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Abstract

Brain CT report generation is significant to aid
physicians in diagnosing cranial diseases. Re-
cent studies concentrate on handling the consis-
tency between visual and textual pathological
features to improve the coherence of report.
However, there exist some challenges: 1) Re-
dundant visual representing: Massive irrel-
evant areas in 3D scans distract models from
representing salient visual contexts. 2) Shifted
semantic representing: Limited medical cor-
pus causes difficulties for models to transfer the
learned textual representations to generative
layers. This study introduces a Pathological
Clue-driven Representation Learning (PCRL)
model to build cross-modal representations
based on pathological clues and naturally adapt
them for accurate report generation. Specifi-
cally, we construct pathological clues from per-
spectives of segmented regions, pathological
entities, and report themes, to fully grasp visual
pathological patterns and learn cross-modal fea-
ture representations. To adapt the representa-
tions for the text generation task, we bridge
the gap between representation learning and
report generation by using a unified large lan-
guage model (LLM) with task-tailored instruc-
tions. These crafted instructions enable the
LLM to be flexibly fine-tuned across tasks and
smoothly transfer the semantic representation
for report generation. Experiments demonstrate
that our method outperforms previous methods
and achieves SoTA performance. Our code
is available at https://github.com/Chauncey-
Jheng/PCRL-MRG.

1 Introduction

Brain computed tomography (CT) imaging is essen-
tial for diagnosing various cranial diseases, includ-
ing cerebral infarction and hemorrhage. However,
it is time-consuming and error-prone for radiolo-
gists to manually interpret medical findings from
these scans and write reports. Automated report
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Figure 1: Comparison of different cross-modal align-
ment paradigms. (a) Previous way: The origin CT
images contain extraneous information unrelated to di-
agnosis, and separate training for two semantic tasks
makes it challenging to find a shared optimal solution,
resulting in inadequate cross-modal alignment. (b) Our
way: The visual representation is refined to concen-
trate on pathological clues, and employ joint training
with task-tailored instructions via unified LLM to find
a transferable representation, leading to better adaption
for report generation.

generation systems are designed to boost efficiency,
reduce the workload for radiologists, and optimize
resources in busy clinical scenarios.

With the advancement of deep neural networks
and their successful application in image caption-
ing tasks (Vinyals et al., 2015; Xu et al., 2015),
medical report generation (MRG) has gained more
attention. Unlike the short sentences of traditional
image captioning, MRG aims to generate lengthy
and precise reports. To achieve this, various cross-
modal alignment methods are required to ensure
the consistency between visual and textual infor-
mation (Shi et al., 2023), including attention mech-
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anisms (Jing et al., 2018; Wang et al., 2018), mem-
ory mechanisms (Chen et al., 2020, 2021), and
knowledge graphs (Li et al., 2019, 2023b).

Recently, learning representations via visual-
textual contrastive learning (Shi et al., 2023,
2024) or using pre-trained large language models
(LLMs) (Thawakar et al., 2023) to strength repre-
sentations are also proven to be effective.

However, as shown in Figure 1(a), learning cross-
modal correspondences is still challenging in cur-
rent methods due to the following concerns: 1) Re-
dundant visual representing. Different from chest
X-ray data, 3D brain CT scans contain extensive
redundant information, e.g. background and in-
significant areas. With the lack of human-crafted
boxes to locate pathology regions, models strug-
gle to capture and interpret the visual pathology
patterns for generating reports. Although current
advanced models use semantic prior knowledge
or medical prompts (Jin et al., 2024; Bu et al.,
2024) to automatically learn the salient visual areas,
this may introduce noise and unstable representa-
tion and cause severe hallucinations in generated
texts. 2) Shifted semantic representing. Com-
pared to natural corpus, limited brain CT report
corpus is insufficient to transfer the pathological
semantic representations learned by represent learn-
ing layers (e.g., contrastive learning layer) to the
language model (Huh et al., 2024), since the direct
weight-sharing (Shi et al., 2023, 2024) is prone
to degrade the coherence of generated diagnos-
tic sentences. Thus, how to uniformly represent
cross-modal pathological features and adapt them
to report generation still remains an open question.

