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Abstract

Various types of learning rate (LR) schedulers
are being used for training or fine tuning of
Large Language Models today. In practice,
several mid-flight changes are required in the
LR schedule either manually, or with careful
choices around warmup steps, peak LR, type
of decay and restarts. To study this further, we
consider the effect of switching the learning
rate at a predetermined time during training,
which we refer to as “SkipLR”. We model
SGD as a stochastic gradient flow and show
that when starting from the same initial param-
eters, switching the learning rate causes the
loss curves to contract towards each other. We
demonstrate this theoretically for some simple
cases, and empirically on large language models.
Our analysis provides insight into how learning
rate schedules affect the training dynamics, and
could inform the design of new schedules to
accelerate convergence.

1 Introduction

Modern deep neural networks have achieved state-
of-the-art performance across a wide range of ma-
chine learning tasks. One critical hyperparameter
that significantly influences the training dynamics
is the learning rate (LR). Aside from using adap-
tive optimizers such as Adam (Kingma and Ba,
2014), AdamW (Loshchilov and Hutter, 2016), and
Adafactor (Shazeer and Stern, 2018), LR schedulers
have become a necessity for training large language
models (LLMs) (Zhao et al., 2023). Despite be-
ing used pervasively, the choice of LR schedules
is often made based on empirical observations or
best practices, rather than any known theoretical
basis. Table 1 presents various optimizer-scheduler
combinations used in recent large language models
(LLMs), highlighting this pattern. This issue is ad-
dressed in part by adaptive learning rate schedulers,
such as the (Baydin et al., 2017; Subramanian and
Ganapathiraman, 2023). While these combinations

are frequently chosen based on experience, best
practices, or trial and error, their importance for
overall training progress cannot be understated. In
practice, drastic changes on top of the LR scheduler
are often necessary to achieve optimal performance.
For instance, in the training of OPT models, sev-
eral mid-flight, drastic changes were required for
convergence (Zhang et al., 2022). For the Llama 3
405B model, batch size (and effectively LR) is dou-
bled once after pre-training with 252M tokens, and
doubled again after pre-training with 2.87T tokens
to avoid training divergence.(Dubey et al., 2024)
A recent survey on large language models (LLMs)
also highlights a common practice of using the
AdamW optimizer with a scheduler that includes
a warmup phase followed by a gradual decay to
10% of the initial maximum learning rate (Zhao
et al., 2023). This initial warmup, followed by a
sudden shift to a decay mode, introduces significant
changes in the early stages of convergence.

Why are such abrupt changes in LR required
to achieve peak performance, and how do they
impact training? In this paper, we investigate
these questions by studying the impact of drastic
LR changes on the training of language models.
Our theoretical and empirical analyses elucidate the
dynamics of optimizers under varying LR schedules,
focusing on abrupt LR transitions at predetermined
epochs, which we term the “SkipLR” experiment.

First, we aim to understand the impact of LR
schedules on training by utilizing the SkipLR frame-
work to study the relationship between multiple LR
transitions and changes in loss. While traditional
schedulers emphasize the long-term effects of con-
tinuous changes in the LR, we argue that even
instantaneous changes in LR during a single step
can have long-term impacts on loss. We clarify
here that SkipLR is a framework to study this spe-
cific phenomenon, and not a scheduler to be used
in place of a scheduler like Cosine or exponential
decay. Through theoretical analysis and hundreds
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Model Optimizer Initial
LR

Scheduler Citation

Falcon 40B AdamW 1.85𝑒−4 Cosine decay to 10% Initial LR (Almazrouei et al.,
2023)

Meta Llama 2 AdamW 1.5𝑒−4 Cosine decay to 10% Initial LR (Touvron et al.,
2023)

Flan T5, PaLM Adafactor 5𝑒−4 Constant (Chung et al., 2022)
GPT-J AdamW 1.2𝑒−4 Polynomial decay to 10% Initial LR (Wang and Komat-

suzaki, 2021)
OPT 1.3B AdamW 2𝑒−4 



Warmup from 0 to Initial LR followed
by decaying down to 10% of the maxi-
mum LR over 300B tokens along with
a number of mid-flight changes

(Zhang et al., 2022)
OPT 6.7B AdamW 1.2𝑒−4

OPT 30B AdamW 1𝑒−4

OPT 66B AdamW 0.8𝑒−4

OPT 175B AdamW 1.2𝑒−4

InstructGPT Adam 9𝑒−6 Cosine decay to 10% Initial LR (Ouyang et al.,
2022)

