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Abstract

Adapting pre-trained language models (PLMs)
for cross-task generalization is a crucial re-
search area within the field of NLP. While
fine-tuning and in-context learning are effec-
tive approaches for adapting LMs to emerg-
ing tasks, they can be costly and inefficient.
Recently, some researchers have focused on
achieving efficient task adaptation via hypernet-
work, which is a meta network that generates
task-specific weights based on task-oriented
information without any optimization. How-
ever, the training of hypernetworks often lacks
stability since the optimization signal is not
straightforward, and the task information is not
adequately representative. Moreover, previous
works train hypenetworks with the general cor-
pus, which is struggling with few-shot adap-
tation. To address these issues, we introduce
HyperLoRA, a hypernetwork for LoRA param-
eters generation involving hypernetwork pre-
training on instruction-following data and gen-
eralization fine-tuning on sparse task data. Fur-
thermore, we utilize a constrained training loss
and a gradient-based demonstration selection
strategy to enhance the training stability and
performance. Experimental results and analy-
sis across four benchmark datasets (P3, S-NI,
BBH, and SuperGLUE) demonstrate the pro-
posed approach has flexible generalization abil-
ity and superior performance.

1 Introduction

Pre-trained language models (PLMs) have shown
remarkable capabilities across a diverse spectrum
of NLP tasks, encompassing understanding (Devlin
et al., 2019; Liu et al., 2019), reasoning (Liu et al.,
2023; Wang et al., 2023b), and generation (Raffel
et al., 2020a; Brown et al., 2020). The ability of lan-
guage models to effectively adapt their knowledge
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to unseen tasks (referred to cross-task generaliza-
tion) is crucial for the broader applicability of NLP
systems, which garnered significant attention from
many researchers.

There are several approaches towards achieving
cross-task generalization. The most straightfor-
ward way is fine-tuning LMs with a certain amount
of task-specific data, which demands substantial
computational costs and may cause catastrophic for-
getting, degenerating the performance of LMs on
the previous tasks (Chen et al., 2020). In contrast,
in-context learning (ICL) provides a few demon-
stration examples to generalize LMs to unseen
tasks without explicit optimization (Brown et al.,
2020; Min et al., 2022). However, ICL requires
extremely long and expensive-to-process inputs for
each test example, making it both costly and ineffi-
cient (Zhou et al., 2023; Li et al., 2023). Another
line of researchers explores the cheaper and more
effective approach that composes the weights of
new tasks by selecting and combining fine-tuned
or parameter-efficient weights from a pre-existing
weights pool (Vu et al., 2022; Ponti et al., 2023;
Poth et al., 2023; Huang et al., 2023). While this
approach is simple and effective, it necessitates
a pre-existing pool of various task weights, and
the effectiveness of the composed weights may be
restricted by the pool of available tasks. Addition-
ally, although the parameter-efficient weights are
lightweight, there are still resource consumption is-
sues for storage and training while the pre-existing
pool is substantial in various task scenarios.

To address the above issues in the cross-task
generalization scenario, (Ha et al., 2017; Phang
et al., 2023; Ivison et al., 2023) proposes a meta
network named hypernetwork, which performs a
“text-to-weight” task converting task information
(e.g. task instructions and task demonstrations)
into task-specific parameters (e.g. prefixes (Li
and Liang, 2021), adapters (Houlsby et al., 2019),
LoRA (Hu et al., 2022)) for underlying pre-trained
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language models. Compared with fine-tuning and
ICL, hypernetwork is a more efficient method that
generates task-specific parameters in a single for-
ward without any optimization. Furthermore, hy-
pernetwork can generate parameters when required,
avoiding additional storage expenditures.

Despite the obvious strength of previous works
on hypernetwork, several issues remain that have
not been appropriately solved. Firstly, the training
instability problem is one of the most challenging
problems in hypernetwork training (Chang et al.,
2020). Existing strategies primarily rely on back-
propagating gradients from the underlying model,
while lacking effective and specific measures to
circumvent this instability. Secondly, most cur-
rent works construct task demonstrations through
manual crafting or random sampling from datasets,
potentially affecting parameter generation and re-
sulting in suboptimal performance. Thirdly, pre-
vious works typically pre-train hypernetworks on
general language corpus (e.g. C4 (Raffel et al.,
2020b)) directly, which may not be adept at han-
dling diverse task instructions and could perform
suboptimally on low-resource task data.

Considering all the above considerations, we in-
troduce HyperLoRA, a novel method that aims to
enable language models for efficient cross-task gen-
eralization. Specifically, HyperLoRA consists of a
text encoder and a P-generator, designed to convert
task information into parameter-efficient modules,
specifically LoRA (Hu et al., 2022). To improve
training stability, we propose an explicit training
loss to constraint the training of HyperLoRA and
utilize a gradient-based automatic demonstration
selection strategy to select the most representative
task examples. Furthermore, our HyperLoRA in-
volves hypernetwork pre-training on instruction-
following data to enable it to generate task-related
parameters based on task information and then gen-
eralization fine-tuning on sparse task data to adapt
LMs with unseen tasks. In a nutshell, the contribu-
tions of our work are as follows:

• We introduce an efficient cross-task general-
ization method HyperLoRA, which contains a
text encoder and a P(arameters)-generator to
convert task information into LoRA modules.

• To enhance the generalization ability of hyper-
network, we propose a paradigm that incorpo-
rates hypernetwork pre-training on multi-task
instruction-following data and generalization
fine-tuning with sparse task data.

• We develop a constrained training loss and an
automatic demonstration selection strategy to
improve training stability and performance.

• The experimental and analysis results across
cross-task generalization and few-shot adap-
tation scenarios demonstrate the effectiveness
of our proposed method.