In this paper, we propose a Pathological Clue-
driven Representation Learning (PCRL) model to
seamlessly build cross-modal representations based
on diverse pathological clues and transfer them for
generating accurate brain CT reports. Specifically,
we extract pathological clues from perspectives of
segmented regions, pathological entities, and report
themes to depict clinical scenarios. Segmented
region clues are automatically generated and fil-
tered by given pathology prompts, enabling the
visual encoder to grasp visual pathological patterns.
Meanwhile, entity and theme clues are respectively
extracted by detailed findings and full-text reports,
to handle the enriched visual-textual alignment and
build cross-modal pathology representations.

Besides, to adapt the learned representations for
the text generation task, we bridge the gap between
representation learning and report generation by

employing a unified large language model (LLM)
with task-tailored instructions, which has proven
to be more effective than conventional decoders
by using appropriate tokens to seamlessly connect
different tasks (Yu et al., 2023). As shown in Fig-
ure 1(b), We craft a representation instruction to
prompt the LLM to produce high-level pathological
semantic features for cross-modal alignment, and
a generation instruction to prompt LLM to gener-
ate accurate brain CT reports based on the learned
representations.

Our main contributions can be summarized as:

1. We propose a novel framework to seamlessly
learn visual-textual representations from per-
spectives of diverse pathological clues and
leverage them for enhancing the quality of
generated brain CT reports.

2. We, for the first time, design a new paradigm
to effectively transfer the learned pathologi-
cal representations for report generation using
a unified LLM prompted by task-tailored in-
structions.

3. We validate the model capabilities on the open-
source CTRG-Brain dataset. Experimental re-
sults show that our model achieves remarkable
performance in generating brain CT reports.

2 Related Work

2.1 Medical Report Generation
The advancements in image captioning techniques
have spurred the development of a range of radiol-
ogy report generation methods (Jing et al., 2018;
Chen et al., 2020, 2021; Li et al., 2019; Shi et al.,
2023; Zhang et al., 2023; Li et al., 2023b; Shi et al.,
2024; Shen et al., 2024). To exploit the more ef-
fective parts of medical images, Jing et al. (2018)
first propose a co-attention mechanism to associate
images with disease tags and improve the accu-
racy of generated reports; Chen et al. (2021) design
a cross-modal memory matrix to learn high-level
vision-language correspondence for enhancing re-
port generation; Liu et al. (2021c) used contrastive
attention to captured the difference of abnormal
and normal samples. To address the semantic bias
of limited medical report corpus, Jing et al. (2020)
exploited the textual structure information of re-
ports, while Liu et al. (2021a); Shen et al. (2024)
used curriculum learning to alleviate the data bias
of limited medical data corpus. The retrieval-based
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Figure 2: The overall framework of our method, which mainly consists of an image encoder and a text decoder for
brain CT report generation (left). The pathological clue-driven representation learning (right) is proposed to guide
the encoder and decoder for more fine-grained representation by three alignment modules: (a) segmentation clue
alignment (SCA), (b) entity clue alignment (ECA), and (c) theme clue alignment (TCA).

(Li et al., 2018; Liu et al., 2021b) and prior ex-
pert knowledge based methods (Zhang et al., 2020;
Yang et al., 2022; You et al., 2021) also shows
effectiveness to alleviate the inaccuracy of gener-
ated report caused by limited training data. To
build more stable relations between multi-modal
features, contrastive learning (Radford et al., 2021)
acts as an unsupervised method, and is proven to be
effective for learning cross-modal representations
for MRG tasks (Li et al., 2023b; Shi et al., 2024).

Recently, LLM-based MRG methods (Jin et al.,
2024; Chen et al., 2024) harness the semantic pro-
cessing capabilities of LLMs to enhance the coher-
ence of generated medical reports. However, the
current bottleneck of LLM is to interpret sparse
visual patterns of pathologies, which causes se-
vere hallucinations and degrades the trustworthi-
ness of clinical diagnosis. To solve this issue, we
propose to augment LLM with representation learn-
ing guided by pathology clues. By aligning cross-
modal pathological features and transferring the
learned representations to the LLM-based report
decoder, our model can generate accurate and co-
herent brain CT reports.

