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Abstract
Large Language Models (LLMs) trained on
web-scale text corpora have been shown to cap-
ture world knowledge in their parameters. How-
ever, the mechanism by which language models
store different types of knowledge is poorly un-
derstood. In this work, we examine two types
of knowledge relating to temporally sensitive
entities and demonstrate that each type is local-
ized to different sets of parameters within the
LLMs. We hypothesize that the lack of consid-
eration of the locality of knowledge in existing
continual learning methods contributes to both:
the failed uptake of new information, and catas-
trophic forgetting of previously learned infor-
mation. We observe that sequences containing
references to updated and newly mentioned en-
tities exhibit larger gradient norms in a subset
of layers. We demonstrate that targeting pa-
rameter updates to these relevant layers can
improve the performance of continually pre-
training on language containing temporal drift.

1 Introduction

Pretraining over diverse datasets has been shown
to encode world knowledge in the parameters of
large language models (LLMs) (Petroni et al., 2019;
Roberts et al., 2020; Gueta et al., 2023) from mas-
sive static web-scale datasets. However, these mod-
els are normally trained on large static text corpora
which do not reflect changes in world knowledge
or language usage that occur after the initial data
collection. In practice language models are de-
ployed in dynamic real-world settings, and their
learned knowledge becomes stale over time; the
temporal degradation can be evaluated according
to intrinsic measures such as perplexity, or extrinsic
downstream performance (e.g. question answering)
(Lazaridou et al., 2021; Luu et al., 2022; Dhingra
et al., 2022; Yao et al., 2022; Nylund et al., 2023;
Cheang et al., 2023).

Incrementally training language models on
streams of data has been explored as a method to
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Figure 1: When continually pretraining on sequences with
updated and newly mentioned entities, certain layers consis-
tently observe larger gradient norms.

mitigate temporal performance degradation with-
out incurring the heavy computational and envi-
ronmental costs of retraining models on large pre-
training corpora (Jang et al., 2021, 2022; Lin et al.,
2022). However, naive online finetuning on these
datastreams is known to: induce hallucinations in
model generations (Kang et al., 2024), fail to up-
take new information (Hu et al., 2023), and catas-
trophically forget previously learned information
(Zhu et al., 2020). To address these problems, re-
cent work has applied continual learning and online
learning methods to adapting large language mod-
els to streams of documents (Loureiro et al., 2022;
Scialom et al., 2022; Jang et al., 2022)

As one potential solution, continual pretrain-
ing has been shown to improve performance when
training on a sequence of natural language domains
(Gururangan et al., 2020), but these methods often
fail to acquire new knowledge (Hu et al., 2023;
Onoe et al., 2023). While continual learning meth-
ods have been shown to mitigate temporal degra-
dation on the task-level, the mechanisms by which
neural language models store and update informa-
tion are not well understood.

In this work, we consider a real-world use case
of continual language learning setting, that of tem-
poral language drift, and probe the performance
of language models on two types of entity rela-
tionships which exhibit temporal degradation: (1)
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acquisition of information about new entities, and
(2) updating relationships between existing entities.
We hypothesize that the poor performance of exist-
ing continual learning methods on these tasks can
be in part attributed to a misalignment in the autore-
gressive language modeling pretraining objective
and the ideal parameter updates required to acquire
new information or update existing knowledge. As
an indicator of this misalignment, we examine mod-
els’ gradient updates computed on knowledge in-
tensive salient entity spans and compare them with
those seen instandard continual pretraining, and ob-
serve that the gradient norms observe high values
in distinct groups of layers based on the type of
entity relationship presented in the sequence (see
Fig. 1).

Based on these observations, we propose new
methods for aligning the updates steps during con-
tinual pretraining which better align with the pa-
rameter updates with these layers with high gra-
dient norms. Through empirical study, we show
that the observed characteristic gradient patterns
occur across autoregressive, transformer language
models of various of sizes; and we demonstrate the
efficacy of our proposed method through perfor-
mance improvements on knowledge probing tasks
when applied on top of existing continual learning
methods in pretraining.