2 Related Work

2.1 Efficient Cross-Task Generalization

Efficient adaptation of pre-trained LLMs to unseen
tasks is an important and challenging research di-
rection. One primary area of research focuses on
prompt tuning. In this line, the T5 model (Raf-
fel et al., 2020a) unified all NLP tasks as a Text-
to-Text problem, providing a solid foundation for
follow-up works. Afterwards, instruction tuning
that fine-tuning LMs with various multi-task in-
structions is proposed (Wei et al., 2022; Sanh et al.,
2022; Ouyang et al., 2022), which improves zero-
shot and few-shot generalizations greatly since the
fine-tuned model learned to utilize instructions to
perform novel tasks. In-context learning further em-
ploys task examples as demonstrations in addition
to instructions, adapting models without optimiza-
tion. Nevertheless, this increases computation costs
due to longer inputs from demonstrations and in-
structions, and the performance depends largely
on the inherent ability of LLMs. Another effi-
cient stream of research focuses on task-specific
weight composition with parameter-efficient fine-
tuning (PEFT). Among this, Vu et al. (2022); Su
et al. (2022) explore transferring PEFT modules
from source tasks and find it benefits novel down-
stream tasks. Chronopoulou et al. (2023); Poth
et al. (2023); Pfeiffer et al. (2020); Chen et al.
(2023); Huang et al. (2023) compose the weights
for new tasks by selecting relevant tasks and com-
bining their task-specific weights. While this ap-
proach is efficient, it necessitates a pre-existing
pool of task-specific weights based on task infor-
mation, and the task pool may limit the expressive-
ness of the composed weights. Meanwhile, Ma-
habadi et al. (2021b); He et al. (2022); Wang et al.
(2023c); Phang et al. (2023) introduce employing
a meta network named hypernetwork to generate
task-specific weights and achieve superior cross-
task performance. Our work also aligns with this
direction and aims to enhance the generalization
capability and training stability of hypernetworks.
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2.2 Hypernetwork

Hypernetworks are meta neural networks that gen-
erate parameters for another primary network,
which gains popularity in multi-task learning sce-
narios. Mahabadi et al. (2021a) leverages hypernet-
work with shared weights across adapters for LMs
adapting. Mahabadi et al. (2021b) and He et al.
(2022) further propose task-conditioned hypernet-
works and enable information sharing across tasks.
Moreover, Ivison et al. (2023); Phang et al. (2023);
Liang et al. (2023) utilize LMs to initialize hyper-
networks and propose hypernetworks pre-training
on large-scale general corpus data. However, the
above hypernet-based methods have limitations and
struggle in few-shot adaptation scenarios. Differ-
ent from those approaches, our work stands out
from those approaches in several ways. We train
hypernetwork with instruction-following data to
improve its robustness for diverse task instructions.
Furthermore, we introduce a constrained training
objective to enhance training stability and develop
an automatic demonstration selection strategy to
further improve its performance.

3 Methodology

3.1 Revisiting the Low-Rank Adapter (LoRA)
Finetuning Method

Hu et al. (2022) demonstrates that weight updates
in the pre-trained models (PTMs) exhibit a low
“intrinsic dimension” while adapting PTMs to spe-
cific tasks, and further proposes the Low-Rank
Adapter (LoRA) finetuning method. Through up-
dating a small set of trainable adapters and fixing
full model parameters, the LoRA method substan-
tially reduces memory requirements and achieves
comparable results with full-parameter finetun-
ing. Specifically, given a pre-trained weight ma-
trix W0 ∈ Rd×k, LoRA constrains its update
by representing it with a low-rank decomposition
W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈
Rr×d, and the rank r ≪ min(d, k). W0 is frozen
during training, while A and B contain trainable
parameters. Considering the input as x and the
operation h = W0x, the forward pass will be mod-
ified with LoRA:

h = W0x+∆Wx = W0x+ABx (1)

In general, ∆W is scaled by α
r , where α is a con-

stant in r.

3.2 HyperLoRA
As illustrated in Figure 1, our HyperLoRA is a hy-
pernetwork to convert task instructions to LoRA
modules, which consists of three essential elements:
a text encoder to transform task information into
continuous representations, P-generator facilitates
interaction between the encoded instructions and
a collection of trainable embeddings, serving the
role of synthesizing LoRA parameters.

Text Encoder To encode the task information
effectively, we initialize the text encoder with an
encoder of a pre-trained language model. Given
the task information x = [xi;xe] as inputs, where
xi is task instruction and xe refers to task demon-
strations. We encode x as follows:

He = Enc(x) (2)

where He ∈ Rn×d is the encoded task features, n
is the length of x and d is hidden dimension.

P(arameters)-generator The P-generator as-
sumes a pivotal role in bridging text representa-
tion space and parameter space. It extracts a fixed
number of the output features from the text en-
coder to generate parameters. As shown in Fig-
ure 1 (a), the P-generator consists of two submod-
ules: (1) a transformer decoder that extracts the
task features. (2) a generator module to generate
task parameters for the underlying model. For the
inputs of the decoder, we create a set number of
learnable task query embeddings, which denotes to
E = (e1, ..., el) ∈ Rl×d, where l is the number of
layers of the underlying model. The task queries
interact with each other through self-attention lay-
ers and interact with the task features He through
cross-attention layers:

Hd = Dec(He;E) (3)

where Hd ∈ Rl×d is the output feature of the
transformer decoder, prepared to generate parame-
ters. The generator module of the P-generator aims
to conditionally generate LoRA parameters of un-
derlying models based on the output features He

through some two-layer MLP modules. We employ
separate networks for distinct LoRA weights while
sharing between the layers. Given the query weight
Wq in the attention module as an example, we gen-
erate the low-rank parameters A and B via MLPq,A

and MLPq,B for Wq of all layers, respectively:

ϕ
(i)
q,A = MLPq,A(h

(i)
d ) ∀i ∈ {1, ..., l} (4)

ϕ
(i)
q,B = MLPq,B(h

(i)
d ) ∀i ∈ {1, ..., l} (5)
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Figure 1: Overview of the proposed methods. (a) The architecture of HyperLoRA. (b) The truth-guided pre-training
stage. (c) The continuous fine-tuning stage to generalize our HyperLoRA into few-shot scenario.

where h
(i)
d ∈ R(1×d) is the i-th vector of Hd, and

ϕ
(i)
q,A is the parameter of A that is utilized to adapt

the query weight Wq of the i-th attention layer.