2.2 Pre-trained Large Model

In recent years, pre-trained large models have
achieved significant breakthroughs in both natural
language processing (NLP) and computer vision
(CV). These models leverage extensive datasets
for pre-training, allowing them to perform excep-
tionally well in downstream tasks. The Segment

Anything Model (SAM) Kirillov et al. (2023) is
an innovative large vision model in the field of
image segmentation. SAM’s strengths lie in its
extensive training on a large-scale dataset, enhanc-
ing its versatility and enabling real-time genera-
tion of high-quality segmentation masks across
diverse tasks and image distributions. MedCLIP
Wang et al. (2022b) is a notable visual-language
model in the medical domain. Pre-trained on de-
coupling medical images and texts, MedCLIP has
shown SoTA performance on zero-shot image-text
retrieval. LLaMA3 is the next generation of state-
of-the-art open-source LLM from Meta (2024).
Trained on over 15 trillion tokens, seven times
the data of its predecessor, LLaMA3 incorporates
extensive multilingual and high-quality datasets.
To improve the use of large models for assisting
in medical report generation, we adopt SAM for
region segmentation, MedCLIP for feature repre-
sentation of pathological entities, and LLaMA for
joint training to achieve fine-grained cross-modal
alignment and improve medical report generation.

3 Methodology

As illustrated in Figure 2, our framework consists
of two branches: the brain CT Report Generation
(RG) on the left and the Pathological Clue-driven
Representation Learning (PCRL) on the right. The
interaction between these branches is facilitated
through the shared use of a visual encoder and a
language model.
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3.1 Brain CT Report Generation
In this branch, the input comprises a set of CT
scan images I = {i1, . . . , iN}, where N repre-
sents the number of CT images in each sample. The
output is the corresponding brain CT findings re-
port Y = {y1, . . . , yM}, with M representing the
number of tokens. We adopt the encoder-decoder
architecture for report generation. First, we use
ResNet101 (He et al., 2016) to extract grid features
G = {g1, . . . , gN} ∈ RN×H×d(N = 24, H =
196, d = 2048) from I . Then, we embed these
features using a visual encoder to obtain visual
features V . These visual features V are passed
through a multi-modal projector to obtain the visual
embedding tokens Hv ∈ RN×dw(dw = 4096),
which are aligned with the word embedding space
of a large language model. Finally, these tokens
are concatenated with the instruction token Hq and
fed into the large language model. We train the
parameters θ by minimizing the cross-entropy loss,
which can be represented by the following formula:

Lg = −
M∑

t=1

logP (yt | y1:t−1, Hv, Hq; θ) (1)

where, P (yt|∗) denotes the probability conditioned
on Hv, Hq, and the embeddings of previous words
y1, y2, . . . , yt−1.

3.2 Pathological Clue-driven Representation
Learning

Learning fine-grained visual-text representations is
critical for generating accurate reports (Shi et al.,
2023). This branch mainly builds enriched repre-
sentations by conducting multi-modal feature align-
ment based on pathological clues, including seg-
mentation clue alignment (SCA), entity clues align-
ment (ECA), and theme clues alignment (TCA).

3.2.1 Preparation of Pathological Clues
Pathological clues are collected in three perspec-
tives for feature alignment.

Pathology Theme Clues: Learning the struc-
ture of professional brain CT reports is essential
for MRG models to satisfy human standards and
produce reliable reports. To this end, we propose to
build theme clues by simply using the full-text re-
port and whole images as global signals, which can
be useful to enhance the overall quality of medical
reports by TCA (illustrated in 3.2.4).

Pathology Entity Clues: To learn detailed infor-
mation about pathology entities, we regard each

single finding sentence in the report as an en-
tity clue and extract the related multi-modal fea-
tures in ECA 3.2.3. The construction of entities
E = {e1, ..., eNe} (with Ne = 24) is based on ex-
pert knowledge and the frequency of words in the
training corpus.

