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Abstract

Conditional question answering (CQA) is an
important task that aims to find probable an-
swers and identify missing conditions. Existing
approaches struggle with CQA due to two chal-
lenges: (1) precisely identifying necessary con-
ditions and the logical relationship, and (2) ver-
ifying conditions to detect any that are missing.
In this paper, we propose a novel prompting
approach, Chain of condition, by first identify-
ing all conditions and constructing their logical
relationships explicitly according to the docu-
ment, then verifying whether these conditions
are satisfied, finally solving the logical expres-
sion to indicate any missing conditions and gen-
erating the answer accordingly. Experiments on
two CQA benchmark datasets show our chain
of condition outperforms existing prompting
baselines, establishing a new state of the art.
Furthermore, with only a few examples, our
method can facilitate GPT-3.5-Turbo or GPT-4
to outperform all existing supervised models.1

1 Introduction

Conditional question answering (CQA) aims to
answer questions where the information provided
by the user may not be sufficient, and any miss-
ing information should be requested from the user
to determine the answer (Saeidi et al., 2018; Min
et al., 2020; Sun et al., 2021a; Dhingra et al., 2022;
Ju et al., 2022; Zhang et al., 2023). CQA is a
challenging and promising task, which has been
gaining increasing attention recently (Sun et al.,
2022; Du et al., 2023; Wang et al., 2023; Hussain
et al., 2023; Puerto et al., 2024). Figure 1 shows an
example. The user asks for the amount of benefit
she would receive, but according to the policy, the
applicant must not claim for other benefits and has
an unemployment certificate as prerequisite. These

*Corresponding author.
1Our code is open sourced at: https://github.com/

Infinite-set/Chain-of-Condition

             Childbirth Benefit Policy

        Question         Answer

Section 1: Overview
   You may get a Childbirth Benefit of up to $120000 if you satisfied both:
      - you are the birth parent
      - you didn't claim other benefits
   ...
Section 2: How to claim
   ...
Section 3: Eligibility: 
   When you are the mother for the child, then your partner also need to satisfy either of the 
    following to make your family eligible for the benefit:
      - is the biological father of the child
      - has lived together for at least 3 years
   ...
   Besides, if you have no income now and you are currently covered for unemployment, 
    you need to apply for a certificate from the local social welfare department to have both.
Section 4: When you can start
...

Scenario: I am unemployed. Recently, I 
have given birth to a child. My family is in 
great financial difficulty. We are the birth 
parents of the child. 

Question: I want to know how much I can 
get for any support from the government?

·

Answer: up to $120000  

Missing Conditions: ["You didn't claim 
other benefits",  "If you have no income now 
and you are currently covered for unemploy-
ment, you need to apply for a certificate from 
the local social welfare department"]

Figure 1: An example of conditional question answering.
All conditions are colored. The conditions in green are
satisfied by the user’s description, while those in red
are not mentioned. The second red condition, has lived
together for at least 3 years, is not necessary because
it has an "either" relationship with an already satisfied
condition. But the other two red conditions are required
to make the answer "up to $120000" correct.

conditions are not mentioned in the user’s descrip-
tion, therefore it is necessary to remind the user to
provide this missing information to determine the
benefit amount, which is up to $120000.

The mains challenges for CQA are twofold. The
first one is identifying all conditions from the docu-
ment and analyzing their relationship. In Figure 1,
all conditions are highlighted, while the majority
of the description focuses on irrelevant aspects of
Childbirth Benefit, making it difficult to accurately
identify all relevant conditions. Moreover, there
are specific relationships between conditions. For
example, the conditions you are the birth parent
and you didn’t claim other benefits must be satis-
fied simultaneously, whereas the conditions is the
biological father of the child and has lived together
for at least 3 years require at least one to be satis-
fied. Precisely identifying all conditions and their
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relationships according to the document is a pre-
requisite for the CQA task, but existing approaches
primarily build end-to-end systems that overlook
this challenge (Ainslie et al., 2020; Izacard and
Grave, 2021; Hussain et al., 2023). These methods
take the whole document as input, train models
to implicitly identify conditions and parse their re-
lationships, and directly output the answer along
with any missing conditions. Consequently, due to
limited reasoning abilities in existing models, these
approaches struggle with questions involving mul-
tiple conditions and complex relationships among
them. Besides, their solution path is implicit thus
impossible for users to interpret.

Verifying conditions and solving their logical
relationships is the second challenge (Sun et al.,
2022). Each condition may be satisfied, contra-
dicted or ignored by the user, and must be correctly
verified. Furthermore, multiple conditions along
with their logical relationship will form a logical
expression, and solving this expression is necessary
for accurately identifying all the conditions missing
from the user’s input. For example, in Figure 1, the
conditions in green are satisfied according to the
query, while those in red are not mentioned. More-
over, although the condition has lived together for
at least 3 years is not mentioned by the user, it
has an "either" relationship with an already satis-
fied condition, is the biological father of the child.
Therefore, the condition has lived together for at
least 3 years is not necessary for user to satisfy.
Determining the un-necessity of such condition re-
quires correctly solving the logical expression of
conditions. Previous works train models to ver-
ify and solve conditions simultaneously, requiring
models to implicitly resolve the expression (Du
et al., 2023; Wang et al., 2023) and leading to com-
putational errors and reduced precision.