3.3 HyperNet Pretraining
Previous hypernet-based methods pre-train hyper-
networks with general corpus, which potentially
limits its generalization capacity to novel tasks. To
relieve this, we design a pre-training stage with
multi-task instruction data to equip HyperLoRA
with the ability to convert various task information
to LoRA modules. As shown in Figure 1 (b), we de-
note parameterized HyperLoRA by θ as H(·; θ). At
each training iteration, HyperLoRA receives task in-
struction and k-shot task demonstrations of the task
τ as input xτ and generate the LoRA parameters:

ϕτ = H(xτ ; θ) (6)

The underlying model M(·; ξ) takes in the query
q of the task τ and generates the response with
the generated LoRA parameters ϕ fusion. Then
HyperLoRA is optimized based on the underlying
model’s predictions:

min
θ

Eτ∈T ,(q,a)∈Dτ
L(M(q; ξ, ϕτ ), a) (7)

where a is the golden response of the query q, T
is a collection of pre-training tasks. Note that only
HyperLoRA is trained and the underlying model is
frozen during the pre-training stage. As a conse-
quence, the generated parameters ϕ can be com-
puted once for a specific task information, subse-
quently reused for downstream predictions during
inference or further tuning scenarios, which saves
memory and computation. To train HyperLoRA ro-
bustly and effectively, we introduce the method of
gradient-based demonstration selection and em-
ploy a truth-guided training objective.

Gradient-based Demonstration Selection
Method The task instruction and task demon-
strations are essential for hypernetworks to cap-
ture the task features and generate task-specific
parameters. However, prior studies (Ivison et al.,
2023; Mahabadi et al., 2021b; Phang et al., 2023)
construct the task demonstrations through man-
ual crafting or random sampling from datasets,
potentially affecting parameter generation and re-
sulting in suboptimal performance. We introduce
an automatic demonstration selection method via
gradient-based influence estimation. Firstly, we
pre-filter demonstrations via embedding and clus-
tering. Specifically, we convert each instance of
the task τ ∈ T into vector representations using
Sentence-BERT (Reimers and Gurevych, 2019),
and then we cluster the contextualized vectors uti-
lizing the k-means clustering algorithm to produce
k clusters. The instances closest to the center of
the cluster are sampled as the filtered task demon-
strations. Secondly, we follow Xia et al. (2024)
and warmup training the hypernetwork using the
preliminarily selected demonstrations. Finally, we
compute the gradient-based influence score of each
demonstration based on the trained hypernetwork
as follows:

Inf(dτ , tτ ) ≜
N∑

i=1

η̄i
⟨L(dτ ; θi),L(tτ , θi)⟩
∥L(dτ ; θi)∥∥L(tτ , θi)∥

(8)

where dτ and tτ refers to the demonstration and
test example of the task τ , respectively, ηi is the
learning rate during the i-th epoch and L is the loss
function. The influence score calculated above
reflects the importance of the demonstration to
the test examples, thus we select the demonstra-
tions with higher scores as the final representative
demonstrations.
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Truth-Guided Training Objective The most
challenging in hypernetwork training is its insta-
bility, which can be attributed to multiple aspects:
(1) Weight initialization. The choice of how the
weights are initialized significantly impacts the
convergence and stability of hypernetwork train-
ing. (2) Disparities Between Input and Output.
There are substantial distinctions between the rep-
resentation space of the input text and the output
parameters, which can harm the stability of hyper-
network training. (3) Indirect Objective in an End-
to-End Differentiable Manner. During the train-
ing stage, the optimization of the hypernetwork re-
lies on back-propagated gradients from underlying
models. However, the constraint objective is tai-
lored for underlying models rather than the hyper-
network. To resolve the above issues, we conduct
experiments with various hypernet initialization
configurations (including scale, type, and initialize
ways), and discover that reusing the weights from
the underlying model yields the most favorable re-
sults, in terms of performance and training conver-
gence, which is consistent with (Ivison et al., 2023).
Significantly, we propose a truth-guided training
objective to incorporate more direct weight-space
constraint loss for hypernetworks. In this approach,
we pre-optimize a set of LoRA parameters ϕ̂τ with
the underlying model for task τ , and then utilize
ϕ̂τ to constrain the generation process:

L(M(q; ξ, ϕτ ), a) =∑

(q,a)∈Dτ

log(p(a; q, ξ))

︸ ︷︷ ︸
language modeling loss

+ β||ϕ̂τ − ϕτ ||︸ ︷︷ ︸
weight-space loss

where β is hyperparameters that control for the
relative weight of the constrained loss.

4 Experiments

4.1 Experimental Settings
Dataset We conduct experiments in cross-task
generalization and few-shot adaptation settings.
For the former, we do evaluations on the Pub-
lic Pool of Prompts (P3) (Bach et al., 2022) and
the instruction-based dataset Super-Natural In-
structions (S-NI) (Wang et al., 2022). For the
latter, we evaluate the multi-task benchmarks Su-
perGLUE (Wang et al., 2019a) and the diverse
and challenging benchmark BIG-Bench Hard
(BBH) (Suzgun et al., 2023). In addition, we uti-
lize a subset of FLAN (Wei et al., 2022) follow-
ing (Huang et al., 2023) in the pre-training stage to

enable HyperLoRA to generate task-specific param-
eters. More details about the datasets can be seen
in the Appendix B.

Baselines To evaluate the effectiveness of the
proposed method, we compare it with several base-
lines, including: (1) Full Fine-tuning methods.
We multi-task fine-tune the pre-trained language
models T5 (Raffel et al., 2020a) on the provided
training set and evaluate it on the held-out test
set. (2) Parameter-Efficient Fine-Tuning (PEFT)
methods. We primary focus centers on LoRA (Hu
et al., 2022) and a weight composition method Lo-
raHub (Huang et al., 2023). (3) Hypernetwork-
based methods. This methods including HyperTun-
ing (Phang et al., 2023), HINT (Ivison et al., 2023),
and HART (Liang et al., 2023). (4) Our methods.
HyperLoRA indicates we pre-train the hypernet on
instruction data and further tune the hypernet on
downstream tasks, while HyperLoRA† represents
we continuously fine-tune the efficient parameters
generated by the instruction pre-trained hyerpnet.