2 Related Work

Continual Pretraining of Language Models.
Continued pretraining of models on the target dis-
tribution is often used to adapt a generically pre-
trained language model from its source to its target
setting to update factual knowledge or to adapt to
new language domains (Lin et al., 2022; Jin et al.,
2022; Wu et al., 2024). However, standard finetun-
ing techniques can result in catastrophic forgetting
of previously learned tasks and the loss of the pre-
trained models generalization capabilities due to
distortion of the underlying features and lack of reg-
ularization (Kumar et al., 2022). As a mitigation
for forgetting, it is common to apply regularizers
or constraints on the standard gradient descent up-
dates such as: gradient projection, example-replay,
loss rescaling, or introduction of additional parame-
ters for the target domain (Cossu et al., 2022; Saha
et al., 2021; Farajtabar et al., 2020). While contin-
ual pretraining is commonly used in the adaptation
to a sequence of domains (Gururangan et al., 2020;
Yıldız et al., 2024), recent work is only beginning

to explore its use in the adaptation to changing
temporal knowledge which can often exhibit finer-
grained changes (Jang et al., 2021, 2022; Nylund
et al., 2023).

Knowledge Localization and Model Editing.
Another method to adjust the information contained
within large pretrained models is knowledge edit-
ing, in which specific factual relations are injected
or manipulated by performing causal traces of acti-
vations to identify where a model stored knowledge
necessary for prediction (De Cao et al., 2021; Meng
et al., 2022a,b). However, these methods exhibit
high per-edit computational costs and fail to large
number of edits (Gupta et al., 2024), which can be-
come necessary when updating models over larger
corpora or repeatedly over time.

3 Knowledge Probing Using Salient Span

We probe language models using the task of salient
span prediction, which has previously shown suc-
cess as a pretraining objective for knowledge-
intensive tasks such as closed-book question an-
swering (Cole et al., 2023; Guu et al., 2020). In
salient span prediction, a model is provided with a
sequence and tasked with completing a masked slot
corresponding to a named entity or noun phrase.
Specifically, we examine language models on prob-
ing tasks for temporal entity knowledge in which
the masked sequence corresponds: (1) to an update
or change to an existing temporally sensitive enti-
ties; (2) to a mention of emerging new entities that
were not previously seen during pretraining.

3.1 Probing Datasets

We study these using the Dynamic TempLAMA
(Dhingra et al., 2022) and the Entity Cloze By Date
(ECBD) (Onoe et al., 2022) diagnostic datasets,
respectively. Examples can be found in Table 3.

Dynamic TempLAMA contains slot-filling
cloze queries where the goal is to complete a
subject-object relation in which there are multiple
candidate object answers that change over time.
Examples are generated from natural language
templates based on subject-object relations
extracted from Wikipedia metadata, and are
generated sequentially for three month periods.
For our analysis, we examine splits for each year
from 2019 to 2021. As the subject in each example
has been mentioned in both the seen and unseen
data, we use this dataset to evaluate the ability of
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Figure 2: Relative gradient norms for the salient spans in ECBD and TempLAMA for the GPT-2 Base (110M;
Left-hand side), and GPT-2 Large (770M; Right-hand side), models. Norms for attention (Top) and norms for MLP
(Bottom) are depicted separately. Rradient norms of salient spans are 4 to 15x larger than those of the full sequence.

continual learning techniques to update existing
knowledge.

Entity Cloze By Date contains cloze queries
where the salient spans correspond to noun-phrases
referring to newly emerging entities (ECBD-NP);
which can be used to evaluate the effectiveness
of continual learning methods in knowledge ac-
quisition. Examples are grouped by year, accord-
ing to the first time of mention. Additionally, the
ECBD dataset contains an additional split of exam-
ples where the referenced entity exists in all splits
(ECBD-Popular), which can be used to evaluate
the retention of previously learned knowledge.

3.2 Models

We examine decoder-only transformer language
models of various sizes, specifically: GPT 2-Base
(110M parameters) and GPT-2 Large (770M pa-
rameters); with additional analysis on GPT-Neo
(1.3B parameters) in Appendix 3. To evaluate the
perplexity of each of these models, we provide the
example context of each example up to the salient
span and compute the perplexity over the salient
span as in (Onoe et al., 2022, 2023).

To align each model with Wikipedia-based
knowledge contained in the probing tasks, we per-
form domain adaptive pretraining on snapshots of

Wikipedia retrieved prior to the pretraining data
cutoffs for each model to prevent data contamina-
tion. Speicifically, we perform initial pretraining of
GPT-2 models on Wikipedia snapshots from Jan-
uary 2019, and of GPT-Neo on January 2020.