To address these challenges, we introduce Chain
of Condition, a novel prompting framework for
constructing, verifying and solving conditions in
CQA tasks. Chain of condition include three main
steps: first explicitly identifying all conditions and
constructing the logical expression about the con-
ditions according to the document, next verifying
whether each condition has been satisfied by the
user, finally solving the logical expression precisely
through tool use to indicate missing conditions and
generating the appropriate answer.

We conduct experiments on two CQA bench-
mark datasets ConditionalQA (Sun et al., 2021a)
and ShARC (Saeidi et al., 2018). The results show

that chain of condition significantly outperforms all
prompting baselines. And with backbone models
like GPT-3.5-Turbo or GPT-4, our chain of condi-
tion even performs better than all supervised base-
lines.

Our contributions are summarized as follows:
(1) We propose Chain of condition, an construct-
verify-solve three-step prompting framework for
conditional question answering. Experiments on
benchmark datasets show our method outperforms
existing prompting baselines, establishing a new
state-of-the-art.
(2) Our proposed framework can enhance backbone
models like GPT-3.5-Turbo or GPT-4 to surpasses
all fully supervised baselines, with only a few ex-
amples.
(3) Our Chain of condition can create coherent and
interpretable reasoning paths that are easier for hu-
mans to understand.

2 Related Works

Prompting Methods for LLMs Large language
models can be guided to solve tasks in a step-by-
step manner (Wei et al., 2023). For more complex
reasoning tasks such as multi-hop QA (Yang et al.,
2018) or math problems (Cobbe et al., 2021), previ-
ous works typically address them by decomposing
the question into simple sub-questions for mod-
els to solve sequentially (Yao et al., 2023; Press
et al., 2023; Yu et al., 2023; Servantez et al., 2024;
Tao et al., 2024). This decomposition reduces task
difficulty and improves interpretability. Another
approach to enhance performance on reasoning
tasks is by combining LLMs with symbolic in-
terpreters such as a Python runtime (Chen et al.,
2023; Gao et al., 2023; Lyu et al., 2023) or a SAT
solver (Ye et al., 2023). Compared to textual rea-
soning, program-based reasoning is executed ac-
curately, thus achieving high-precision reasoning
in complex questions. Furthermore, Puerto et al.
(2024) compared the performance of these two ap-
proaches and showed that introducing code in the
prompt may elicit the reasoning ability for the CQA
task. In this work, we integrate the ideas of decom-
posing task and leveraging code interpreter into
our framework, enabling it to benefit from both
approaches’ advantages. This not only improves
interpretability but also increases precision.

Supervised Methods for the CQA task Various
pre-trained models have been proposed for the con-
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Document (excerpted):
Section 1: Overview
   You may get a Childbirth Benefit of up to $120000 if you satisfied both:
      - you are the birth parent
      - you didn't claim other benefits
   ...
Section 2: How to claim
   You can claim by post or by Internet. In order to claim the benefit, you need    
    to do to following steps: (irrelevant)
   ...
Section 3: Eligibility: 
   When you are the mother for the child, then your partner also need to 
    satisfy either of the following to make your family eligible for the benefit:
      - is the biological father of the child
      - has lived together for at least 3 years
   ...
   Besides, if you have no income now and you are currently covered for 
    unemployment, you need to apply for a certificate from the local social 
    welfare department to allow you to have both.
Section 4: When you can start
   You can start the benefit as soon as you have given birth to the child and 
    claimed the benefit. (irrelevant)
... (irrelevant)

Scenario:
I am unemployed. Recently, I have given birth to a child. My family is in great 
financial difficulty. We are the birth parents of the child. 

Question:
I want to know how much I can get for any support from the government?

     Task      Chain of Condition

Answer: up to $120000  
Conditions: ["You didn't claim other benefits" (C2),  "If you have no 
income now and you are currently covered for unemployment, you need to 
apply for a certificate from the local social welfare department" (C5)]

     Answer

Condition Groups: 
          you are the birth parent (C1)
          you didn't claim other benefits (C2)

          is the biological father of the child (C3)
          has lived together for at least 3 years (C4)

 Group 3:    if you have no income now and you are currently covered for unemployment, you need to apply for... (C5)

Is_Conditional  =  (Group1) AND (Group2) AND (Group3)  =  (C1 AND C2) AND (C3 OR C4) AND 
(C5)
After Augmentation:
 C3: Your partner is the biological father of the child
 C4: You and your partner has lived together for at least 3 years

Condition Identification and Logical Construction

 Group 2:

 Group 1: Logical Relationship: AND

Logical Relationship: OR

Condition Verification
Satisfied Contradicted Not Mentioned

C1

C2

C3

C4

C5

Logical Expression Resolution

C1

C2

C3

C4

C5
Therefore, the answer is conditional on C2, C5.