Llama 3.1 70B AdamW 1.5𝑒−4 Warmup 2000 steps with Cosine decay (Dubey et al., 2024)
Llama 3.1 405B AdamW 8𝑒−5 Warmup 8000 steps with Cosine decay

to 1% of peak LR over 1.2M steps
(Dubey et al., 2024)

Table 1: Survey of recent LLMs, with optimizer and schedulers used

Figure 1: An illustration of the SkipLR phenomenon.

of experiments, We show the unintuitive ranking
of loss curves corresponding to different learning
rates for real transformer experiments compared
to what is seen in theory, faster than asymptotic
contraction from one arbitrary loss curve to another,
as well as the high probability of transitioning to
another loss curve corresponding to a different LR.
This is a useful feature when designing effective
schedulers in follow-on work that could speed up
experimental runs significantly.

To demonstrate this, we first investigate how
SkipLR transitions affect the descent on the loss sur-
face at any given iteration. We model SGD dynam-
ics as simple yet functionally correct continuous-
time gradient flow, with 𝑑𝜃

𝑑𝑡 = −𝜂∇Φ(𝜃 (𝑡)), where
Φ(𝜃) denotes the loss function. Our theoretical

results show that, under common assumptions, loss
function trajectories contract towards each other
after a SkipLR transition as illustrated in Figure 1.
This suggests that SkipLR techniques could help es-
cape sharp local minima or transition between high
and low loss regions during training in a principled
manner.

Next, to support our theoretical findings, we
present extensive numerical simulations visualiz-
ing loss curve contractions on synthetic functions.
Specifically, for quadratic objectives, these sim-
ulations validate our analysis by demonstrating
the contraction of loss curves following skips in
strongly convex functions. We also demonstrate
successful SkipLR transitions on large transformer
networks for causal language modeling, transla-
tion, and named entity recognition (NER) tasks,
empirically showing convergence in these models.

In this work, through our comprehensive analy-
sis and experimentation with SkipLR, we aim to
provide valuable insights that can guide informed
decisions on learning rate schedules and adjust-
ments during training. By quantifying the impact
of abrupt LR changes and exploring their interac-
tion with the loss landscape and gradient dynamics,
we hope to enhance the design of adaptive learn-
ing rate schedules tailored to specific models and
training conditions.
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2 Related Work

Learning rate schedulers, such as linear or cosine
scheduling (Loshchilov and Hutter, 2016), have
been extensively studied and shown to accelerate
convergence and improve training performance in
neural networks. For instance, (Nakkiran, 2020)
discusses the effect of learning rate annealing on
generalization performance in convex learning prob-
lems, demonstrating that annealing leads to better
generalization compared to using a constant small
learning rate. This improvement is attributed to the
mismatch between the test and train loss landscapes
and the benefits of early stopping. Additionally, they
have studied the impact of learning rate schedules
on SGD and their influence on the local geometry
of the parameter space.

In linear scheduling (Loshchilov and Hutter,
2016), where the learning rate decreases linearly
over time. This approach has been found effec-
tive for achieving fast convergence and improving
training performance by allowing the model to fine-
tune its parameters gradually. Another technique,
warmup steps (Gotmare et al., 2018), involves grad-
ually increasing the learning rate at the beginning
of training before applying the scheduled learning
rate. Warmup steps help the model explore the
parameter space more effectively and avoid local
minima, thus improving convergence.uickly adapt
to the training data and improve convergence.

Cosine scheduling (Loshchilov and Hutter, 2016)
is another widely used approach, where the learning
rate decreases following a cosine function over
time. This method has been shown to improve
convergence and prevent models from getting stuck
in sub-optimal solutions.

Research has also been conducted on restarts
in learning rate scheduling and their impact on
convergence and training. Restarting the learning
rate schedule involves periodically resetting the
learning rate to its initial value during training. This
technique has been found to improve convergence
and prevent the model from getting trapped in poor
local minima (Huang et al., 2017). By periodically
resetting the learning rate, restarts allow the model
to explore different regions of the parameter space
and potentially find better solutions.

Other schedulers that control the training have
also been shown to accelerate convergence and
improve the performance of models. For example,
in the paper by Wei (2019), the authors propose
a method called “decaying loss” where a fixed

learning rate is used, but the magnitude of the update
is controlled by gradually reducing the impact of
noise on the network.

Another paper by Pan et al. (2021) introduces
Eigencurve, a family of learning rate schedules
that achieve minimax optimal convergence rates
for stochastic gradient descent (SGD) on quadratic
objectives with skewed Hessian spectrums. The
authors show that Eigencurve outperforms step
decay in image classification tasks, especially when
the number of epochs is small. The proposed
schedulers are designed to approximate Eigencurve
and show superior performance compared to cosine
decay in certain situations.