Segment Clues: To enhance visual representa-
tions via detailed contour of pathologies, we pro-
pose to utilize the pre-trained segmentation model
SAM (Kirillov et al., 2023) to generate mask can-
didates and filter useful masks related to pathology
entities. First, we prompt SAM by covering each
brain CT image with a grid of points and integrat-
ing it into image embeddings through average sam-
pling. In this way, the mask decoder in SAM is
prompted to generate a gallery of candidate masks
MI = {m1, ...,mNm}. To ensure the quality of
masks, we also apply rule-based methods to filter
out low-quality and duplicate masks with area size,
stability scores, and IoU scores. For each sample
consisting of 24 images, we generate a correspond-
ing series of masks and combine them to form the
candidate Gallery = {MI1 , ...,MIN }.

Then, to retrieve valuable masks related to
the sample’s pathological entities, we propose to
use the MedCLIP (Wang et al., 2022b) for text-
prompted retrieval. Based on expert knowledge,
we divide the 24 images into eight-layer categories,
each mapping a specific set of entities (Shi et al.,
2024). Conversely, each entity also has its cor-
responding layers. We extract the existing enti-
ties from the sample’s report and their correspond-
ing pathological descriptions D = {d1, ..., dNd

}
(Nd ≤ Ne), which serve as the Query. Next, we
use the d-th description Queryd to search for the
most similar matching mask in Galleryd, which is
a subset of Gallery, consisting of all visual masks
of the layers related to the existing entities. The
procedure can be represented as:

Retrievald = CLIP (Galleryd, Queryd) (2)

where Retrievald denotes the retrieved masks for
SCA 3.2.2.

3.2.2 Segmentation Clue Alignment
This module aims to learn the fine-grained vi-
sual representation based on the extracted seg-
ment masks. First, we obtain the visual features
VD = {v1, ...vNd

} corresponding to the images
containing the entities using a selector. Then, we
input these features into a lightweight segmentation
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head to generate the corresponding foreground en-
tity masks SD = {s1, ..., sNd

}, which serves as dis-
criminated pathological information. We then align
these generated masks with the retrieved segment
masks MD = {Retrieval1, ..., RetrivalNd

} to
learn detailed patterns. It is important to note that
the size of the generated masks SD differs from the
size of the retrieved SAM masks MD. To address
this, we first resize the SAM masks to match the
size of the masks generated by our segmentation
head. We finally calculate the following loss for
aligning the two types of masks:

Lseg = 1− 2
∑n

i=1 piyi∑n
i=1 p

2
i +

∑n
i=1 y

2
i

(3)

where yi is the pixel value of retrieved SAM masks
and pi is the predicted pixel value.

In this way, the visual encoder can be effectively
learned to focus on the areas of pathologies while
reducing the influence of irrelevant visual features.

3.2.3 Entity Clue Alignment
To learn the cross-modal patterns of pathology
entities, we extract visual and textual pathologi-
cal features based on the entity clues. First, we
build a selector to obtain the visual features VD =
{v1, ...vNd

}(Nd < N), which corresponds to sig-
nificant CT images that exist pathology entities. We
then apply global average pooling (GAP) to gener-
alize VD and obtain representations of each signifi-
cant CT image, denoted as Re

v = {r1, ...rNd
}.

Different from previous work (Li et al., 2023b)
use an external language model (e.g. SciBert (Belt-
agy et al., 2019)) to build textual representation
for feature alignment, we propose to leverage a
unified LLM to generate textual representation via
tailored prompts. Inspired by Wang et al. (2023),
we crafted a representation instruction “Summa-
rize the following cranial diagnosis in one word:”,
which is denoted as Hqr . This prompt can effec-
tively activate the summarization ability of LLM
to generate corresponding text representations for
pathological entity description in D. We use the
output generated by the final hidden layer of LLM
as textual features for cross-modal alignment.

With the carefully extracted visual and textual
representations of entities, we map them into the
same dimension through an embedding layer. The
process can be represented by the following for-
mula:

Re
v = Linearev(GAP (VD)) (4)

Re
w = Linearet (LLM(Hqr , D)) (5)

where GAP denotes the global average pool-
ing, Linearv represents the visual mapper, and
Lineart represents the textual mapper. We employ
the symmetric InfoNCE (van den Oord et al., 2018)
loss for visual-textual alignment:

LCLe =− 1

2

(
αv

Nd∑

i=1

log
exp(sev(i, i))∑Nd

j=1,j ̸=i exp(s
e
v(i, j))

+ αw

Nd∑

i=1

log
exp(sew(i, i))∑Nd

j=1,j ̸=i exp(s
e
w(i, j))

)

(6)

where sev(i, j) = sim(Re
vi , R

e
wj
)/τ and

sew(i, j) = sim(Re
wi
, Re

vj )/τ denote the similar-
ity between the visual representation Re

v and the
textual representation Re

w, τ is a temperature pa-
rameter. αv and αw are hyperparameters to balance
the contrastive learning.