Group 1 (C2)AND

Group 2OR

Group 3 (C5)

AND Conditional
   (C2, C5)

Input:
 Document + Scenario + Question + “Q: You are the birth parent? A: Yes; ...”
Response:
 Reasoning: The user is asking for the amount she would get from the Childbirth Benefit, according to the document, ...
 Answer: up to $120000

Answer Generation

Figure 2: Method overview. Chain of condition consists of three main steps: condition identification and logical
construction, condition verification, expression solution and answer generation.

ditional question answering (CQA) task, includ-
ing both extractive and generative models. Ex-
tractive models such as the ETC pipeline (Ainslie
et al., 2020) and DocHopper (Sun et al., 2021b)
extract answers and conditions from input con-
tent. Generative models, including FiD (Izacard
and Grave, 2021), SDHG (Du et al., 2023), and
TReasoner (Sun et al., 2022), leverage generative
models to directly generate answers and conditions
together. Additionally, Hussain et al. (2023) ex-
plored directly fine-tuning LLMs for the CQA task,
demonstrating better performance but at a much
higher training cost, while Wang et al. (2023) pro-
posed the LSD framework to generate more con-
ditional questions for fine-tuning. However, these
methods are often limited to specific downstream
fine-tuning tasks and lack generalizability. In con-
trast, chain of condition does not require further
fine-tuning and exhibits better generalizability due
to its few-shot setting.

3 Preliminary

We investigate the conditional question answering
(CQA) task, where all missing condition should be
requested from the user to determine the answer.
Formally, the task’s input consists of the user’s
question Q and scenario S providing some back-
ground information, and a reference document D
describing the policy being questioned. The an-

swer should be inferred from the document. Unlike
other QA tasks, the document in the CQA task con-
tains many conditions C = {c1; c2; ...; cn} ⊂ D
that must be satisfied by the user. The complete
output includes the answer along with any unmen-
tioned conditions A = (a,C(u)), where C(u) =

{c(u)1 ; ...; c
(u)
k } ⊂ C denotes the i-th unmentioned

condition for answer a, and ki ≥ 0 denotes the total
number of unmentioned conditions for it2. If there
are no unmentioned conditions, then we categorize
the answer as deterministic. Otherwise, we call it
conditional, and all missing conditions should be
listed simultaneously with the answer.

4 Methodology

We introduce Chain of Condition, a novel ap-
proach to guide Large Language Models (LLMs)
for conditional question answering tasks. Our
chain of condition pipeline is similar to the hu-
man process for dealing with such problems, thus
can demonstrate a more coherent and interpretable
solving path for users to read, as illustrated in Fig-
ure 2.

Chain of condition includes three steps: condi-
tion identification and logical construction, con-
dition verification, expression resolution and an-

2A few questions in ConditionalQA have multiple answers
with conditions, and we leave the condition prediction for
them as future work.
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swer generation. Our framework decompose the
original CQA task into smaller sub-tasks, allowing
the model to solve them sequentially. First, we
identify all conditions and recognize their logical
relationships according to the document, forming
a logical expression of conditions. Secondly, we
verify each condition’s fulfillment in the user’s de-
scription. Finally, We take the verification results to
solve the logical expression and identify all missing
conditions through Python interpreter, and generate
the answer by taking the condition solutions into
account. A prompt example for each step is shown
in Appendix G.

4.1 Condition Identification and Logical
Relationship Construction

The document D contains a substantial amount
of irrelevant information, so the first step is to
filter this out and identify all relevant conditions
C = {c1; c2; ...; cn} ⊂ D. In addition to identify-
ing the conditions, it is crucial to arrange them in
a particular structure according to the document.
We address this by introducing condition groups
G = {G1;G2; ...;Gk}, where k represents the to-
tal number of condition groups in the document,
and each group Gi consists a set of nearby condi-
tions sharing the same relationship. The i-th condi-
tion group Gi is defined as Gi(c

i
1, c

i
2, ..., c

i
ni
, oi) =

(f(ci1) oi f(c
i
2) oi ... oi f(c

i
ni
)), where {ci1, ..., cini

}
are the conditions in the i-th group, oi ∈
{AND,OR} is the logical operator connecting
them and f(c) represents the fulfillment of con-
dition c ∈ C that will be verified in the next
step. we instruct the model to directly identify
the condition locations and their relationship in
the document, then parse the model’s output to
obtain G, ultimately forming a compositional log-
ical expression of conditions F (G1, ..., Gk, o) =
((G1) o ... o (Gk)), where o ∈ {AND,OR}. The
solving result of Gi and F are in {d̄, c̄}, where d̄
denote the deterministic answer and c̄ conditional
answer. Detailed discussion of the solving process
is in Section 4.3

Besides, the conditions in the document are usu-
ally free-form, making it difficult to thoroughly
separate a condition from other irrelevant context.
Simply truncating the document may result in in-
complete conditions. For example, in Figure 2,
the condition is the biological father of the child
lacks a subject your partner, which needs to be
extracted from the previous sentence. This incom-
pleteness could prevent the model from correctly

understanding the meaning of the condition, con-
sequently hindering its ability to accurately verify
the fulfillment of the condition.

To address this problem, we take context-based
augmentation after identifying conditions’ loca-
tions. This approach allows us to obtain a short
paragraph for each condition, containing all the
necessary information. Specifically, when the doc-
ument has a certain structure (e.g. subsections), we
use this to find the relevant context for augmenta-
tion. We take the entire subsection where the con-
dition appears as the augmentation paragraph, en-
suring it contains enough background information
while being much shorter than the entire document.
When there is no structural information available,
we instruct the model to directly summarize the
condition based on the context.