Experimental Details To conduct fair com-
parisons with various baselines, we utilize Flan-
T5 (Chung et al., 2022) as underlying models in
the BBH dataset and LM-adapted T5 (Lester et al.,
2021) in other datasets. We initialize HyperLoRA
with the parameters of the corresponding underly-
ing model to achieve stable training and better per-
formance. More details can be seen in Appendix C.

4.2 Cross-Task Generalization
We conduct cross-task generalization experiments
mainly on the Public Pool of Prompts (P3) and
Super-Natural Instructions (S-NI) datasets. In
this scenario, we first pre-train HyperLoRA on the
instruction-following data FLAN (Wei et al., 2022)
with the truth-guided pre-training strategy, and then
multi-task fine-tune it on the training sets of P3
and S-NI, similar to previous studies (Phang et al.,
2023; Ivison et al., 2023; Liang et al., 2023).

Multi-learning on P3 benchmark. The eval-
uation is performed on a fixed set of P3 held-out
tasks based on the multiple-choice scoring with ac-
curacy, and the evaluation results are presented at
Table 1. HyperLoRA achieves the best performance
with a 1.5% Avg. score improvement than the
previous SOTA hypernetwork-based method Hy-
perTuning+. Notably, HyperTuning+ jointly trains
both the hypernet and the underlying T5 model,
which increases the storage and compute cost and
may cause catastrophic forgetting. In contrast, our
HyperLoRA adopts a more efficient way that freezes
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Method ANLI HSwag CB COPA RTE WiC WSC WGD Avg.↑
Full Fine-tuning Methods
T5 33.4 28.0 63.0 77.9 71.1 50.8 61.0 53.4 54.8
T5 (ICL) 35.3 27.5 68.6 70.5 75.2 51.7 62.1 52.2 55.4

Parameter-Efficient Fine-tuning Methods
LoRA 31.8 26.3 48.6 61.4 71.3 51.5 63.0 51.1 50.6
LoraHub 33.9 26.7 56.4 59.4 53.4 51.3 59.8 50.7 49.0

Hypernetwork-based Methods
HyperTuning 33.6 33.0 49.5 74.2 67.4 52.0 64.0 52.9 53.3
HyperTuning+ 33.9 30.7 62.1 75.8 72.3 50.8 64.6 54.5 55.6
HART 33.6 28.4 70.2 70.1 72.2 50.3 62.3 53.0 55.0
HyperLoRA 34.8 28.3 71.6 82.1 70.2 52.8 65.5 53.3 57.3

Table 1: Performance on the P3 held-out validation set. We use T5-Large as the underlying model for all methods
and report the average multiple-choice accuracy. T5 is multi-task fine-tuned without few-shot inputs while T5 (ICL)
utilizes in-context learning that concatenates few-shot inputs and target examples. Bold and underline fonts indicate
the best results and the second results in each block, respectively.

Method Avg. ROUGE-L

Large XL

Full Fine-Tuning Methods
T5 40.6 46.6
T5 (ICL) 47.6 54.0

Parameter-Efficient Fine-Tuning Methods
LoRA 42.9 42.9
LoraHub 13.4 -

Hypernetwork-based Methods
HyperTuning 42.0 45.0
HINT - 53.2
HART 46.8 50.4
HyperLoRA 47.3 52.8

Table 2: Evaluation results on the Super-Natural In-
structions (S-NI) held-out test set. Compared with T5,
Tk-Instruct incorporates expert-written explanations for
the positive demonstrations.

the underlying model and only trains the hypernet,
obtaining superior results compared to all hypernet-
based methods and the full fine-tuning methods
T5 and T5 (ICL). Additionally, our method pro-
duces robust parameter-efficient modules for un-
seen tasks, outperforming the PEFT methods sig-
nificantly.

Generalization results on Super-Natural In-
structions. We use Def+2Pos (task definition and
two fixed positive examples) as input for all base-
lines except T5 which only receives the Def (task
definition). More details about the input format can
be seen in Appendix C. Table 2 shows the evalua-

Method Needed Avg. Avg. EMTraining Tokens

Random No 111.6 25.7
Full Fine-Tuning Methods
FLAN-T5 No 111.6 27.0
FLAN-T5 (ICL) No 597.8 37.5
Llama2-7B (ICL) No 597.8 41.2

Parameter-Efficient Fine-Tuning Methods
LoRA Yes 111.6 37.7
LoraHub Yes 111.6 34.7

Hypernetwork-based Methods
HyperLoRA No 111.6 35.8
HyperLoRA† Yes 111.6 43.0
HyperLoRA (Llama2) No 111.6 41.4

Table 3: Experimental results on the BBH benchmark.
All methods employ FLAN-T5-Large as the base lan-
guage model. HyperLoRA† denotes generalization fine-
tuning the generated parameters on the few-shot data.
We follow the same settings as Huang et al. (2023) that
leverages 5-shot examples per task for all few-shot meth-
ods and reports average exact match (EM) metric.

tion results of the T5-Large (∼770M) and T5-XL
(∼3B) main models on the S-NI held-out test set.
HyperLoRA obtains superior results than hypernet-
based methods and compared with full fine-tuning
methods (HINT can be regarded as a full-parameter
fine-tuning method since it jointly trains the hyper-
net and the underlying model). Due to the limited
overlap between the training set and test set in the
S-NI dataset, there is a constraint on the pool of
available tasks. Consequently, the weight composi-
tion methods LoraHub yield unsatisfactory results.
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Figure 2: 4-shot learning results on the subset of Su-
perGLUE (BoolQ, CB, and SciTail). We report the
normalized results including the average results. Our
HyperLoRA obtains the best performance across all
datasets.

4.3 Few-shot Adaptation

Since the available data is limited in the few-shot
adaptation scenario, we directly utilize the model
pre-trained on instruction-following examples to
generate task-specific parameters based on few-
shot data without any optimization. Particularly,
we also conduct continuous fine-tuning to tune the
generated efficient parameters, and the result is
denoted as HyperLoRA†.

