents for direct
inference, removing the need for computationally
expensive CoT prompting during inference.

The CoT precursor Scratchpad (Nye et al., 2021)
showed that models can also be fine-tuned to exe-
cute thought processes in order to solve a task in a
step-by-step manner, and the benefits of generating
synthetic CoT data for training. It did not, how-
ever, use prompting and was limited to relatively
close-ended problems. Constitutional AI (Bai et al.,
2022) used a two-step CoT process (critique and
revise) to generate corrected responses. Like this
work, and unlike Scratchpad, it removed the CoT

and kept only the final response to generate the
synthetic data. Unlike our work, Constitutional AI
focuses on reducing harmfulness and uses this step
as part of a bigger process that includes reinforce-
ment learning.

Finally, it is worth noting that many prior works
relied on closed-source models such as GPT-3.52,
PaLM (Chowdhery et al., 2023), Codex (Chen et al.,
2021) and LaMDA (Thoppilan et al., 2022), and
are thus not reproducible. Here we only use open-
source models whose weights are publicly avail-
able, both for generation: FALCON (Penedo et al.,
2023) and FLAN (Tay et al., 2022), and for eval-

2Which is being deprecated and is no longer accessi-
ble https://platform.openai.com/docs/deprecations/
instructgpt-models
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uation: MIXTRAL (Jiang et al., 2024), LLAMA-2
(Touvron et al., 2023) and FALCON.

6 Conclusion

We introduce a structured chain-of-thought (SCoT)
prompting approach to generating multi-turn
content-grounded conversations and empirically
show that high-quality synthetic data can be pro-
duced from only six human-written seed conver-
sations. Designated states for hallucination miti-
gation and the use of supporting tools enable our
methods to generate agent utterances that are highly
faithful to grounding documents. Used as train-
ing data, our generated conversations train high-
performance models as evaluated on out-of-domain
test sets, successfully augmenting target-domain
human-labeled data. Future work will explore
more complex conversational settings, e.g., multi-
document grounding and response generation for
harder, more ambiguous user utterances.

Limitations

The goal of this work is to mitigate hallucination in
pre-trained LLMs through structured CoT prompt-
ing and LM augmentation, improving overall gen-
eration quality. Even though we provide ample
empirical evidence of successful hallucination mit-
igation through both intrinsic and extrinsic evalua-
tion, given the high cost of manual labor involved in
evaluating long multi-turn conversations generated
by a large number of algorithms, we only perform
automatic evaluation, relying on cutting-edge LLMs
and factual consistency checking models. While
the use of only 6 seed conversations was sufficient
to demonstrate the strength of our approach, our
generated data could be more diverse and train even
better models if more demonstrations were utilized.
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A Prompts

A.1 Prompts for the Remaining States
In Figure 3, we showed the prompts used in agent
utterance generation and answer sentence selec-
tion. Figures 4, 5, 6 and 7 illustrate our remaining
prompts used at various stages of the different al-
gorithms.

A.2 Details of ICL Demonstrations
In states uu and au, we use two full document-
grounded conversations as demonstrations. In ques-
tion answerability classification (ac), we use 3
positive and 3 negative exemplars for the FLAN-
UL2-20B assistant, and 2 positive and 2 negative
exemplars for FALCON-40B; for the latter, a larger
number of demonstrations often exceeds the maxi-
mum input length limit. This is an example of an
advantage that comes with LLM augmentation (§1),
where a different tool can execute actions and/or
leverage resources that the primary LLM cannot. In
sentence search (ss) we use 6 exemplars for the
FLAN-UL2-20B assistant; for FALCON-40B, we are
only able to use 3.
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Here is a document broken down into its title and text:
Title: Harry Potter
Text: Harry Potter is a series of …
EoD
The following is a conversation between a User and an Agent, where the User asks a 
series of questions about the topic of the document and the Agent tries to answer those 
questions from the document:
User says: Tell me about Harry Potter. EoU
Agent says: Harry Potter is a … EoA
…
User says: Are there any movies based on the series? EoU

Here is a document broken down into its title and text:
Title: …
Text: …
EoD
The following is a conversation between a User and an Agent, where the User asks a 
series of questions about the topic of the document and the Agent tries to answer those 
questions from the document:
User says: … EoU
Agent says: … EoA
…
User says: … 

Figure 4: Prompt for a pre-trained LLM in state uu: user utterance generation (§3).