By aligning multi-modal entity clues, the model
can grasp fine-grained visual-text representations
to generate accurate diagnostic words.

3.2.4 Theme Clue Alignment
Theme clue alignment aims to equip the model with
comprehensive skills to generate accurate style and
structure of reports, thereby enhancing clinical re-
liability. For global visual features, we use one-
dimensional global max pooling (GMP) to repre-
sent the entire sample visually, denoted as Rt

v. For
the overall report of the sample, we generate tex-
tual representation Rt

w by prompting LLM with the
same representation instruction (see Section 3.2.3).
This process can be represented as:

Rt
v = Lineartv(GMP (V )) (7)

Rt
w = Lineartt(LLM(Hqs , Y )) (8)

Similar to ECA, the loss of TCA can be formulated
as:

LCLt =− 1

2

(
αv

Nb∑

i=1

log
exp(stv(i, i))∑Nb

j=1,j ̸=i exp(s
t
v(i, j))

+ αw

Nb∑

i=1

log
exp(stw(i, i))∑Nb

j=1,j ̸=i exp(s
t
w(i, j))

)

(9)

where stv(i, j) = sim(Rt
vi , R

t
wj
)/τ and stw(i, j) =

sim(Rt
wi
, Rt

vj )/τ denote the similarity between
the visual representation Re

v and the textual repre-
sentation Re

w, τ is a temperature parameter, Nb is
the batch size. Shared with ECA, αv and αw are
set to balance the feature alignment.
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Methods Decoder B1 B2 B3 B4 M RG C F1

HRNN(Krause et al., 2017)† LSTM 42.3 28.3 21.2 17.1 27.2 39.3 20.9 70.2
Up-Down(Anderson et al., 2018)† LSTM 45.8 34.8 28.5 24.4 31.6 42.5 27.3 70.2
WCL(Yan et al., 2021)† LSTM 49.5 36.5 29.4 25.1 31.3 42.8 33.3 64.5
R2Gen-CMN(Chen et al., 2021)† Transformer 49.1 40.0 34.4 30.1 29.9 48.6 84.2 69.8
XProNet(Wang et al., 2022a)† Transformer 50.6 41.3 34.4 29.1 31.5 51.7 83.3 70.1
WGAM(Yang et al., 2021)† LSTM 49.4 36.7 29.6 25.4 32.0 42.4 31.9 68.9
PGCA(Shi et al., 2023)† LSTM 50.2 37.8 30.7 26.5 32.5 43.0 34.0 69.2
WGAM-HI(Zhang et al., 2023)† LSTM 50.4 37.6 30.5 26.1 31.4 43.8 33.2 67.4
LLaVA-med(Li et al., 2023a)† LLaMA3-8B 50.0 39.3 32.0 26.3 31.4 46.7 38.6 64.3
HILT(Liu et al., 2024)† LLaMA3-8B 50.7 39.9 33.1 27.9 30.8 46.1 43.7 68.4
PromptMRG(Jin et al., 2024)† LLaMA3-8B 48.1 38.3 31.6 26.5 31.0 47.4 50.3 69.2

Ours (Jieba tokenizer) LLaMA3-8B 51.5 42.0 35.7 30.9 31.4 49.0 80.0 70.6
Ours (LLaMA tokenizer) LLaMA3-8B 62.0 54.7 49.4 45.3 33.1 57.7 96.4 70.6

Table 1: The performance of our PCRL compared with previous state-of-the-art models on the Brain CT report
generation dataset CTRG-Brain. The best results are highlighted in bold. † denotes the re-implementation results.