In federated learning, Shi et al. (2020) propose
a device scheduling policy to achieve fast conver-
gence by considering the trade-off between the
number of rounds required to attain a certain model
accuracy and the latency per round. Their greedy
policy selects devices with the least time consump-
tion in model updating, resulting in a good trade-off
between learning efficiency and latency per round.
Our previous work also explored scheduling such
as using Reinforcement Learning (RL) to learn LR
schedules as a policy (Subramanian et al., 2023).

Overall, these papers provide evidence that learn-
ing rate schedulers can accelerate convergence and
improve the performance of models. This has been
well known in research in Deep Learning. The pro-
posed methods, such as decaying loss, Eigencurve,
learning rate annealing, and device scheduling poli-
cies, offer different strategies for controlling the
learning rate and achieving better convergence rates.
Several of these schedulers impose drastic changes
to the LR schedule which we hypothesize can cause
long term changes to the loss trajectory. Our inten-
tion is to show a specific transition phenomenon
via theoretical and experimental analysis. In the
next section, we model SGD dynamics and prove
that after a transition, a loss curve can converge
or contract towards another loss curve that is pre-
determined by the learning rates involved in the
transition.

3 Proof sketch

SGD dynamics have been modeled in various ways
in the past for the purpose of studying theoretical
characteristics of the algorithm, and for informing
the design of new optimizers and schedulers. In
this section we model SGD dynamics in continuous
time, and use this to prove how sudden changes
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in learning rate (LR) can cause one loss trajectory
corresponding to the original LR to converge or
contract towards the loss trajectory corresponding
to the the changed LR. We then use these results
and demonstrate the same phenomenon using theo-
retical and real-world experiments.

First we state the standard SGD algorithm.

Algorithm 1 Stochastic gradient descent
1: Initialize 𝜃0 ∈ R𝐾 deterministically or ran-

domly
2: Define non-increasing sequence (𝜂𝑘)∞𝑘=1 ∈
(0,∞)

3: for 𝑘 = 1, 2, . . . do
4: Sample 𝑖𝑘 ∼ Unif(1, . . . , 𝑁)
5: 𝜃𝑘 ← 𝜃𝑘−1 − 𝜂𝑘∇Φ𝑖,𝑘 (𝜃𝑘−1)
6: end for
7: return (𝜃𝑘)∞𝑘=0

Here, 𝜃𝑘 ∈ R𝐾 is the model parameters at itera-
tion 𝑘 , Φ𝑖 : R𝐾 → R is the loss function for data
subset 𝑖, 𝜂𝑘 > 0 is the learning rate at iteration
𝑘 , 𝑁 is the number of data subsets or batches of
data. This matches the SGD algorithm description
in Section 1.1 of (Latz, 2021). At a small enough
discretization of steps, we model SGD dynamics by
replacing 𝜃 ← 𝜃−𝜂ΔΦ𝑖 (𝜃), by 𝑑𝜃

𝑑𝑡 = −𝜂ΔΦ𝑖 (𝜃 (𝑡)).
In practice, we also commonly see fixing 𝜂𝑘 = 𝜂0,
or using a scheduler (for example, Cosine scheduler)
to control the learning rate. While several choices
of schedulers that are available continuously change
the learning rate, our intuition is that even a sin-
gle step change to a different learning rate would
introduce a drastic change to the dynamics even if
starting from the same initial point. To study the
effect of changes in LR, we define the algorithm
to be studied slightly differently by adding steps
related to the SkipLR transition to the original Al-
gorithm 1, as shown Algorithm 2. Here, we study
the dynamics of a process where the learning rate
switches at a predetermined time step or epoch.

3.1 Assumptions
We present the assumptions required for our proof.
The potentials Φ𝑖 : R𝐾 → R, 𝑖 ∈ 1, . . . , 𝑁 rep-
resent the loss functions associated with different
fractions of the training data as mentioned in (Latz,
2021). This is particularly relevant when we con-
sider that stochastic gradient process (SGP) SGP is
a valid continuum limit of SGD.