You are given a document with its title and text. You are also given an ongoing 
conversation between a User and an Agent. Determine if the document has enough 
information to answer the last User query in the conversation.

Document:
Title: Harry Potter
S1: Harry Potter is a series of …
S2: The novels chronicle the life of …
S3: The main story arc concerns …
…
EoD
Conversation:
User says: Tell me about Harry Potter
Agent says: Harry Potter is a …
User says: What happens in the story?
Does the document have enough information to answer this last User query? Yes/No: Yes

Document: 
Title: …
S1: …
…
EoD
Conversation:
User says: …
Agent says: …
…
User says: …
Does the document have enough information to answer this last User query? Yes/No: 

Figure 5: Prompt for an instruction-following LLM assistant in state ac: question answerability classification (§3).

Here is a document broken down into its title and text:
Title: Harry Potter
Text: …
EoD
Here is an ongoing conversation between a User and an Agent:
User says: Tell me about Harry Potter
Agent says: Harry Potter is a …
User says: What happens in the story?
Does the document answer this last User query? Yes/No: Yes

Here is a document broken down into its title and text:
Title: …
Text: …
EoD
Here is an ongoing conversation between a User and an Agent:
User says: …
Agent says: …
…
User says: …
Does the document answer this last User query? Yes/No:

Figure 6: Prompt for a pre-trained LLM (i.e., no assistant) in state ac: question answerability classification (§3).
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Here is a document broken down into its title and text:
Title: Harry Potter
Text: Harry Potter is a …
EoD
Here is an ongoing conversation between a User and an Agent:
User says: Tell me about Harry Potter
Agent says: Harry Potter is a …
User says: What happens in the story?
The following sentences from the above document contain an 
answer to this last User query: The main story arc concerns …

Here is a document broken down into its title and text:
Title: …
Text: …
EoD
Here is an ongoing conversation between a User and an Agent:
User says: …
Agent says: …
…
User says: …
The following sentences from the above document contain an 
answer to this last User query: 

Figure 7: Prompt for a pre-trained LLM (i.e., no assistant) in state ss (§3).
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B SFT Details

In this section, we provide details on the instruction
and input format used for our SFT experiments.
We also present results from all steps from our
workflow described in Section 4.2.3.

B.1 SFT Instruction Prompt

We use the instruction and input format described
in Listing 1 when fine-tuning the FALCON-7B

model (with QLoRA).

INSTRUCTION = "Given the document
↪→ and the current conversation
↪→ between a user and an agent,
↪→ your task is to generate the
↪→ next response from the agent.

While generating the agent response
↪→ you should: Determine if
↪→ agent response needs
↪→ information from document.

(a) If yes, generate agent response
↪→ using only precise
↪→ information present in the
↪→ document.

(b) If not, generate CANNOTANSWER. "

input = INSTRUCTION + " \n\n "
input += "Text: " + DOC_TITLE + " :

↪→ " + DOC_TEXT + "\n\n"
input += f"Input: "

for utt, speaker in zip(dialog["
↪→ utterances"],dialog["speakers
↪→ "]):
input += f"User: " if speaker ==

↪→ "user" else "Agent: "
input += f"{utt.strip()} "

input = input.rstrip()
input += f"\n\nOutput:"

Listing 1: Instruction and Input format

We use 128 as the maximum number of tokens
for generation during our SFT experiments. We
filter out few instances from the DoQA and QuAC

datasets based on length to ensure that each input
instance is less than 1920 tokens (2048 model max
input length - 128 max output tokens for gener-
ation). We create input instances as mentioned
above and use the following check:

tokenizer = AutoTokenizer.
↪→ from_pretrained("tiiuae/falcon-40
↪→ b")

if len(tokenizer(input)['input_ids']) >
↪→ (2048 - 128):
return False

else:
return True

This filtering reduces size of the QuAC data as
follows: For the train set, the number of instances
is reduced from 76129 to 75194; for the dev set:
from 7439 to 7332; and for the test set: from 7354
to 7069 instances.