Few-shot Adaptation on BBH. As shown in
Table 3, our HyperLoRA demonstrates superior per-
formance over the LoraHub method even without
any training. Notably, while LoraHub employs
a reduced number of tokens per example during
inference compared to in-context learning, it re-
quires the composition of multiple LoRA modules
based on a gradient-free method optimization. In
contrast, our HyperLoRA efficiently generates the
LoRA parameters without any optimization or ad-
ditional information. Although the performance of
HyperLoRA does not surpass the in-context learn-
ing method, the resource consumption is signif-
icantly smaller than it (111.6 vs. 597.8 average
consumed tokens per example). Moreover, after
a slight fine-tuning process, HyperLoRA† outper-
forms FLAN-T5 (ICL) and LoRA tuning method
(LoRA) significantly, which underscores the poten-
tial of our method. We present the full results of
each task in BBH at Table 10 in Appendix E.3.

Few-shot Learning on SuperGLUE. Since pre-
vious hypernetwork-based methods are hard to ad-
dress few-shot issues, we compare our methods
with a multitask prompt tuning method MPT (Wang
et al., 2023c) and a lightweight hypernet-based
method HyperFormer (Mahabadi et al., 2021b).

As shown in Figure 2, our method HyperLoRA
exhibits superior performance and surpasses all
compared methods. It is worth noting that our
HyperLoRA is an efficient method that neither intro-
duces an increase in consumed tokens (ICL brings
doubled token consumption) nor undergoes any
additional training (in contrast to other methods
that are fine-tuned on few-shot examples). These
findings demonstrate that our HyperLoRA is inher-
ently suitable for few-shot adaptation since it effec-
tively leverages the provided few-shot examples as
task information to generate task-specific parame-
ters. Moreover, when compared to the in-context
learning method, HyperLoRA significantly reduces
tokens consumption, and eliminates the need for
fine-tuning in contrast to other fine-tuned methods.

4.4 Analysis
Ablation Study. To comprehensively understand
and validate the effectiveness of our HyperLoRA,
we conduct studies including the pre-training stage
(w/o pre-train) and automatic demonstration selec-
tion strategy (w/o AutoDemo) ablations, as well as
model configurations exploration. Based on the
results in Figure 3 (a), we can condense the fol-
lowing conclusions: (1) The pre-training stage is
instrumental in enabling task-specific parameter
generation ability. Without the pre-training stage,
the performance decreases significantly, especially
on SuperGLUE. (2) The automatic demonstration
selection strategy can improve the performance
consistently. (3) While HyperLoRA is initialized
with the BART model (Lewis et al., 2020) or ran-
dom initialize, a decline appeared, which indicates
that it is more effective to initialize the hypernets
with the underlying model. The full numerical re-
sults can be seen in Appedix E.1

Scaling trends of model and pre-training
tasks. We explore the performance of our model
on the BBH benchmark spanning different scales
of hypernet and varying numbers of pre-training
tasks. The experimental results are outlined in Fig-
ure 3 (b). Our investigation spans our HyperLoRA
ranging from T5-Base to T5-XL, consistently utiliz-
ing T5-Large as the underlying model. The results
elucidate a positive correlation between the scale
of hypernet and its overall performance. In ad-
dition, we observe that increasing the number of
pre-training tasks generally improves performance,
a trend more conspicuous than the improvement
brought by scaling model size. This underscores
the significance of pre-train hypernets with more
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instability is one major challenge for training hyper-
networks. To alleviate this, we introduce the truth-
guided training objective in Section 3.3, which in-
corporates a weight-space loss controlled by the
weight λ. To verify its effectiveness, we conduct ex-
periments with varying values of the relative weight
λ, ranging from 0.0 to 1.2, and observe the impact
on training loss during the pre-training stage. As
shown in Figure 3 (c), the model struggles to fit
the training data without the weight-space loss con-
straint (λ = 0.0). Fortunately, after introducing
the weight-space loss (λ = 0.2 and λ = 0.8), the
training of the model becomes stable and efficient.
However, when the weight λ is excessively large
(λ = 1.2), the model experiences loss spikes, lead-
ing to training failures. One possible explanation
is that imposing excessive constraints on the rep-
resentation space of the generated parameters may
steer the optimization in incorrect directions.

Visualization Analysis. To understand the effec-
tiveness of our HyperLoRA, we visualize the gen-

erated LoRA parameters of 119 S-NI held-out test
tasks. To be specific, we first obtain the pooled
generated parameter weights for each task and then
normalize the weights with L2-Norm. Afterward,
we use t-SNE (Van der Maaten and Hinton, 2008)
to map the weights into two-dimensional space, as
shown in Figure 4. The visualization results reveal
that our HyperLoRA can generate meaningful pa-
rameters that similar tasks are closed and distinct
tasks are separate. We also demarcate some obvi-
ous task clusters and visualize some example cases.
However, the boundaries of some tasks are not very
clear such as “summarization” and “keyword tag-
ging”, resulting in outliers in the figure.

Generalize to Large Language Models. To
explore the generalization and robustness of our
approach, we utilize LLaMA2-7B (Touvron et al.,
2023) as the underlying model, leaving the rest
unchanged. We evaluate the BBH benchmark and
the results can be seen in Table 3. The surprising
results indicate that our method utilized Llama ob-
tains better performance than ICL with lower token
costs, which demonstrates the powerful generaliza-
tion ability of HyperLoRA for different architec-
tures and sizes of the underlying models

5 Conclusion

In this paper, we propose HyperLoRA, a hypernet-
work that generates efficient parameters for cross-
task generalization. Compared with in-context
learning and PEFT, our method is more efficient
which decreases the training and storage costs. Fur-
thermore, we propose a paradigm involving multi-
task instruction pre-training and generalization fine-
tuning for hypernetworks. Through comprehen-
sive experiments and analysis on four benchmark
datasets, we have shown HyperLoRA achieves bet-
ter results than a series of multi-task learning and

16383



hypernetwork-based methods. In future, we plan to
extend the proposed approach to cross-lingual and
cross-modal generalization scenarios and explore
the underlying models with larger scales.