Specifically, the index 𝑖 in Φ𝑖,𝑘 refers to a partic-

Algorithm 2 SkipLR experiments
1: Initialize 𝜃0 ∈ R𝐾 deterministically by setting

a known seed
2: Set initial, Skip LR and skip epoch - 𝜂0, 𝜂𝑠, 𝑘𝑠
3: for 𝑘 = 1, 2, . . . do
4: if 𝑘 ≥ 𝑘𝑠 then
5: 𝜂 = 𝜂0
6: else
7: 𝜂 = 𝜂𝑠
8: end if
9: Sample 𝑖𝑘 ∼ Unif(1, . . . , 𝑁)

10: 𝜃𝑘 ← 𝜃𝑘−1 − 𝜂∇Φ𝑖,𝑘 (𝜃𝑘−1)
11: end for
12: return (𝜃𝑘)∞𝑘=0

ular subset 𝑦𝑖 of the full training data set 𝑦 at time
step 𝑘 . For the remainder of the paper we drop the
𝑘 index in Φ𝑖,𝑘 without any loss of generality. Then
Φ𝑖 (𝜃) gives the loss of the model parameters 𝜃 on
the subset 𝑦𝑖 (Eq. 1 in (Latz, 2021)).

The full potential is given by the average over all
subsets:

Φ̄(𝜃) = 1
𝑁

𝑁∑︁
𝑖=1

Φ𝑖 (𝜃). (1)

The training process results in optimal parameters
𝜃∗ ∈ arg min𝜃∈𝑋 Φ̄(𝜃). For clarity, Φ̄ represents
the actual loss function, with inaccurate gradient
evaluations arising from randomly substituting Φ̄ by
some Φ𝑖. As in (Latz, 2021) we consider gradient
descent algorithms as time stepping discretizations
of a certain continuous time gradient flow process.
Where we differ from (Latz, 2021) (without any loss
of applicability of the methods presented therein)
is that in (Latz, 2021) the step sizes 𝜂𝑘 represent
the length of the time interval in which the flow
follows a certain potential Φ𝑖 at the given iteration
𝑘 , i.e. the time between two switches of potentials.
We assume the switches between potentials happen
uniformly randomly at every step, but the learning
rate switches once in the process of training. By
assuming 𝜂𝑘 to be at the lowest resolution of dis-
cretization, we start our discussion from a better
approximation of the actual SGD dynamics shown
in Algorithm 1. We now continue discussing the
potentials Φ𝑖 and other assumptions.
Assumption 1. The following assumptions are
made on the potentials Φ𝑖:

1. Φ𝑖 ∈ 𝐶2(R𝑛;R) ∀𝑖 (twice continuously differ-
entiable)
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2. ∇Φ𝑖 , 𝐻Φ𝑖 are continuous on R𝑛 ∀𝑖
3. There exists 𝜅 > 0 such that for all 𝜃0, 𝜃′0 ∈ R𝑛:

⟨𝜃0 − 𝜃′0,∇Φ𝑖 (𝜃0) − ∇Φ𝑖 (𝜃′0)⟩ ≥ 𝜅 |𝜃0 − 𝜃′0 |2, ∀𝑖

The strong convexity assumption (3) implies that
the gradient flows associated with each potential Φ𝑖
are contractive, as shown in the following lemma:
Lemma 1. If the inequality

⟨𝜃0 − 𝜃′0,∇Φ𝑖 (𝜃0) − ∇Φ𝑖 (𝜃′0)⟩ ≥ 𝜅𝑖 |𝜃0 − 𝜃′0 |2

holds for some 𝑖 ∈ 𝐼, then the corresponding flows
𝜙𝑖 : R𝑛 × R+ → R𝑛 contract exponentially:

|Φ𝑖 (𝜃0, 𝑡) −Φ𝑖 (𝜃′0, 𝑡) | ≤ 𝑐 · exp(−𝜅𝑖𝑡) |𝜃0 − 𝜃′0 |

for some 𝑐 ≥ 0 and for all 𝜃0, 𝜃
′
0 ∈ R𝑛, 𝑡 ≥ 0.

Proof. This follows from the strong convexity as-
sumption and Lemma 1 in (Latz, 2021), and im-
plied by Lemma 4.1 given in (Cloez and Hairer,
2015). □

4 Main Result
We can now state and prove the main result:
Theorem 1. Let 𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡) be trajectories
evolving according to the SGP dynamics:

𝑑𝜃𝑖
𝑑𝑡

= −𝜂𝑖∇Φ𝑖 (𝜃𝑖 (𝑡)), 𝑖 = 1, 2, 3

where 𝜂𝑖,∀𝑖 are constant learning rates, and 𝜃3(𝑡)
switches learning rate according to:

𝜂3(𝑡) =
{
𝜂1, if 𝑡 < 𝑡𝑘

𝜂2, if 𝑡 ≥ 𝑡𝑘 .