3.3 Probing Model Response to Salient Spans

We hypothesize that the portions of the model re-
sponsible for different forms of knowledge can be
identified by tracing the gradient norm of examples
which reflect the target form of knowledge.

To identify critical portions of the model, we
compare the relative gradient norms for salients
spans with the gradient norms of randomly sam-
pled pretraining examples. Precisely, we provide
the autoregressive language model with the left
context preceding the salient span and compute the
parameter gradient with respect to the loss, aver-
aged over each token in the target span. We then
aggregate the gradients according to their respec-
tive transformer block’s component attention and
MLP layers, and compute the L2-Norm of the gra-
dients for each layer. We then normalize these
per-layer norms with the average per-layer gradi-
ents for 2000 examples from the 2019 Wikipedia
snapshot over the full sequence.

For the ECBD probing dataset, we examine the
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gradients for the salient span corresponding to the
noun phrase related to the target entity, which we
refer to ECBD-NP. For the TempLAMA dataset,
we examine the loss gradient with respect to the
object noun phrase.

In Figure 2, we observe that the gradient norms
for salient spans are consistently 4 to 15x higher
than the gradient norms of randomly sampled pre-
training examples for all layers in both GPT2-Base
and Large. Additionally, we observe that the rela-
tive gradient norms for these salient spans observe
a distinct profile in which there is large magnitude
in the early and middle layers, and that the relative
gradient norms are larger in the attention layers
than in the MLP layers.

4 Gradient Localized Continual
Pretraining

Ideally, naive pretraining of a language model on
a changing stream of data would be sufficient to
update a model to capture the relevant changes
in knowledge. However, recent work has demon-
strated that current methods for continual learning
often suffer from both catastrophic forgetting and
a failure to uptake new knowledge even when it is
directly contained in the training corpus (Hu et al.,
2023; Kang et al., 2024). We hypothesize that one
cause of failed transfer is due to a misalignment of
the gradients from the NLL objective function with
the desired update based on the information content
of the data observed during continual pretraining.

From our observations from §3, we hypothesize
that the acquisition of entity knowledge can be
improved by amplifying updates to the layers that
are relevant to the learning of salient entity spans.
To identify relevant layers, we compute the relative
gradient norm for each layer i as: the ratio between
the gradient norm ∇̃i in the layer i w.r.t. randomly
sampled data from the continual pretraining data
stream, and data sampled from the validation set of
the TempLAMA diagnostic dataset:

∇̃i =
||∇iL(Mθ, (x, y)TempLAMA)||

||∇iL(Mθ, (x, y)PT)||
(1)

We propose two methods to improve knowledge
uptake by aligning gradient updates during con-
tinual pretraining. For relevant salient spans from
the TempLAMA diagnostic dataset, we construct a
profile of the relative gradient norms with respect
to the gradients for randomly sampled pretraining
sequences. We then adjust the learning rates for

layers in this profile to increase the updates to lay-
ers with large relative gradient norms. We refer to
our methods as Traced Gradient Layers (TGL).

Selecting Trainable Layers for Pretraining with
Relative Gradient Norm We consider a simple
approach to target continual pretraining updates to
layers with high relative gradient norm, by only up-
dating parameters where the relative gradient norm
on the TempLAMA diagnostic dataset exceed the
mean relative gradient norm of all layers – we refer
to this parameter freezing method as TGL + FP.
In the case of the GPT-2 architecture, we separate
the model into its component MLP and attention
layers, then compute the relative gradient norm for
each layer as the ratio between the average gradi-
ent norm computed over samples from both the
TempLAMA dataset and the continual pretraining
corpus. Precsisely, we freeze a parameter group i
if ∇̃i <

1
No. Layers(

∑
k∈Layers ∇̃k).

Per-Layer Adaptive Learning Rates from Rela-
tive Gradient Norm Rather than using relative
gradient norm as a hard threshold to determine
which layers to update, we instead consider an
adaptive approach in which we set the learning rate
for layers to scale with the magnitude of the rela-
tive gradient norm. We scale the per-layer learning
rate for layer i as : ηi = η ∇̃i

maxi∈Layers(∇̃k)

5 Training and Dataset Details

To perform domain adaptive pretraining, we sam-
ple and preprocess a snapshot of Wikipedia from
January 2019 using Wikiextractor. For continual
pretraining, we follow the methodology of (Jang
et al., 2022) to collect snapshots of Wikipedia from
each of the subsequent years until 2022 and fil-
ter each corpus to contain the edits to Wikipedia
made in the intervening year, consisting of new
articles and sentences within existing articles that
were edited between succeeding snapshots.