Limitations

The research presented in this paper focuses on
cross-task generalization in the field of Machine
Learning. This work proposes a new paradigm
involving pre-train hypernetworks on multi-task
instruction-following data and generalization fine-
tuning on sparse task data, which enhances the
few-shot adaptation performance. However, there
are still some limitations to our work. In terms
of future societal consequences, this work could
contribute to low-resource adaptation and cross-
task generalization.
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A Example Appendix

B Dataset Details

B.1 Dataset in Pre-training Stage

FLAN (Wei et al., 2022) is an instruction-following
dataset that incorporates nearly 200 distinct tasks
to instruct FLAN-T5 (Chung et al., 2022). We
filter the tasks that may conflict with the evalua-
tion datasets and select some representative tasks,
resulting in 83 tasks that denote as FLAN* to pre-
train our HyperLoRA. Moreover, following (Huang
et al., 2023), we control the maximum number of
instances per task to be 10,000. The details about
the total number of FLAN* are shown in Table 4.

B.2 Evaluation Datasets

There are four datasets in our evaluation experi-
ments: Public Pool of Prompts (P3), Super-Natural
Instructions (S-NI), BIG-Bench Hard (BBH), and
SuperLGUE. The statistics details of the above
datasets are presented in Table 4 and we introduce
the details as follows.

Public Pool of Prompts (P3) (Bach et al., 2022)
is a collection of prompted English datasets con-
taining 62 NLP tasks. The instances of each task
are formatted in manually-written prompt tem-
plates which are collected using PromptSource1.
Since there are no demonstrations in P3, previous
hypernetwork-based methods HyperTuning (Phang
et al., 2023), HINT (Ivison et al., 2023), and
HART (Liang et al., 2023) random sample prompts
from the training set and concatenate them to form
the hypernetwork input. In contrast, we select 5
prompts for each training task automatically via
the methods described in Section 3.3. Moreover,
we follow HyperTuning and remove a number of
task formulations with longer inputs. We exclude
StoryCloze from evaluation as the task is not dis-
tributed with training data.

Super-Natural Instructions (S-NI) (Wang
et al., 2022) consists of 1,616 tasks spanning 76
diverse categories, including translation, question
answering, sentiment analysis, etc. We use v2.6 of
S-NI and employ the task definition and two few-
shot task examples (denoted as “Def + 2Pos”) as the
input of HyperLoRA which is aligned with (Phang
et al., 2023; Ivison et al., 2023; Liang et al., 2023).
Following (Phang et al., 2023), we select the En-
glish tasks for training and evaluation. Specifically,

1https://github.com/bigscience-workshop/
promptsource

we limit the maximum number of training sam-
ples per task to 64 and use the first 100 samples
in its test set for evaluation following (Wang et al.,
2022).

BIG-Bench Hard (BBH) (Suzgun et al., 2023)
is a subset of the BIG-Bench and focuses on a
suite of 23 challenging tasks that require multi-step
reasoning. We follow (Huang et al., 2023) that
leverage different 5-shot examples per task as the
demonstrations of hypernetwork and employ the
exact match (EM) as the evaluation metric.

SuperGLUE (Wang et al., 2019a) is a collection
of text classification tasks to test the general lan-
guage understanding ability. In particular, we con-
sider the natural language inference (NLI) datasets
SciTail and CB, and the question answering (QA)
dataset BoolQ from SuperGLUE.

C Implementation Details

C.1 HyperLoRA Architecture.

As described in Section 3.2, our HyperLoRA con-
sists of a text encoder and P-generator. The P-
generator contains a transformer decoder and a
parameter generator. The overall architecture of
HyperLoRA is an encoder-decoder and initialized
with the underlying model T5 or BART. To enhance
stability in the early stages of training, we initialize
the parameter generator using a normal distribution
with a mean of 0 and a standard deviation of 1e-7.

C.2 Experimental Details

We report the hyper-parameters in the pre-training
and fine-tuning stage at Table 5. We conduct all ex-
periments in the same environment (8× 80G A800
GPUs) with Transformers (Wolf et al., 2020) and
ZeRO (Rajbhandari et al., 2020). During the pre-
training stage, we freeze the underlying model as
well as the encoder of HyperLoRA and only tune
the P-generator. We use Adam as the optimizer
with a learning rate of 5e − 5 and a global batch
size of 128. We set the maximum input sequence
length of HyperLoRA and the underlying model as
2,048 and 768, respectively. During the general-
ization fine-tuning stage, we utilize the grid search
method to find the best learning rate from 1e-4
to 5e-4 and opt for the largest feasible batch size
to maximize resource utilization. For all exper-
iments, we set the rank r = 16, α = 0.8, and
the loss weight β = 0.2. Due to the multitude of
training tasks in the cross-task generalization study,
we apply the same strategy as pre-training which
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Dataset # Train # Test # Train (Task) # Test (Task) Metric

FLAN* 307,771 - 83 - -
P3 17,519,237 15,684 221 8 Multiple-Choice Accuracy
Super-Natural Instructions 48,387 11,810 757 119 ROUGEL
BBH - 27 - 3,811 Exact Match
SuperGLUE - 3 - 4,630 Multiple

Table 4: Details about the number of instances and tasks of the pre-train and evaluation datasets.

Hyper-parameters Pre-training P3 S-NI

global batch size 128 128 96
training steps 38,000 130,000 32,256
learning rate 5e-5 5e-5 5e-5

learning scheduler cosine cosine cosine
sequence length 768 384 2048

hypernet sequence length 2048 1024 2048
output sequence length 512 128 512

LoRA rank 16 16 16
LoRA alpha 8 8 8

Table 5: Hyper-parameter settings in pre-training and
fine-tuning stages.

only tunes the P-generator, the resulting model
is denoted as HyperLoRA. In the few-shot adap-
tation scenario, we utilize the few-shot examples as
the input demonstrations of HyperLoRA to generate
parameter-efficient modules without any weights
updating. In addition, we can also conduct fast
task generalization fine-tuning which only tunes
the generated parameters to further improve the
performance and result in HyperLoRA†.