We fine-tune the FALCON-7B model3 (with
QLoRA) across all training data with 2 Tesla A100
GPUs. We use the following settings across all
training runs:

• quantization method is set to ‘fp4’

• LoRA rank, alpha, dropout and target modules
are set to 8, 32, 0.1 and ["query_key_value"]

• Batch size and learning rate are set to 1 and
4.0e− 4

• DeepSpeedFusedAdam is used as the opti-
mizer with weight decay = 0.1, betas = [0.9,
0.95] and eps = 1e− 10

• warmup steps are set to 1000 steps with a
linear learning rate schedule.

We save checkpoints at periodic intervals during
training and evaluate the models on the dev dataset
to select the checkpoint that achieves the best vali-
dation performance for the final evaluation on the
test set. For synthetic data, the models are trained
for 15 epochs. For GOLD data, the models are
trained for 10 epochs and the augmented models
’D augmented w/ S3’ and ’Q augmented w/ S3’
are fine-tuned for 5 epochs.

B.2 Identifying Best Synthetic Data

As described in Section 4.2.3, we adopt a step-by-
step workflow to identify the best synthetic data for
the best downstream task performance. In this sec-
tion, we present the details for each step and share
our results from these steps on our two downstream
tasks: DoQA and QuAC.
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Training Set A UA HM
DoQA

D: DoQA GOLD 24.5 65.5 35.7
uu→au 22.4 55.4 31.9
uu→ac→ss→au with a FLAN-UL2-20B Assistant 12.8 95.6 22.5
uu→ac→ss→au with no Assistant 18.9 53.0 27.9
uu→ac→au with a FLAN-UL2-20B Assistant 11.7 96.0 20.8
uu→ac→au with no Assistant 17.6 73.5 28.4

QuAC
Q: QuAC GOLD 25.2 83.0 38.7
uu→au 25.8 43.0 32.2
uu→ac→ss→au with a FLAN-UL2-20B Assistant 21.7 71.5 33.3
uu→ac→au with no Assistant 26.1 41.0 31.9
uu→ac→au with a FLAN-UL2-20B Assistant 15.4 88.5 26.2
uu→ac→ss→au with no Assistant 16.6 54.0 25.4

Table 5: Performance of FALCON-7B models fine-tuned (with QLoRA) on 1,000 synthetic conversations on DoQA
Cooking dev set and QuAC dev set.

B.2.1 Step 1: Identifying the best algorithms
In Step 1, we use the synthetic conversations gen-
erated on 1,000 Wikipedia passages from Section
1 using various state transitions and fine-tune FAL-
CON-7B models (with QLoRA) on them. In Table
5, we present results of our SFT evaluation using
models fine-tuned only on 1000 synthetic conver-
sations. For evaluation, we use the official DoQA

Cooking dev set and QuAC dev set.
We observe that among the synthetic datasets,

"uu→au" model performs best on the A
class. For the UA class, two approaches:
"uu→ac→ss→au with a FLAN-UL2-20B Assis-
tant" and "uu→ac→au with a FLAN-UL2-20B

Assistant" perform quite well, with the former
performing better on the A class. Hence, for
our next stage of SFT experiments with larger
synthetic data, we choose the "uu→au" and the
"uu→ac→ss→au with a FLAN-UL2-20B Assis-
tant" settings as our preferred synthetic data gener-
ation methods for the DoQA and QuAC downstream
tasks.