If Φ1,Φ2,Φ3 satisfy Assumption 1, then Φ3(𝑡) →
Φ2(𝑡) as 𝑡 →∞.

What we intend to show is that when starting
from the same initial point 𝜃0, that the conditions
presented around 𝜂 using Skip LR as shown in
Algorithm 2 cause the solutions Φ𝑖 to contract
towards each other.

Proof. Let 𝜃1,𝑘 = 𝜃3,𝑘 = 𝜃3(𝑡𝑘). Due to the
stochastic nature of SGP dynamics, 𝜃1,𝑘 may not
be exactly equal to 𝜃3,𝑘 , but given that we fix
𝜃1,0 = 𝜃2,0 = 𝜃3,0, we continue with this assump-
tion. For 𝑡 ≥ 𝑡𝑘 , 𝜃3 evolves as:

𝜃3(𝑡) = Φ3(𝜃3,𝑘 , 𝑡 − 𝑡𝑘).

Since Φ2,Φ3 satisfy Assumption 1, by the contrac-
tion lemma we have:��Φ3(𝜃3,𝑘 , 𝑡 − 𝑡𝑘) −Φ2(𝜃2,𝑘 , 𝑡 − 𝑡𝑘)

�� ≤
𝑐 · exp(−𝜅3(𝑡 − 𝑡𝑘))

��𝜃3,𝑘 − 𝜃2,𝑘
�� .

Taking 𝑡 →∞ and using the continuity of Φ2,Φ3,
we obtain:

Φ3(𝜃3(𝑡)) → Φ2(𝜃2(𝑡)).
Therefore, after the learning rate switch at 𝑡𝑘 , Φ3(𝑡)
converges to Φ2(𝑡). □

4.1 Practical considerations and 𝜖 bounded
contraction

The above proof outlines the asymptotic conver-
gence of the potential functions Φ3 to Φ2 as 𝑡 ap-
proaches infinity. To establish a finite-time bound
for Φ3 to come within an 𝜖 bound of Φ2, we need to
consider the exponential contraction rates derived
from Lemma 1. In this section we derive an expres-
sion for a critical time 𝑡𝑐 after the switch 𝑡𝑘 when
Φ3 is within 𝜖 of Φ2.

Given that Φ3(𝑡) → Φ2(𝑡) as 𝑡 → ∞, let’s
consider the behavior of the difference between
Φ3 and Φ2 using the bound from the contraction
lemma:

|Φ3(𝜃3(𝑡)) −Φ2(𝜃2(𝑡)) | ≤
𝑐 · exp(−𝜅3(𝑡 − 𝑡𝑘)) |𝜃3,𝑘 − 𝜃2(𝑡𝑘) |.

We want this difference to be within 𝜖 of each other.
Thus, we have:

|Φ3(𝜃3(𝑡)) −Φ2(𝜃2(𝑡)) | ≤ 𝜖 .

Substituting the bound expression:

𝑐 · exp(−𝜅3(𝑡 − 𝑡𝑘)) |𝜃3,𝑘 − 𝜃2,𝑘 | ≤ 𝜖 .

To find the time 𝑡𝑐 when the above inequality holds:

exp(−𝜅3(𝑡𝑐 − 𝑡𝑘)) ≤ 𝜖

𝑐 |𝜃3,𝑘 − 𝜃2,𝑘 | .

Taking the natural logarithm of both sides and
solving for 𝑡𝑐, and considering discretized case for
implementation we get:

𝑡𝑐 − 𝑡𝑘 ≥
⌈

1
𝜅3

ln
(
𝑐 |𝜃3,𝑘 − 𝜃2,𝑘 |

𝜖

)⌉
.

This is the finite time after 𝑡𝑘 (i.e. 𝑡𝑐 − 𝑡𝑘) when Φ3
comes within an 𝜖 bound of Φ2 after the learning
rate switch at time 𝑡𝑘 , assuming all the conditions
and assumptions hold, and with 𝜅3, 𝑐, 𝜖 > 0.
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5 Experiments
5.1 Testing for determinism
We test our hypothesis using sythetic data experi-
ments, which we show in Section C of the Appendix.
Next we test this behavior in more realistic settings.
In all our experiments below, we use the Hug-
gingface library with no modifications except for
introducing the new Skip LR scheduler. First, we
confirm the behavior of fixed seed experiments and
the level of determinism that can be achieved. This
is important since all the theoretical experiments
above are with fixed, known potential functions. In
reality, we do not have a closed form expression
for the number, or the form of these potential func-
tions involved. The following experiments were all
performed on an “ml.g5.16xlarge” GPU instance
on Aamzon SageMaker Studio. All experiments
use SGD as the optimizer. For Phi-3 (3.8B pa-
rameter model), we used a larger “ml.p4d.24xlarge”
instance and loaded the model in Bfloat16 datatype.
We provide sample code to replicate and use the
SkipLR framework on Github.1