3.3 Joint Training

In the training stage, we jointly train the RG branch
and the PCRL branch to maximize the utilization
of multi-granularity visual-text representations. In-
stead of using separate modules to learn repre-
sentation and generate medical reports (Li et al.,
2023b), we use a unified LLM to bridge the gap
between representation learning and report gener-
ation via two task-tailored instructions, i.e., rep-
resentation instruction and generation instruction.
This can transfer the representations learned by
the PCRL branch to optimize the RG branch effec-
tively, thereby generating accurate reports.

Our final loss contains the above-mentioned
losses, which can be formulated as:

L = Lg + Lseg + LCLe + LCLt (10)

4 Experiments

4.1 Dataset

We validate the performance of our model using
the CTRG-Brain (Tang et al., 2024) dataset. This
dataset comprises 6,000 samples, containing a total
of 160,336 CT images and 6,000 Chinese med-
ical reports. Following the mainstream division
method (Shi et al., 2023; Zhang et al., 2023), we
split the dataset into a training set, a validation set,
and a test set in a 7:1:2 ratio. For consistent process-
ing, we divide the brain CT image samples into 8
layers based on expert knowledge, with each layer
containing 3 continuous CT images, assigning each
sample with 24 CT images.

4.2 Evaluation Metrics

We chose Natural Language Generation (NLG)
metrics and Clinical Evaluation (CE) metrics to
evaluate our model’s performance. NLG metrics
include BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie), ROUGE-L (Lin, 2004), and
CIDEr (Vedantam et al., 2015), denoted as B1, B2,
B3, B4, M, RG, and C respectively. To measure the
pathological accuracy, we use 24 keywords summa-
rized by experienced radiologists to calculate the
Clinical Evaluation (CE) metric(Shi et al., 2023;
Zhang et al., 2023), i. e., F1 score, which is the
harmonic mean of the precision and recall.

4.3 Implementation Details

We reshape the size of image to 512x512 pixels
and used a ResNet101 to extract image features,
which is pre-trained on the ImageNet dataset and
fine-tuned on the CQ500 dataset (Chilamkurthy
et al., 2018). For our large language model, we uti-
lize LLaMA3-8B (Meta, 2024), which is quantized
to 4-bit, and use the LoRa (Hu et al., 2021) for
parameter-efficient fine-tuning. The overall train-
able parameter quantity of our model is 229.9M,
with 3.4M parameters in LLM (only 0.04%). Dur-
ing training, we use the AdamW optimizer with
a learning rate of 1e-4. The batch size is 4, with
1050 training steps per epoch. For testing, we set
the temperature coefficient of the large model to
0.6 and the top-p value to 0.9. The model is imple-
mented using PyTorch 2.3.0, and the entire training
process is conducted on a single RTX 4090 GPU.
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Methods
Representation Module Loss

B1 B2 B3 B4 M RG C
Visual Textual LSCA LECA LTCA

Baseline 49.6 39.9 33.4 28.6 30.7 48.4 50.8

(a) 51.3 41.0 34.5 29.7 31.2 47.7 70.8
(b) 51.3 41.4 35.0 30.1 31.2 48.7 71.3
(c) 51.7 41.4 34.6 29.5 31.2 48.0 72.8
(d) 48.9 38.8 32.2 27.4 30.0 46.3 58.3
(e) (Bert) 49.5 39.0 31.8 26.3 30.4 45.4 48.5

Ours 51.5 42.0 35.7 30.9 31.4 49.0 80.0

Table 2: Ablation studies of our proposed method. The Baseline model is an encoder-decoder framework without
an alignment mechanism. (a), (b), (c), (d) and (e) respectively denote the use of different representations (i.e., visual
and textual in ECA and TCA) and module losses.

4.4 Quantitative Analysis

We compare the proposed PCRL with some
competitive brain CT report generation methods
(WGAM (Yang et al., 2021), PGCA (Shi et al.,
2023), WGAM-HI(Zhang et al., 2023)). Be-
sides, we also reproduced some SOTA models in
image captioning (HRNN (Krause et al., 2017),
Up-Down (Anderson et al., 2018)) and chest X-
ray report generation (WCL (Yan et al., 2021),
R2Gen-CMN (Chen et al., 2021), XProNet (Wang
et al., 2022a)) for comprehensive comparisons on
CTRG-Brain dataset. What’s more, for fair com-
parisons, We also reproduce several related LLM-
based methods (LLaVA-Med(Li et al., 2023a),
HILT(Liu et al., 2024), PromptMRG(Jin et al.,
2024)with the same LLM decoder.