4.2 Condition Verification
After acquiring all condition groups from D and
augmenting each condition, we instruct the models
to sequentially verify the fulfillment of each condi-
tion based on S. This involves taking the question,
scenario, and augmented condition as input, and
leveraging LLMs to determine the fulfillment of
conditions. For each condition c ∈ C, the verifica-
tion process can be formalized as determining the
value of function f(c) ∈ {s̃, c̃, ñ}. Here, s̃ means
the condition is satisfied by the user, c̃ means it
is contradicted, and ñ means the condition is not
mentioned. Conditions that are either satisfied or
contradicted lead to a deterministic answer and can
be treated as true values, while unmentioned condi-
tions result in a conditional answer and are treated
as false. Therefore, solving the expression F can
be viewed as boolean operations on true/false val-
ues with special shortcut judgement. This process
will be discussed further in Section 4.3.

4.3 Expression Solution and Answer
Generation

After obtaining the verification result f(c) for each
condition c, we take these results into groups G and
logical expression F to determine whether the an-
swer is conditional or deterministic. And if the an-
swer is conditional, all missing conditions should
be listed along with the answer.

Traditionally, this is done by prompting mod-
els to implicitly reason and resolve the logical ex-
pression. However, recent studies have shown that
even large language models struggle with logical or
mathematical reasoning tasks (Blair-Stanek et al.,
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2023). Therefore, a better solution is to offload
the computation process to an external symbolic
interpreter (Chen et al., 2023; Gao et al., 2023; Lyu
et al., 2023; Ye et al., 2023).

In chain of condition, we use a Python interpreter
to solve the logical expression F (G1, ..., Gk, o).
Specifically, we treat all "not mentioned" condi-
tions {c|f(c) = ñ} as false values, while "sat-
isfied" or "contradicted" conditions {c|f(c) ∈
{s̃, c̃}} are considered true. Additionally, a "satis-
fied" condition linked by an "OR" relationship in its
condition group or a "contradicted" condition with
an "AND" relationship in its condition group Gi

would form a shortcut, allowing for direct verifica-
tion of Gi. This process can be formally expressed
as Gsc = {Gi | oi = or, ∃c ∈ Gi s.t. f(c) = s̃} ∪
{Gj | oj = and, ∃c ∈ Gj s.t. f(c) = c̃}. Finally,
a group Gi is considered conditional (i.e., Gi = c̄)
if there exists unmentioned condition within it
and no shortcut has been formed, formally Gi /∈
Gsc, ∃c ∈ Gi s.t. f(c) = c̃, and otherwise, it is
classified as deterministic. This reasoning process
is automatically executed via Python using Boolean
operations and special shortcut judgments.

Furthermore, we indicate all missing conditions,
i.e., when a condition is not mentioned and all other
conditions in the same group have not triggered any
shortcut, formally C(u) = {cji |f(c

j
i ) = ñ, Gj =

c̄, Gj /∈ Gsc, ∀i ≤ nj ,∀j ≤ k}. If C(u) ̸= ∅,
then the answer is conditional, and otherwise de-
terministic. By levaraging Python interpreter, we
reduce model inference costs, improve precision,
and enhance interpretability.

After obtaining the verification result for the con-
ditions, we instruct the model to generate the an-
swer. Since we have already verified each condi-
tion’s fulfillment, we can leverage this information
for more accurate answer generation. Specifically,
we add these conditions c along with their fulfill-
ment f(c) into the prompt. This provides the model
with straightforward information about the condi-
tions, reducing the need to infer their fulfillment
from the document.

5 Experimental Setup

5.1 Datasets and Evaluation Metrics

Throughout our experiments, we use two con-
ditional question answering datasets: Condition-
alQA (Sun et al., 2021a) and ShARC (Saeidi et al.,
2018). More dataset information is in Appendix A.
ConditionalQA features long and complex docu-

ments, and has many different types of questions.
Documents in ConditionalQA are usually well-
structured with HTML tags for each paragraph,
because they are grouped into sections and subsec-
tions describing public policies in the UK. This
brings the convenience for condition identification
and augmentation.

Following previous works in CQA (Sun et al.,
2021a), we use the original sets of metrics: EM/F1
and conditional EM/F1 (abbreviated as w/conds).
EM measures the exact match of predicted answer
spans with gold ones, while F1 is the harmonic
mean of token-level precision and recall. Condi-
tional EM/F1 jointly measures the correctness of
answer spans and the predicted conditions, provid-
ing a more comprehensive assessment of a model’s
performance on the CQA task. The calculation
formulas are in Appendix C.
ShARC is a conversational QA dataset, and the
original task is to answer the question if the infor-
mation in the dialog history is enough, or to gener-
ate a new question to acquire missing information.
We follow the previous work (Puerto et al., 2024) to
isolate the QA task from the conversational setting
to form a benchmark of the CQA task, resulting in
a dataset that the model only needs to answer "yes",
"no" or "not enough information". Additionally,
we discard all irrelevant questions from the dataset
for better evaluation.

We use the accuracy on the answer prediction
as the metric. Since there are no human annotated
conditions in ShARC, so it is not possible to fur-
ther measure the accuracy of predicted missing
conditions. We leave more accurate evaluation for
ShARC as future work.

5.2 Baselines

Prompting Baselines We compare our approach
with 4 different prompting baselines in total.