5.1 Baselines

We compare the performance of our proposed con-
tinual pretraining method with existing approaches
from continual learning. We consider vanilla con-
tinual pretraining in which we update all param-
eters; a parameter-expansion method LoRA (Hu
et al., 2021), which introduces additional trainable
low rank adapters to the self-attention layers; a
replay-based method MixReview (He et al., 2021),
which randomly mixes previously seen pretrainign
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Evaluation Set: 2020 ECBD Pop. ECBD NP TempLAMA

Pretrain 40.99 47.44 81.92
Domain Pretrain 30.90 41.39 62.99

Continual Pretrain 34.79 43.97 56.72
+ TGL with FP 34.13 44.20 55.19

LoRA: 64D, Attn 31.94 41.40 57.21
+ TGL with FP 30.28 41.05 56.32

MixReview 28.70 37.34 67.64
+ TGL with FP 28.24 37.77 60.05

RecAdam 34.78 43.92 57.34
+ TGL with FP 33.56 43.41 54.75

Table 1: TGL with frozen layers improves performance
of GPT2-Large (770M) during continual pretraining.

data alongside current data; and the regularization-
based method RecAdam (Chen et al., 2020), which
imposes a quadratic penalty on the norm of the
parameter update.

Initial domain adaptive pretraining is performed
on a the complete Wikipedia snapshot for 4 epochs
with a global batch size of 64, or approximately
500,000 training iterations. Models are trained
using the Adam optimizer with weight decay and a
linear warmup schedule over 10% of examples and
a linear decay with a max learning rate of 1E-4.

During continual pretraining, the model is
trained for one epoch on the Wikipedia edits for
the subsequent year. For the MixReview method,
unedited articles are added Wikipedia edits corpus
at a 2:1 ratio. We train LoRA adapters with a hid-
den rank of 64 dimensions.

5.2 Evaluating TGL for Continual PT

To evaluate the performance of TGL+FP and
TGL+AR, we incrementally train the domain-
adapted language model on the set of Wikipedia re-
visions for the subsequent years of 2020 and 2021.
We then probe the continually pretrained model
after each updating on new year of Wikipedia re-
visions using the corresponding temporally delin-
eated split from the ECBD-NP and TempLAMA
test datasets 3.1. To evaluate whether either TGL
method leads to catastrophic forgetting, we also
report performance on ECBD-Popular, which con-
tains sequences referring to entities common in
all years including entities previously seen during
initial pretraining.

In Table 2, we report the perplexities of the con-
tinually pretrained model on the 2020 and 2021 test
splits with the GPT-2 Base (110M) model. Relative
to the domain-adapted pretrained initialization, we
observe that all continual learning baselines exhibit
performance tradeoffs in which performance either
improves on the probe tasks for recognizing new

Evaluation Set: 2020 ECBD Pop. ECBD NP TempLAMA

Pretrain 78.61 80.04 162.54

Domain Pretrain 55.26 62.59 80.51

Continual Pretrain 64.13 72.42 83.39
+ TGL with ALR 57.62 64.83 77.58
+ TGL with FP 57.75 65.08 74.55

MixReview 54.10 61.54 82.16
+ TGL with ALR 53.50 61.01 77.04
+ TGL with FP 53.48 61.48 76.35

LoRA 55.77 65.56 80.11
+ TGL with ALR 57.75 69.44 78.40
+ TGL with FP 58.09 67.62 78.77

RecAdam 57.55 64.60 76.67
+ TGL with ALR 57.52 64.77 77.32
+ TGL with FP 57.55 64.89 74.88

Evaluation Set: 2021 ECBD Pop. ECBD NP TempLAMA

Pretrain 78.61 98.47 167.23

Domain Pretrain 55.26 66.16 82.60

Continual Pretrain 67.18 77.70 86.34
+ TGL with ALR 57.91 63.45 78.85
+ TGL with FP 57.83 63.55 74.88

MixReview 51.96 57.69 81.88
+ TGL with ALR 53.42 59.60 78.75
+ TGL with FP 52.81 58.31 79.17