As shown in Table 1, our method outperforms
others across most evaluation metrics. WGAM
and WGAM-HI employ weakly-supervised visual
attention to extract key visual features, resulting
in higher BLEU scores. With contrastive learn-
ing for cross-modal alignment, WCL and PGCA
can effectively learn relations between CT images
and reports, achieving better results. However,
due to the lack of training data, the above meth-
ods still produce reports that fall short in fluency
and readability. Here’s a refined version of your
sentence: The LLM-based methods (LLaVA-med,
HILT, PromptMRG) demonstrate poorer perfor-
mance compared to traditional transformer-based
methods (R2Gen-CMN, XProNet). This suggests
that prior knowledge from pretrained large models,
without further cross-modal alignment, may lead
to hallucinations in report generation.

Our PCRL achieves fine-grained cross-modal
alignment by leveraging a series of pre-trained
large models, generating more fluent reports and

achieves the best performance compared to other
methods. It is noteworthy that we tested our
method using the Jieba and LLaMA tokenizers
respectively to compute NLG scores, with the lat-
ter achieving the best performance across all NLG
metrics.

This discrepancy may be due to differences in to-
kenization methods used during training. While
other models employ the traditional Jieba tool
for Chinese word tokenization, our PCRL follows
more advanced BPE-based subword tokenization.
Nevertheless, our model also achieves competitive
results in overall metrics.

4.5 Ablation Study
To evaluate the effect of each component in PCRL,
we have done plenty of ablation studies, as shown
in Table 2. Baseline is the standard encoder-
decoder (ResNet101-LLaMA3) architecture with-
out alignment. By progressively adding visual or
textual representation (visual and textual) and the
module losses (LSCA, LECA and LTCA), respec-
tively denoting the incorporation of two modalities
of representations and the utilization of three patho-
logical clue-driven alignments (i.e., SCA, ECA,
and TCA).

By comparing (a) with the baseline, we observe
that incorporating the segmentation alignment sig-
nificantly enhances the model’s performance. This
demonstrates that our SCA method effectively fil-
ters out irrelevant information from CT images and
extracts crucial pathology-related visual regions.
In contrast, with the implementation of ECA, (b)
achieves comparable or better performance across
all metrics compared to (a). This indicates that fine-
grained cross-modal pathological entity alignment
can effectively learn strongly correlated visual-text

https://github.com/fxsjy/jieba
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Ground Truth Sample Ground Truth Entities Retrieved Masks Generated Reports

双侧大脑半球对称，左侧基底节区见
小片状低密度影，边缘欠清晰，无占
位效应，各脑室、脑池大小形态正
常，中线结构居中，幕下小脑，脑干
无异常。
(The bilateral cerebral hemispheres are
symmetrical. A small patch of low-
density shadow is seen in the left basal
ganglia region, with unclear edges and
no mass effect. The size and shape of all
ventricles and cisterns are normal. The
midline structure is centered. There are
no abnormalities in the cerebellum and
brainstem below the tentorium.)

...
脑室(ventricle):
各脑室、脑池大小形态正常 
(The size and shape of all
ventricles and cisterns are
normal.)

中线(midline structure):
中线结构居中  (The midline
structure centered)

脑干(brainstem):
幕下小脑，脑干无异常
(There are no abnormalities in
the cerebellum and brainstem
below the tentorium)

基底节区(basal ganglia) :
左侧基底节区见小片状低密
度 影  (Small patchy low-
density shadows visible in the
left basal ganglia area）

双侧大脑半球对称，两侧基底节区见斑点状低密度影，中线结构居中，脑
沟、脑池、蛛网膜下腔稍增宽，脑回变小。(Bilateral cerebral hemispheres
are symmetrical, with punctate low-density shadows in the basal ganglia on both
sides. The midline structure is centered, and the sulcus, cistern, and subarachnoid
space are slightly widened, while the gyrus is smaller.)