Our motivation behind the choice of SGD for
experiments is two fold 1) to maintain a close rela-
tion with the optimizer analyzed in the theoretical
analysis, and 2) to test progression of loss curves
with fixed learning rates, and study whether it is
possible to transition from one loss curve to an-
other using skipLR, a scheduler used specifically
for this test. As such we require optimizers used
to necessarily not adapt the learning rate during
training. Other optimizers used in practice to-
day like Adam sets and adapts parameter-specific
learning rates by using the average of the second
moments of the gradients. It also calculates the
exponential moving average of gradients and square
gradients. As such, the effective learning rate is not
one fixed (global) learning rate; additionally find-
ing the equivalent global learning rate is not trivial,
making the study of fixed LR transitions difficult.
To isolate the effects of self-adaptive parameters,
we choose to specifically only study changes in
the global learning rate, rather than a combination
of global learning rates controlled by the SkipLR
scheduler along with self-adapted per-parameter
learning rates of Adam/AdamW style optimizers.

Given a fixed seed and fixed learning rate (LR),
we expect loss progression to be fixed; this has been
known for a while through research on determinism.

1https://github.com/amazon-science/
aws-research-science/tree/main/SkipLR

To show the level of determinism attainable, we
use the same hardware (ml.g4.16xlarge on Amazon
SageMaker), and are experimenting with 3 different
seeds, with two runs/trials per learning rate and
for many learning rates 1𝑒−3 to 1𝑒−6. We use the
google/long-t5-tglobal-base model with the News
Commentary dataset, and train for 1000 steps. As
we can see below, all other parameters remaining
constant, the black lines (experiment 1) and red
markers (experiment 2) coincide exactly. This is
not surprising given algorithmic determinism, and
allowing for some platform/implementation non-
determinism.

(a) Seed = 1

(b) Seed = 2

Figure 2: Determinism experiments for two different
seeds, 7 learning rates from 1𝑒−6 to 1𝑒−3.

We note in Fig. 2 that even for complex trans-
former based language models, loss curves for
different LRs can look very similar and can be
“grouped” to represent similar trajectories in the
function space. The rank-order of these loss tra-
jectories are not correlated with the magnitude of
learning rates in this more realistic setting, as op-
posed to the toy experiments. This grouping and
ordering is non-trivial - i.e. LRs that are not close
to each other in value can also be grouped, and the
order of loss trajectories ordered by loss value at
any given point of time cannot be predetermined.
That is, for this case, the trajectories are not rank
ordered based on the magnitude of the learning
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rate.

5.2 Fine-tuning experiments
Now that we have seen deterministic behavior with
fixed seeds, we conduct furhter experiments with
fine-tuning models. We define transition success
as 𝜖 for converging one loss curve to another as
0.01 or 1%, and measure the transition success %
for two different models and datasets as shown in
Table 2. For each model and dataset combination,
we test with 100 different seeds. For each exper-
iment, we choose two learning rates to transition
between and the transition point 𝑡𝑘 . We then run
three sub-experiments with the same seed - Φ1
representing flow under 𝜂1, Φ2 representing flow
under 𝜂2, and Φ3 representing flow under Skip LR
scheduler between 𝜂1, 𝜂2. In all cases 𝑡𝑘 = 200,
and the total number of steps is 1000. Although
this is a small number of steps (less than an epoch
for our batch size of 8), we see clear transitions.
Depending on the set up, we see several runs where
the final loss (even at a fraction of the total steps we
experimented for) is significantly close to what is
achievable through longer training durations (see 5c
in the supplementary material for instance). This
is of course true for many experiments where the
trajectory leads to a sub-optimal region with higher
loss; in these cases, we do not expect to achieve a
very low loss when training to many more iterations.
In fact, these are conditions where we see that the
transition to other loss curves are less likely. Table
2 shows that the constants 𝜅, 𝑐, 𝜖 defining the like-
lihood of transitioning is inherent to the problem
(defined by the model, task, dataset, batch size etc.).
Even for complicated problems, we see (as shown in
Fig 3 that transition from one loss curve to another
is possible; this can inform researchers in the cre-
ation of new schedulers to accelerate convergence.

Supplementary material provided includes more
examples of transition for both experiments men-
tioned in 2.