LoRA 58.07 66.89 76.78
+ TGL with ALR 58.06 69.17 79.03
+ TGL with FP 58.39 66.31 78.19

RecAdam 64.42 73.34 92.26
+ TGL with ALR 57.72 63.53 78.39
+ TGL with FP 57.69 63.60 75.21

Table 2: Traced Gradient Layers (TGL) can be applied
on top of existing continual pretraining methods by ap-
plying per-layer adaptive learning rates (ALR) or frozen
parameters (FP) to improve performance (perplexity of
the slot) of existing continual learning methods.

entities (ECBD-NP) or improves on updating en-
tity relations (TempLAMA). When applying TGL
methods on top of continual learning methods, we
see that it is possible to avoid catastrophic forget-
ting as we observe decreases in probing task per-
plexity relative to the continual learning baselines.
In Table 1, we scale our experiments to the GPT-2
Large (770M) model and observe that the improve-
ments from localized gradient updates extend to
continual pretraining for the larger model.

6 Conclusion

In this work, we proposed Traced Gradient Lay-
ers (TGL) a method for identifying relevant layers
to target during continual pretraining of language
models. We observe that our proposed approach im-
prove language model performance on tasks prob-
ing for entity and relational knowledge; without
the need for fine-grained annotations.
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Limitations and Ethical Considerations

In our work, we observe that per-layer gradient
norms can be utilized as an informative indicator
for identifying layers to train during continual pre-
training on temporally changing data. Although
perplexity is a commonly used metric for evaluat-
ing language models and can often be useful in mea-
suring the quality of a model, it is unclear whether
improvements in knowledge probe perplexity trans-
fers to downstream settings.

While the goal of our investigations is to miti-
gate the need for environmentally and financially
prohibitive pretraining by enabling the continual
learning of existing models, it is possible that re-
ductions in the cost of pretraining may then lead
more individuals and organizations to pursue large
model pretraining (i.e. Jevons Paradox).
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A Licenses

Wikipedia data, which was used to construct the
TempLAMA and ECBD, the datasets we used, has
a Creative Commons Attribution-ShareAlike 4.0
International License (CC BY-SA). TempLAMA
is also derived from LAMA which has a CC
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Dataset Year Example Answer

TempLAMA 2020 Joe Biden holds the position of __ . President-elect.of the United States
2021 Joe Biden holds the position of __ . President of the United States

Entity Cloze
By Date (ECBD)

2020 The Congressional Budget Office provided a score for the
CARES Act on April 16, 2020 estimating it would __. increase federal deficits.

2021 On August 14, when Hurricane Grace entered
the Caribbean, a tropical storm watch was issued for __. the entire coast of Haiti.

Table 3: Examples from TempLAMA and ECBD probing tasks. The temporally sensitive entity is bolded.

Attribution-NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0), and the script for construct-
ing it is licensed under the Apache License, Version
2.0.

Our use of the datasets is for research purposes
only and aligns with the intended use.

B Dataset Details

Examples from the Dynamic TempLAMA and
ECBD probing and evaluation datasets are pro-
vided in Table 3.

Details on the datasets used for domain-specific
and continual pretraining are provided in Table 4.

Split Date No. Articles No. Tokens

Complete Jan. 2019 7.9 Million 1.81 Billion
Edits Jan. 2020 364,235 268 Million
Edits Jan. 2021 419,879 311 Million
Edits Jan. 2022 425,296 309 Million

Table 4: Statistics on the Wikipedia corpora used for
domain adaptive and continual pretraining.

C Gradient Profiles for GPT-Neo (1.3B)

In addition probing the 110M and 770M parameter
GPT-2 models in Section 3, we examine the gra-
dient characteristics of the larger GPT-Neo (1.3B
parameter) model. As the GPT-Neo model was pre-
trained on the Pile with a data cutoff year of 2020,
we conduct initial domain adaptive pretraining on
a snapshot of Wikipedia from January 2020, and
conduct gradient norm probes using TempLAMA
and ECBD evaluation splits from 2020.

For GPT-Neo, we observe similar characteristic
gradient profiles, with increases in relative gradient
norm in the first and final layers for the ECBD new
entity probes (ECBD-ENT), as well as an increase
in relative gradient norm in the middle layers for
probes of relational changes (TempLAMA) in Fig-
ure 3.

Figure 3: Relative Gradient Norms for the GPT-Neo
1.3B parameter model.
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