C.3 Examples of Inputs

Few-shot Inputs without Task Description
<x> Inputs 1
Target 1 <y>

<x> Inputs 2
Target 2 <y>

Few-shot Inputs with Task Description
<x> Task Description

<x> Inputs 1
Target 1 <y>

<x> Inputs 2
Target 2 <y>

D Additional Analysis of HyperLoRA

D.1 Comparison of the Hypernetwork-based
methods

Table 6 summarizes the differences between our
HyperLoRA and three hypernet-based methods Hy-
perTuning, HINT, and HART. Compared with these
methods, we pre-train the hypernetwork with in-
struction data instead of the general corpus, which
endows it with the few-shot adaptation ability.
While weight-freezing prevents catastrophic for-
getting and saves the storage cost, we freeze the
text encoder and the underlying model during the
pre-train and fine-tune stages. Additionally, we de-
sign an automatic demonstration selection strategy
and a weight-space constraint objective to enhance
the effectiveness and training stability.

D.2 Analysis of the Computation Costs.

The large computation amount of our HyperLoRA
mainly occurs during the pre-training stage, but it
remains more efficient than full fine-tuning meth-
ods because only part of hypernetwork (decoder
and parameter generator) is optimized. During
the inference stage, both the compute cost and
memory cost of hypernetwork is less than full fine-
tuning methods, as the instruction is no longer pro-
cessed with every sample for hypernetwork . To
provide a quantitative comparison, as illustrated
in HINT (Ivison et al., 2023), the full fine-tuning
method requires roughly Nn(i + t + o) FLOPs,
while the hypernetwork-based method uses roughly
tN + nN(i + o) FLOPs, where t is the task in-
struction length, o is the output length, n is the
number of same-task samples and N is the number
of model parameters. These formulations highlight
the compute cost of hypernetwork is ∝ t + n as
opposed to ∝ tn.

E Additional Experimental Results

E.1 Detailed Ablation Results

During the ablation study, we run with five different
seeds (6, 42, 99, 1234, 2023, 6617) and report the
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Method Hypernet
Architecture

Freeze Un-
derlying

Instruction-
Training

Demonstration
Selection

Stability
Training

Few-shot
Adapatation

HyperTuning Encoder-Decoder Yes No Manual& Random No No
HyperTuning+ Encoder-Decoder No No Manual& Random No No
HINT Encoder-Decoder No No Manual& Random No No
HART Encoder-Decoder Yes No Manual& Random No No
HyperLoRA Encoder-Decoder Yes Yes Automatic Yes Yes

Table 6: Comparison of the Hypernetwork-based methods.

BBH SuperGLUE

HyperLoRA 35.8(0.2) 78.5(0.6)

w/o AutoDemo 34.2(0.2) 76.8(0.6)

w/o Pre-train 27.2(0.8) 5.2(2.3)

BART Init. 29.0(0.2) 73.4(0.77)

Random Init. 33.3(0.2) 73.8(0.9)

Table 7: The numerical results of ablation study. For
each item, we run with five random seeds (6, 42, 99,
1234, 2023, 6617) and report the mean (and standard
deviation) results.

average results in Table 7. To demonstrate our
gradient-based demonstration selection method, we
report the full results whether we apply this method
in each task at Table 8. The results reveal that our
method provides a performance gain on each task
consistently.

Task w/ AutoDemo w/o AutoDemo Diff

P3 57.3 56.3 1.0
S-NI 47.3 46.0 1.3
BBH 35.8 34.2 1.6

SuperGLUE 78.5 76.8 1.7

Table 8: The full comparisons .

E.2 Generalization on GLUE Benchmark
To explore the effectiveness of the fast task gen-
eralization fine-tuning method, we conduct a
cross-task experiment on the GLUE (Wang et al.,
2019b) dataset. GLUE is a collection of text
classification tasks to test the general language
understanding ability. We compare our meth-
ods with full fine-tuned T5 model (Raffel et al.,
2020a), PEFT methods LoRA (Hu et al., 2022),
READ (Wang et al., 2023a) and MPT (Wang et al.,
2023c), and hypernetwork-based methods includ-
ing Compacter++ (Mahabadi et al., 2021a), Hy-
perFormer (Mahabadi et al., 2021b) and Hyper-
Prompt (He et al., 2022). The results can be seen in
Table 9. Our method HyperLoRA achieves compara-
ble performance with the full fine-tuning methods
and is superior to all of the hypernetwork-based

methods. However, direct parameter-efficient fine-
tuning on downstream tasks leads to suboptimal
performance, 4.2% behind HyperLoRA, which re-
veals that utilizing the parameters generated by
HyperLoRA as initialization for downstream tasks
with adequate data improves performance signif-
icantly. Additionally, we can see that the fast
generalization fine-tuning method HyperLoRA† per-
forms better than HyperLoRA and all other meth-
ods, which demonstrates the effectiveness of the
approach.

E.3 Full BBH Results
We report the full evaluation results on the BIG-
Bench Hard (BBH) benchmark at Table 10.

16390



Model CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.↑
Full Fine-Tuning Methods
T5Base 49.8 94.6 89.8/92.5 90.7/90.5 91.9/89.2 88.5 93.3 85.0 85.5
T5Large 59.4 96.6 90.7/93.3 90.6/90.4 92.3/89.8 90.8 95.2 90.8 88.3

Parameter-Efficient Fine-Tuning Methods
LoRALarge 60.0 93.9 92.1/94.3 76.8/73.3 91.8/91.5 89.5 94.3 84.8 85.7
READLarge 54.1 93.9 87.7/- 89.3/- 88.6/- 87.3 93.7 - 85.7
MPTBase 63.5 93.3 89.2/- 90.0/- 90.4/- 84.3 93.0 82.7 85.8

Hypernetwork-based Methods
Compacter++Base 61.3 93.8 90.7/93.3 90.2/86.9 90.5/90.9 85.7 93.1 74.8 86.5
HyperFormerBase 61.3 93.8 90.6/93.3 90.1/87.2 89.6/89.0 86.3 92.8 78.3 86.6
HyperFormer++Base 63.7 94.0 89.7/92.6 90.3/87.2 90.0/89.7 85.7 93.0 75.4 86.5
HyperPromptLarge 57.5 96.7 91.2/93.6 90.1/87.0 91.9/92.0 90.3 95.0 87.7 87.5
HyperFormer++Large 58.9 95.7 90.0/92.7 90.7/87.7 91.6/91.5 89.8 94.5 87.8 87.3

HyperLoRALarge 60.6 95.6 88.9/92.0 90.4/87.8 91.3/91.0 89.0 94.0 87.0 88.0
HyperLoRA†Large 68.8 96.4 92.6/94.5 90.9/87.9 92.9/92.8 89.5 94.2 89.1 90.0

Table 9: Performance of the models on the GLUE tasks. For MNLI, we report accuracy on the matched validation
set. For MRPC and QQP, we report accuracy and F1. For STS-B, we report Pearson and Spearman correlation
coefficients. For CoLA, we report Matthews correlation. For all other tasks, we report accuracy. We use T5-large as
the initial model to train our HyperLoRA. Bold and underline fonts indicate the best results and the second results in
each block, respectively.