• Code Prompting (Puerto et al., 2024) is the
only available prompting approach for the CQA
task as far as we know. This method extends
the original text prompt with additional LLM-
generated code, which elicits the model’s condi-
tional reasoning abilities for CQA tasks.
• Self-Ask (Press et al., 2023) is a recently pro-

posed, well-performing prompting method, which
we adapt for our CQA scenario. This method de-
composes the question by explicitly asking and
answering intermediate questions until reaching
the final answer and missing conditions.
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Method GPT-3.5 Llama-2 (70B) Llama-2 (13B) Mistral Average
EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

Zero-Shot 59.5/71.0 23.9/29.5 44.0/51.2 26.6/30.9 42.3/49.6 26.1/28.9 44.2/50.7 26.7/30.8 47.5/55.6 25.8/30.0
Chain of Thought 59.3/70.0 45.4/54.6 62.2/71.4 45.5/53.7 56.8/65.8 38.7/44.8 58.3/68.6 37.7/46.4 59.2/69.0 41.8/49.9
Code Prompting 60.4/68.2 50.8/57.5 54.4/63.1 15.9/19.2 45.9/49.7 11.0/12.3 48.4/52.3 10.4/10.6 52.3/58.3 22.0/24.9
Self-Ask 54.9/66.9 41.3/52.2 59.2/69.9 36.1/45.5 47.9/59.9 30.3/38.3 49.6/60.5 41.2/50.4 52.9/64.3 37.2/46.6
Chain of Condition 64.6/73.7 52.9/61.0 64.7/75.2 47.7/56.0 57.2/67.1 43.0/51.3 55.5/63.8 40.7/47.5 60.5/70.0 46.1/54.0

Table 1: Result of prompting methods on ConditionalQA. The best scores are made bold, with the second underlined.

Method GPT-3.5 Llama-2 (70B) Llama-2 (13B) Mistral Average

Zero-Shot 63.2 43.8 45.5 36.9 47.4
Chain of Thought 66.7 69.6 63.0 60.2 64.9
Code Prompting 60.4 39.9 37.6 40.3 44.6
Self-Ask 70.3 69.1 67.4 60.5 66.8
Chain of Condition 70.2 74.9 64.2 61.8 67.8

Table 2: Result of prompting methods on ShARC. The best scores are made bold, with the second underlined.

Method EM/F1 w/conds

Supervised Baselines

SDHG 49.0/56.5 39.0/46.0
TReasoner 57.2/63.5 46.1/51.9
LSD+Longformer 58.7/66.2 45.0/50.5

Chain of Condition

GPT-3.5 (Retrieval) 56.6/66.2 42.1/51.0
GPT-3.5 (16K) 61.0/70.0 48.5/56.0

GPT-3.5 (Oracle) 64.6/73.7 52.9/61.0
GPT-4 (Oracle) 70.8/79.5 56.9/63.0

Table 3: Chain of condition vs. supervised baselines.

Additionally, we use Zero Shot and Chain of
Thought prompting (Wei et al., 2023) as baselines.

Supervised Baselines We include SDHG (Du
et al., 2023), TReasoner (Sun et al., 2022) and
LSD (Wang et al., 2023) as baselines for Condi-
tionalQA.

For ShARC, since we follow previous work to
modify the dataset’s output format and discard all
irrelevant instances(Puerto et al., 2024), there are
no supervised baselines available. Therefore, we
only compare chain of condition with other prompt-
ing baselines mentioned above.

5.3 LLM Setup

We conduct our experiments on four different
LLMs to investigate whether our chain of condi-
tion performs consistently better across various set-
tings. We use a commercial model, GPT-3.5-Turbo,
and three open-source models, Llama-2-70B-chat,
Llama-2-13B-chat, and Mistral-7B. Additionally,
we leverage GPT-4 (OpenAI, 2023) for limited ex-

periments exclusively on ConditionalQA due to
cost constraints. For all models, we set the temper-
ature to 0.0 to ensure reproducibility of the results,
while using default settings for others. More details
are in Appendix B.

The original documents in ConditionalQA can
be up to 9,320 tokens long, exceeding the con-
text limitations of many LLMs, posing a challenge
for all prompting methods. This could be solved
by introducing a retriever to retrieve only relevant
paragraphs of the document. When comparing with
different prompting approaches, we use an oracle
retriever to select relevant passages for a given ques-
tion, to eliminate the interference from the retriever
performance. Following previous work (Puerto
et al., 2024), we retain all sections that include
at least one human-annotated gold evidence and
concatenating them to form the input.

And for comparison with supervised methods,
we employ two approaches: (1) Using a retriever
to retrieve relevant paragraphs from the document,
and (2) Using a long-context version of an LLM as
our backbone model.

6 Results and Analysis

6.1 Main Results

We report the performance of chain of condition
and all baselines on two benchmark datasets3. Ta-
ble 1 presents the performance of all prompting
methods on ConditionalQA, while Table 2 shows

3The test set of ConditionalQA is not publicly available,
and the question number is larger than dev set, causing a much
higher API cost. Thus we only evaluate all methods on dev
set.
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the performance on ShARC. Table 3 compares the
results of chain of condition with all supervised
baselines on ConditionalQA.

The original evaluation script of ConditionalQA
provides a detailed breakdown by question type.
We report the overall results here, with all details
in Appendix F.