5.3 Pretraining experiments
To further validate our theoretical findings and ex-
plore the dynamics of learning rate transitions in a
more extensive setting, we conducted pretraining
experiments with the Phi-3 model, a large language
model with 3.8 billion parameters. Unlike the previ-
ous fine-tuning experiments, where we started from
a pretrained checkpoint, in this case, we trained
the model from scratch for 20, 000 steps using the

(a) Loss curve and showing transition

(b) LR schedule

Figure 3: Skip LR schedule (in blue) compared to fixed
LR schedules (red and green), and corresponding loss
curves showing successful transition between very dif-
ferent learning rates (1𝑒−6 and 5𝑒−3) for the Google T5
base model when fine tuned with the News commentary
dataset on a translation task.

same dataset as in Table 2.
Figure 4 illustrates the loss curves for different

learning rate transitions during the pretraining pro-
cess. We tested multiple transition points at steps
2500, 5000, 7500, and 10000, switching between
learning rates of 1𝑒−3 and 1𝑒−6. The results clearly
demonstrate that the loss curves exhibit the contrac-
tion behavior predicted by our theoretical analysis,
converging towards the trajectory determined by
the new learning rate after the transition point.

Notably, we observe that the loss curves closely
agree with the theoretical results, even in this large-
scale pretraining setting. A detailed plot of our
theoretical experiments can be found in Section C
of the Appendix. This suggests that the contraction
phenomenon holds true not only for fine-tuning
scenarios but also during the initial pretraining
phase, where the model is learning from scratch.

Our findings from the Phi-3 pretraining experi-
ments further corroborate the hypothesis that loss
curves can transition and converge towards prede-
termined trajectories governed by the new learning
rate, even in the case of extremely large language
models. We conjecture that the fine-tuning experi-
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Model Steps Dataset Transi- Transition Transition
tion
%

before step % statistics

25 50 75 Median Min Max

Google T5
base

1000 News Commentary
(translation)

98 1 41 93 525 250 1000

Roberta
Large

1000 Xglue (NER) 80 7 67 77 410 210 1000

GPT2 1000 Wikitext (CLM) 100 100 100 100 200 200 200
GPT2 (1e-4
to 1e-3)

1000 Wikitext (CLM) 100 100 100 100 200 200 210

Gemma 2B 1000 Wikitext (CLM) 100 0 4 43 780 420 950
Gemma 2B 10, 000 Ultra Textbooks

(CLM)
100 40 100 100 2540 200 2800

Phi-3 3.8B * 10, 000 Ultra Textbooks
(CLM)

100 100 100 100 1000 1000 1000

Table 2: Transition statistics for multiple models tested on translation, NER and CLM tasks. Each row represents 100
seed experiments of 1000 steps each. Transitions are from 1𝑒−6 to 1𝑒−3 unless specified. Total number of optimizer
update steps taken are 100 seeds each experiment× total number of steps per seed× total runs per experiment (3) =
7.5𝑀 . Due to the large resources demanded by LLMs beyond 3B in size, Phi-3 (*) is run for 5 seeds instead of 100.

ments presented in Table 2 essentially zoom into the
bottom-right portion of the pretraining loss curves,
where transitions continue to occur, albeit on a
smaller scale. These pretraining results provide
additional evidence supporting our theoretical anal-
ysis and demonstrate the practical implications of
learning rate transitions for accelerating the training
of large language models, both during pretraining
and fine-tuning stages.

Figure 4: Pretraining experiments with Phi 3, 3.8B
parameter model with transitions from various points

6 Limitations
While our findings are promising, there are sev-
eral important considerations. First, the theoretical
analysis relies on strong convexity and smoothness
assumptions about the loss landscape. While this
is a standard setup in many theoretical settings, our
work doesn’t explore more complex settings, es-
pecially a setting that includes modern-day LLMs.
Second, our experiments are limited to fixed learn-
ing rates. We believe dynamic learning schedulers
add an additional layer of complexity that can affect
the Skip phenomenon, which we do not explore in
this work.