B.2.2 Step 2: Identifying the best synthetic
data mixture

In Step 2, we fine-tune models on 10, 000 syn-
thetic conversations (10x from Step 1). In Table
6, we present results of our SFT evaluation for
these models. We use the DoQA and QuAC dev
set as before for evaluation. We observe that with
10, 000 conversations, "S1: uu→au" model per-
forms similar to 1, 000 conversations in Table 5
for both DoQA and QuAC. For DoQA, we notice
a significant improvement in the performance of
"S2: uu→ac→ss→au with a FLAN-UL2-20B As-

3tiiuae/falcon-7b

sistant" model (7.5% absolute gain on HM metric).
In addition to improvements from larger syn-

thetic data size, the most significant finding is with
the S1 ∪ S2 approach where we fine-tune FAL-
CON-7B model with a 50− 50 ratio of S1 and S2.
We observe that models trained with S1 ∪ S2 ap-
proach outperform models trained with S1 or S2
individually. This showcases that the synthetic data
generated using our different approaches comple-
ments each other and improves the performance on
the downstream task.

B.2.3 Step 3: Further improvement using
data augmentation

We explore several other approaches for utilizing
the synthetic data, such as:

• augmenting the synthetic data with GOLD
data and fine-tuning from scratch

• further fine-tuning the model with GOLD
data already trained on synthetic data, and

• further fine-tuning the model with synthetic
data already trained on GOLD data

We use DoQA dataset for running these addi-
tional experiments and report our results in Table
7. We observe that the data augmentation improves
performance, even when using only 20% of the
synthetic data mixture S3. Using more synthetic
data for augmentation does not yield additional
gain in performance. However, this requires re-
training the models from scratch, which may be
expensive based on model and dataset size. The
S3 on D model, achieved by further fine-tuning
the model (already trained on DoQA GOLD data)
with S3 data does not improve performance. This
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Training Set A UA HM
DoQA

D: DoQA GOLD 24.5 65.5 35.7
S1: uu→au 22.4 59.4 32.5
S2: uu→ac→ss→au with a FLAN-UL2-20B Assistant 18.7 90.0 31.0
S1 ∪ S2 22.1 75.1 34.2

QuAC
Q: QuAC GOLD 25.2 83.0 38.7
S1: uu→au 24.6 55.4 34.1
S2: uu→ac→ss→au with a FLAN-UL2-20B Assistant 19.3 84.4 31.4
S1 ∪ S2 26.2 58.8 36.2

Table 6: Performance of FALCON-7B models fine-tuned (with QLoRA) on 10,000 synthetic conversations on DoQA
Cooking dev and QuAC dev sets.

is expected since our synthetic data is not related
to the GOLD data; hence the drop in performance.

The D on S3 model, aka Alignment model, is
achieved by using the model fine-tuned on our syn-
thetic data mixture S3 and further fine-tuning it
with the DoQA GOLD data outperforms the mod-
els trained from scratch with data augmentation.
This shows that our synthetic data is of good qual-
ity and can be used to train a good initial model,
which can be used for further domain alignment
with GOLD data available for the domain.

Training Set A UA HM
D: DoQA GOLD 24.5 65.5 35.7
S1: uu→au 22.4 59.4 32.5
S2: uu→ac→ss→au

w/ FLAN-UL2-20B Asst. 18.7 90.0 31.0
S3: S1 ∪ S2 22.1 75.1 34.2
D ∪ S3(20%) 33.0 75.9 46.0
D ∪ S3(40%) 35.6 62.3 45.3
D ∪ S3(60%) 36.2 63.5 46.1
D ∪ S3(80%) 34.8 68.7 46.2
D ∪ S3(100%) 34.9 67.9 46.1
S3 on D model 16.2 89.6 27.5
D on S3 model 37.7 66.3 48.1

Table 7: Performance of FALCON-7B models fine-tuned
(with QLoRA) on 10,000 synthetic conversations on
DoQA Cooking dev set.
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