B
aseline

双侧大脑半球对称 ，右侧丘脑见小片状低密度影，边缘欠清晰，无占位效
应，各脑室、脑池大小形态正常，中线结构居中，幕下小脑、脑干无异
常。(The bilateral cerebral hemispheres are symmetrical. A small patch of low-
density shadow is seen in the right thalamus, with unclear edges and no mass
effect. The size and shape of all ventricles and cisterns are normal. The midline
structure is centered. There are no abnormalities in the cerebellum and brainstem
below the tentorium.)

W
G

A
M

-H
I

双侧大脑半球对称，左侧基底节区见斑片状低密度影，边缘欠清晰，无占
位效应，各脑室、脑池大小形态正常，中线结构居中，幕下小脑，脑干无
异常。
(The bilateral cerebral hemispheres are symmetrical. A patch of low-density
shadow is seen in the left basal ganglia region, with unclear edges and no mass
effect. The size and shape of all ventricles and cisterns are normal. The midline
structure is centered. There are no abnormalities in the cerebellum and brainstem
below the tentorium.)

O
urs

Figure 3: Visualization of report generation and mask segmentation. Given the ground truth sample and cor-
responding entities, the retrieved entity masks are listed in the third column. Reports generated by Baseline,
WGAM-HI, and our model are listed in the fourth column. Different colors denote the specific entity words and
entity masks, respectively. The English translation is given for a better understanding of the original Chinese reports
in CTRG-Brain.

representations, thus better supporting medical re-
port generation. Besides, (c) combines both SCA
and ECA and shows improved performance in the
B1 and C metrics, which are highly correlated with
keyword frequency. However, it slightly underper-
forms in the B2, B4 and RG metrics compared to
(b), which is more related to overall text style.(d)
showed SCA is essential for focusing on entity de-
tails and maintaining the thematic style.

Notably, to validate the contribution of joint
representation learning, we replace the language
model with Bert model for textual representation
during alignment in (e). The result indicated that
shared representation through joint learning with
unified language model can effectively improve the
overall quality of the task.

4.6 Qualitative Analysis

We visualize the brain CT reports generated by
baseline, WGAM-HI (Zhang et al., 2023) and our
model in Figure 3. Given the ground truth brain
CT sample and entity data, our model generates
better brain CT report with the most accurate entity
words (e.g. basal ganglia, ventricle, and brainstem)
among the competitors, which demonstrates the ef-
fectiveness of using diverse medical clues to learn
enriched multi-modal representations. It can be
also seen that compared with the baseline, the re-
port generated by our model has a better semantic
structure, indicating the contribution of employing
a unified LLM to transfer useful representations.
Besides, we also find that the retrieved entity masks

Figure 4: Visualization of the segmentation masks
gallery generated by SAM for a single sample.

from segmentation masks gallery (see Figure 4) can
generally match related entity words at both levels
of visual and semantic. For example, the mask of
“midline structure” and “brainstem” matches the
empirical scan slice and fine-grained region cho-
sen by experienced radiologists. This guarantees
the model to mine accurate visual cranial patterns,
therefore generating high-quality reports.

5 Conclusion

We propose a novel model to mine pathological
clues for enhancing multi-modal representations
and seamlessly transfer them into report generation.
First, through carefully designed segmentation clue
alignment, entity clue alignment, and theme clue
alignment, the diverse and precise feature represen-
tation can be well-constructed. Second, we trans-
fer the learned representation to boost the brain
CT report generation via a unified LLM prompted
by task-tailored instructions. Experiments demon-
strate the effectiveness of our model in generating
pathologically accurate reports.
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Limitations

Although the segmentation clues retrieved by Med-
Clip (Wang et al., 2022b) can generally match cor-
responding pathological entities and help the model
neglect redundant visual information, it should be
noted that a part of retrieved entity masks may not
be precise. This is because MedClip is mainly
pretrained by chest X-ray data with limited brain
CT samples. Thus, addressing this challenge is
imperative for the research community. In the fu-
ture, we will work on exploring useful approaches.
One potential approach is to train a unified text-
prompted medical segmentation model towards 3D
brain CT scans, which can not only be employed
to offer fine-grained visual information for medical
report generation but also for other related tasks,
e.g. medical VQA.
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