Chain of condition outperforms all prompting
baselines on each dataset. It establishes a new
state-of-the-art. Additionally, Self-Ask also per-
forms relatively well on ShARC, which can be
attributed to the dataset’s features. ShARC con-
sists of conversations that repeatedly ask for the
questioner’s information, which is very similar to
the format of Self-Ask and thus naturally suitable.
Therefore, it is reasonable to use Self-Ask for more
fluent reasoning, leading to better performance.

Chain of condition outperforms all supervised
baselines. With backbone models like GPT-3.5-
Turbo or GPT-4, our framework surpasses all su-
pervised baselines with few-shot settings. This
result highlights the promising future of prompt-
ing methods for the CQA task, not only achieving
better performance but also reducing the costs for
fine-tuning.

Chain of condition remains effective when the
input exceeds the LLM’s context limit. The result
in Table 3 show that using a retriever that better ex-
plores the document structures can achieve perfor-
mance comparable to supervised baselines, while
long-context LLMs can surpass all supervised base-
lines, demonstrating the feasibility of both meth-
ods when the input goes longer. Additionally, the
time and monetary costs of long-context LLMs are
higher than leveraging a retriever. Given limited
computational resources, we believe that develop-
ing better retrievers is a more promising direction
for future research.

6.2 Analysis

In this section, we first conduct ablation studies
with GPT-3.5 on the chain of condition framework
to demonstrate the necessity of each step. Next,
we show that chain of condition consistently out-
performs all baselines in more challenging task
settings, and finally analyze the reasons for its su-
perior performance.

Explicitly identifying and constructing condi-
tions is crucial. We make two hypotheses about
why this step is essential. The first hypothesis is

EM F1 Cond EMCond F1

Chain of Condition 64.6 73.7 52.9 61.0

Prompting Only 61.4 70.9 35.9 42.9
∆ -3.2 -2.8 -17.0 -18.1

AND Only 62.2 71.0 48.9 56.3
∆ -2.4 -2.7 -4.0 -4.7

OR Only 61.2 69.9 40.1 45.6
∆ -3.4 -3.8 -12.8 -15.4

Table 4: Ablation study for explicitly identifying and
constructing conditions on ConditionalQA.

that it helps the model identify all possible con-
ditions and ensures explicitly solution for logical
expressions by external tools, both improving per-
formance on conditions. Secondly, it allows us to
generate the answer with additional information
about condition verification results, which is only
feasible if all conditions are explicitly identified.

To prove the first hypothesis, we conduct an
ablation study on ConditionalQA since it has gold-
labeled missing conditions. In this study, we
prompted GPT-3.5 to perform end-to-end gener-
ation, i.e., first identify all conditions, then check
their fulfillment, and finally indicate all unmen-
tioned conditions implicitly through reasoning. As
shown in Table 4, this ablation results in a drop of
3.2 EM score and 2.8 F1 score for answer correct-
ness, as well as 17.4 EM score and 19.5 F1 score
for joint answer and condition correctness. The
performance drop is much greater when evaluating
both answers and conditions compared to evaluat-
ing answers alone, which indicates that removing
the condition identification step leads to a much
larger decrease in accuracy for conditions. Further
investigation into the model’s output reveals that
the average number of predicted missing conditions
for conditional answers increases from 1.27 to 1.67,
suggesting that GPT-3.5 tends to treat a condition
as not mentioned by the user more frequently when
the condition identification step is omitted.

We also conduct an ablation for the necessity of
using both logical operators "AND" and "OR". We
remove each of them and prompt the model using
chain of condition. The results in Table 4 indicate
removing either operator reduces the performance.

The second hypothesis is discussed in the abla-
tion of the answer generation step.

Condition augmentation improves verification
accuracy. The removal of contextual information
can hinder the model’s ability to correctly under-
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ConditionalQA ShARC
EM/F1 w/conds Accuracy

Chain of Condition 64.6/73.7 52.9/61.0 70.2

w/o Results 61.4/70.9 50.5/59.1 67.5
∆ -3.2/-2.8 -2.4/-1.9 -2.7

Table 5: Ablation study for answer generation on Con-
ditionalQA and ShARC. w/o Results refers to removing
condition verification results from the answer genera-
tion input.

EM F1 Cond EMCond F1

Chain of Condition 64.6 73.7 52.9 61.0

w/o Interpreter 64.6 73.7 36.7 43.4
∆ - - -16.2 -17.6

Table 6: Ablation study for leveraging the Python inter-
preter on ConditionalQA.

stand the meaning of a condition. To prove this,
we remove all other paragraphs of the condition’s
subsection, keeping only the original condition as
input for verification on ConditionalQA. The result
of conditional EM drops by 2.4 from 52.9 to 50.5,
and the conditional F1 drops by 2.5 from 61.0 to
58.5 for this setting on GPT-3.5, indicating that the
performance of condition prediction decreases due
to reduced verification accuracy.

Including verification results helps answer gen-
eration. In this ablation, we remove the verifica-
tion results of conditions from the input of answer
generation. The results are shown in Table 5. The
performance drops by 3.2 EM score and 2.8 F1
score for answers, and by 2.4 EM score and 1.9 F1
score when jointly evaluating answers and condi-
tions on ConditionalQA. Additionally, the accuracy
drops by 2.7 on ShARC.