7 Conclusion
In this work, we have analyzed the dynamics of
SGD training under different learning rate sched-
ules. We modeled SGD as a stochastic gradient
flow and considered the effect of switching the
learning rate at a predetermined time, which we
call “SkipLR”. Under standard assumptions on the
loss landscape, we proved that the loss curves result-
ing from different constant learning rates contract
towards each other after a SkipLR switch. We veri-
fied this behavior theoretically for simple cases and
empirically for large language models. Our analysis
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gives insight into how learning rate schedules im-
pact the training dynamics. This could help design
new schedules that lead to faster convergence. An
interesting direction for future work is to extend the
analysis to stochastic processes with non-uniform
sampling, and establish quantitative bounds on the
convergence rates.
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A Appendix
B Additional figures for transition at

different steps
In Figures 5a to 6a, we include more examples
of transition for both experiments mentioned in 2.
Given the large number of experiments that we need
to store model loss states, optimizer and scheduler
states, we only log every 10’th step. In the images
below, we plot loss vs. logged step, and so the
actual step can occur within 10 steps of when the
loss is logged. All code needed to reproduce these
results along with additional experiments will be
made available.

(a) Example of early transition (seed 38, around step
340)

(b) Example of early transition (seed 36, around step
530)

(c) Example of late transition (seed 70, around step
880)

Figure 5: More figures for transition at various steps
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(a) Example of transition when loss trajectories are
close to each other (seed 61, around step 440)

(b) Example of early transition that avoids divergence
after around step 750 (seed 70, step 330)

(c) Example of early transition in the case of GPT2
(seed 1, step 200)

(d) Example of very close loss curves for Gemma 2B
resulting in late transition (seed 69, step 770). We
continued experiments with 10x steps of the original
experiments and report more results in Table 2.

Figure 6: More figures for transition at various steps

C Synthetic data experiments
We run some theoretical experiments approximat-
ing the dynamics of Φ̄ using Φ0(𝜃) = 𝜃, i.e. only
a single potential function. When using skip LR
scheduler, we see that the skips cause the curves
to exponentially converge (Fig. 1 a) and b). When
𝑁 = 2, we uniformly randomly switch between
Φ0(𝜃) = 𝜃 + 1 and Φ1(𝜃) = 𝜃 − 1, with two sets of
learning rates. We use the Runge Kutta 5 solver
from Python3’s Scipy library for solving the initial
value problem with a fixed 𝜃 (0). The stationary
point 𝜃∗ = 0 for all problems, and the loss function
used is RMSE; note that here since 𝜃∗ = 0, the
plot also reveals the parameter 𝜃 (𝑡). As we can see
in all cases of Figure 8, transition within some 𝜖
happens well before 𝑡 → ∞. Note here that with
this theoretical set up, the ranking of the loss curves
corresponds to the values of the LRs used. That
is, a higher learning rate corresponds to a steeper
descent as expected; in the main paper we demon-
strate how this is different for real-world transformer
based training experiments. In these experiments
modeling learning dynamics using potential func-
tions, when transitioning from a higher average loss
value to a lower one, the convergence rate effec-
tively accelerates to eventually match the lower loss
curve. This matches our proof (Φ2(𝑡) → Φ3(𝑡).
We also note that the loss curves as 𝑁 increases
beyond 1 with random switching between potential
closely resemble what one might see when training
standard deep neural networks.
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(a) Example of noisy loss curves for Phi-3, still
showing very early transition - Seed=1. Although
Phi 3 (3+ Billion parameters) is a large model,
transitions are still made successfully.

(b) Example of noisy loss curves for Phi-3, still showing
very early transition - Seed=2.

(c) Example of early transition in the case of GPT2 (seed
54, step 200)

(d) Example of very close loss curves for Gemma 2B with
early transition (seed 17, step 470)
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(a) 𝑡𝑘 = 2, 𝑁 = 1 with learning rates 1 and 0.1 (b) 𝑡𝑘 = 10, 𝑁 = 1 with learning rates 1 and 0.1

(c) 𝑡𝑘 = 2, 𝑁 = 2 with learning rates 1 and 0.1 (d) 𝑡𝑘 = 10, 𝑁 = 10 with learning rates 1 and 0.1

(e) 𝑡𝑘 = 2, 𝑁 = 2 with learning rates 0.1 and 0.2 (f) 𝑡𝑘 = 10, 𝑁 = 2 with learning rates 0.1 and 0.2

Figure 8: Transitions demonstrated with dynamics Φ̄(𝜃) = 1
𝑁

∑𝑁
𝑖=1 Φ𝑖 (𝜃), where 1) 𝑁 = 1 and Φ′0 = 𝜃 in figures a.

and b., with learning rates [0.1, 1] 2) 𝑁 = 2 and Φ′0 = 𝜃 + 1, Φ′1 = 𝜃 − 1 with learning rates [0.1, 1] figures c. and d.
and 3) Potential functions as defined in 2) but with learning rates [0.1, 0.2] figures e. and f. In all cases we test two
transition points, 𝑡𝑘 = 2 and 𝑡𝑘 = 10
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