Task Random T5 T5 (ICL) LoRA LoraHub HyperLoRA HyperLoRA†

Boolean Expressions 50.0 54.0 58.7 56.0 56.0 56.0 61.3
Causal Judgement 50.0 57.5 56.3 55.6 58.9 54.0 52.9
Date Understanding 17.2 15.3 22.7 35.8 29.6 28.0 76.0
Disambiguation 33.2 0.0 69.3 68.0 46.0 33.3 56.0
Dyck Languages 1.2 1.3 7.3 22.2 0.3 2.7 23.3
Formal Fallacies 25.0 51.3 58.0 53.6 52.1 52.0 57.3
Geometric Shapes 11.6 6.7 18.7 24 7.5 7.3 31.3
Hyperbaton 50.0 6.7 74.0 55.3 57.5 65.3 68.7
Logical Deductionavg 22.5 11.3 44.4 43.6 42.7 44.9 43.6
Movie Recommendation 25.0 62.7 52.7 51.5 61.1 53.3 51.3
Multistep Arithmetic 0 0.7 0.7 0.2 0.7 0.7 0.7
Navigate 50.0 47.3 44.0 48.0 46.1 49.3 51.3
Object Counting 0.0 34.7 32.0 38.7 35.0 34.7 36.7
Penguins in a Table 0.0 43.5 39.1 36.2 43.9 50.0 34.8
Reasoning about Colored Objects 11.9 32.0 38.7 39.6 36.5 43.3 33.3
Ruin Names 25.0 23.3 18.7 37.8 21.0 24.7 65.3
Salient Translation Error Detection 16.7 37.3 46.0 16.0 37.3 46.0 18.7
Snarks 50.0 50.0 55.1 55.6 51.8 55.1 57.7
Sports Understanding 50.0 56.0 56.0 56.5 48.3 57.3 44.7
Temporal Sequences 25.0 16.7 26.7 25.1 18.7 12.7 86.0
Tracking Shuffled Objectsavg 22.5 14.5 16.5 18.2 16.0 16.5 21.8
Web of Lies 50.0 54.0 54.0 52.7 53.0 56.0 52.7
Word Sorting 0.0 1.3 0.7 4.9 1.1 1.3 4.0

Average Performance per Task 25.7 27.0 37.5 37.7 34.7 35.8 43.0

Table 10: Full experimental results on the BBH benchmark.
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def GradientBasedDemonstrationSelection(all_task_demos , all_task_tests ,
lr , hypernet , sample_num):
""" pseudocode of the gradient -based demonstration selection method for task T.

Arguments:
all_task_demos: the demonstration pool of task T
all_task_tests: the test examples of task T.
lr: the learning rate.
hypernet: the hypernet model.
sample_num: the number of selected demonstrations.

Returns:
final_sample_demos: the selected demonstrations for task T.

"""

# Step1. Embedding and clustering the task demonstrations.
demo_embedding = SentenceBERT(all_task_demos)
demo_clusters = KMeans(demo_embedding)

# Step2. Sample the demonstrations closest to the center of each cluster.
pre_sample_demos = SampleCenterDemo(demo_clusters)

# Step3. Warmup training the hypernetwork using preliminarily
# selected demonstrations in Step2.
hypernet = WamupTraining(hypernet)

# Step4. Compute the gradient -based influence score of each pre_sample_demos
# based on the trained hypernets and test examples of task T.
demo_gradients = CollectGradients(data=pre_sample_demos , model=hypernet)
test_gradients = CollectGradients(data=all_task_tests , model=hypernet)
# Calculate importance scores according to equation(8) in our paper.
demo_influence_scores = ComputeInfluenceScores(demo_gradients , test_gradients ,

lr=lr)

# Step5. Select final demonstrations with higher scores
demo_influence_scores = sorted(demo_influence_scores , reverse=True)
final_sample_demos = SelectFinalDemontrations(pre_sample_demos ,

demo_influence_scores , sample_num)
return final_sample_demos

Figure 5: The pseudocode of the gradient-based demonstration selection method.
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def HyperLoRATrainingProcess(instruct_data , lora_data , hypernet ,
underly_model , beta):
""" pseudocode of the HyperLoRA

training process with the weight -space constraint loss.
Arguments:

instruct_data: the instruction pre -training data.
lora_data: the data to pre -optimize LoRA weights.
hypernet: the hypernet model.
underly_model: the underlying language model.

beta: the hyperparameters to control the weight of the constrained loss.
Returns:

hypernet: the trained hypernet.
"""
# Step1. Obtain pre -optimize LoRA weights. This step can be achieved by
# training or using open -source lora weights.
pre_optimized_loras = PreOptimizeLoRA(lora_data)

# Step2. Training HyperLoRA
for batch in instruct_data:

# Firstly , generate the Lora weights:
theta_t = hypernet(batch)

# Secondly , we merge the generated lora with underly_model and
# compute the language modeling loss.
lm_loss = underly_model(batch , theta_t)

# Then we compute the weight -space constraint loss.
constrain_loss = WeightSpaceLoss(theta_t , pre_optimized_loras)

# Lastly , we merge the above two loss and update the hypernet.
loss = lm_loss + beta * constrain_loss
loss.backward ()
hypernet.update () # underly_model is forzen

return hypernet

Figure 6: The pseudocode of the HyperLoRA training process with the weight-space constraint loss.
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