Furthermore, we find that the performance drop
on ConditionalQA is mostly attributed to the yes/no
questions, with a drop of 7.0 EM/F1 score and 5.3
conditional EM/F1 score. The likely reason for
this phenomenon lies in the answer determination
procedure: a span-type answer can be extracted
directly in the document even without verifying
any conditions. However, a yes/no answer must be
inferred from the document along with each con-
dition’s fulfillment. Therefore, including the con-
ditions’ fulfillment in the prompt helps the model
by reducing the need to repeatedly infer their ful-
fillment, allowing it to directly synthesize the infor-
mation to generate the final answer.

Leveraging logical expression interpreter in-
creases accuracy for conditions. To demon-
strate the importance of utilizing external symbolic
solver for logical expressions, we conduct an abla-
tion study where the Python interpreters is replaced
with GPT-3.5. Since the resolution of logical ex-
pressions does not affect the answer generation
process, the EM and F1 scores for answers alone
remain consistent. However, when jointly evalu-
ating both answers and conditions, a performance
drop is observed in Table 6.

Chain of condition better finds missing condi-
tions. Most questions in these CQA datasets in-
volve identifying and solving conditions, but only
a small portion of them are truly conditional. This
is because, in many cases, the conditions for the an-
swer are all satisfied by the user’s scenario, so the
model only needs to give a correct judgement on
whether the answer is conditional. However, when
we consider only the conditional answers in the
dataset, correctly addressing them becomes more
challenging. This is because the model not only
needs to properly generate the answer and deter-
mine it as conditional, but also precisely finds the
missing conditions.

The performance of all methods on Condition-
alQA4 greatly drops when considering only the
conditional answers, as shown in Table 7. But, our
chain of condition consistently outperforms other
prompting baselines in this setting, demonstrating
its effectiveness in finding missing conditions.

Furthermore, in order to analyze the reasons be-
hind chain of condition’s superior performance on
the CQA task, we divide the dev set of Condition-
alQA based on the total number of gold conditions
for each question in the document, resulting in two
question groups. The first group contains data with
at most one conditions, while the second group has
at least three conditions, indicating a more complex
set of conditions for solving.

We report the performance of GPT-3.5 with all
prompting methods on these two groups in Table 8.
Since there is not a metric that directly measures
the quality of predicted conditions, we additionally
report the F1 score of the predicted conditions. The
results highlight the increased difficulty of ques-
tions involving complex conditions, and chain of
condition shows much less performance degrada-
tion in this more challenging group. This indicates

4ShARC does not have human-annotated conditions, so
we could not experiment on it.
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Conditional EM F1 Cond EM Cond F1

Zero-Shot 40.7 49.1 12.9 16.0
CoT 45.8 53.6 13.1 16.4
Code 47.2 54.3 8.5 11.5
Self-Ask 49.7 58.3 13.5 17.5
Ours 56.0 62.2 18.9 20.7

Table 7: Result of different prompting methods on con-
ditional answer questions.

#Conds <=1 >=3
Groups EM/F1 C_F1 EM/F1 C_F1

Zero-Shot 64.0/76.1 53.8 47.7/50.7 8.9
CoT 60.5/71.6 77.3 44.0/47.7 16.5
Code 61.9/70.1 87.9 51.7/57.0 4.0
Self-Ask 55.0/68.1 77.6 54.0/59.1 20.1
Ours 65.5/75.3 84.5 60.0/65.2 31.6

Table 8: Performance on 2 groups in ConditionalQA.
C_F1 is the F1 score of predicted conditions.

its superior ability to handle complex conditions.
We attribute this to the explicit identification of con-
ditions and the use of a code interpreter to resolve
the logical relationships among conditions.

7 Conclusion

In this work, we propose Chain of condition, a
novel prompting approach for conditional ques-
tion answering. Our approach prompts LLMs to
identify conditions, organize them into logical ex-
pressions and introduces a Python interpreter for
resolution, effectively improving precision and en-
hancing interpretability. Experiments on all bench-
mark datasets show that chain of condition outper-
forms existing prompting baselines. Additionally,
our method surpasses supervised baselines when
utilizing a strong backbone model, demonstrating
the promising future of prompting LLMs for CQA
and paving the way for future research directions.

Limitations

Retriever Performance Although our chain of
condition outperforms all baselines, we find that
the retriever’s performance (with a recall of around
70%) is still a limiting factor. In this paper, we
simply take an commercial embedding model (text-
embedding-ada-002) as our retriever, and when the
document length exceeds the LLM’s input context
capacity, we find this off-the-shelf retriever still
overlook some necessary conditions and evidence.
We believe employing a stronger retriever would
achieve better performance.

Token Efficiency The multi-step prompting
framework in chain of condition decomposes the
original CQA task into several sub-tasks, thus lead-
ing to lower token efficiency compared to simpler
prompting baselines and typically requiring more
tokens to solve the entire problem.

Exploring Intermediate Results The generated
verification results can be better exploited. For
instance, if the answer type is yes/no, then it is
possible to directly leverage the condition verifica-
tion results to determine the answer. This approach
would not only enhance accuracy but also improve
token efficiency, making it a promising direction
for future research. Additionally, these intermedi-
ate results could be used as training data to distill
our chain of condition framework into smaller mod-
els.
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A Datasets

We use two benchmark datasets for evalua-
tion: ConditionalQA (Sun et al., 2021a) and
ShARC (Saeidi et al., 2018). The distribution of
different question types in these datasets is pre-
sented in Table 9, with additional details about the
datasets provided in Table 10.

ConditionalQA is a challenging benchmark for
conditional question answering. It comprises a
total of 3,427 questions of varying types, includ-
ing yes/no questions, free-form extractive ques-
tions, questions with multiple answers, and non-
answerable questions. Additionally, Condition-
alQA categorizes questions into two types: de-
terministic, where all necessary conditions are al-
ready satisfied within the question, and conditional,
where the complete answer must include those un-
satisfied conditions as well.

ShARC is a conversational QA dataset with nat-
ural language document that has conditions where
questions may be underspecified, and follow-up
questions are needed to finally reach the answer.
And when the conditions are all satisfied, the an-
swer could be either yes or no. There are some
questions in it that are irrelevant to the conditions,
and we discard them for simplicity. At the time
we conducted our experiments, the test set was not
yet publicly available, so we follow Puerto et al.
(2024) to random divide the dev set into two equal
partitions and use one for experiment.

B LLM Setup

The exact models we used are as follows: GPT-3.5-
0613, GPT-3.5-16k-0613, GPT-4-1106-Preview,
Llama-2-70B-chat, Llama-2-13B-chat, and Mis-
tral 7B v0.1. We ran the GPT models through the
Azure AI service, and the other models on Nvidia
A800. We used text-embedding-ada-002 as our
retriever when comparing performance with super-
vised methods.

For all experiments, we used a seed of 42. The
number of demonstrations for the baselines were
as follows: 4 for chain of thought prompting, 3
for code prompting, and 4 for self-ask. In our ap-
proach, chain of condition, we used 4 exemplars
for condition identification and logical construc-
tion, 6 for condition verification, and 4 for answer
generation.

Type Number

ConditionalQA

Answer type yes/no 1751
extractive 1527

Condition type deterministic 2475
conditional 803

Answer number single 2526
multiple 752

not answerable 149

ShARC

Answer type
yes/no 15400
follow-up 6814
irrelevant 1946

Table 9: Question type statistics.

Dataset ConditionalQA ShARC

Training 2338 21890

Dev 285 1135

Test 804 1135

License BSD 2 CC-BY-SA-3.0

Table 10: Dataset details.

C ConditionalQA Evaluation Metrics

The evaluation metrics for ConditionQA include
four key metrics: EM (exact match), F1, Condi-
tional EM, and Conditional F1. EM and F1 are
commonly used in QA tasks. Given a list of pre-
dicted answers {â1, ..., âm} and a list of reference
answers {a1, ..., an}, these metrics are computed
as follows:

EM = max
{ã1,...,ãm}

min(m,n)∑
i=1

sem(ãi,ai)·γm,n

n

F1 = max
{ã1,...,ãm}

min(m,n)∑
i=1

sf1(ãi,ai)·γm,n

n

γm,n =

{
e1−m/n ifm > n
1 ifm ≤ n

Where {ã1, ..., ãm} is a permutation of the pre-
dicted answers {â1, ..., âm}, sem and sf1 are scor-
ing functions that measures EM and F1 between
two text spans. γm,n is a penalty factor for the
number of predicted answers.

While EM and F1 can evaluate the model’s per-
formance on answer prediction, they do not account
for the accuracy of conditions associated with these
answers. To jointly measure the performance of
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FP IE VE Total

#Conds 57.8 55.0 17.5 130.3
Ratio 44.4% 42.2% 13.4% 100%

Table 11: Prediction error on ConditionalQA.

Model GPT Llama(70b) Llama(13b) Mistral

Recall 67% 63% 52% 39%

Table 12: Performance of condition identification.

both answers and conditions, Sun et al. (2021a)
extended the scoring functions of EM and F1 to
incorporate the prediction accuracy of conditions,
resulting in two new metrics: Conditional EM and
Conditional F1. These new scoring functions are
computed as follows:

sem+c(ãi, C̃i, ai, Ci) = sem(ãi, ai) · F1(C̃i, Ci)

sf1+c(ãi, C̃i, ai, Ci) = sf1(ãi, ai) · F1(C̃i, Ci)

EM+c = max
{ã1,...,ãm}

min(m,n)∑
i=1

sem+c(ãi,C̃i,ai,Ci)·γm,n

n

F1+c = max
{ã1,...,ãm}

min(m,n)∑
i=1

sf1+c(ãi,C̃i,ai,Ci)·γm,n

n

Here, C̃i represents the set of conditions pre-
dicted by the model corresponding to the answer
ãi, and Ci represents the oracle (ground truth) set
of conditions. F1(C̃i, Ci) denotes the HTML ele-
ment level F1 score between the predicted set of
conditions and the oracle set of conditions.

D Error Analysis

We investigate the prediction errors in Condition-
alQA. We report detailed statistics for condition
prediction. Errors are classified into False Positive
(FP) and False Negative (FN) categories. Since
chain of condition explicitly identifies all condi-
tions, False Negatives can be further classified into
Identifying Errors (IE) and Verification Errors (VE)
based on the step at which the model makes mis-
takes. The results, averaged across four models,
are shown in Table 11.

We found that most errors occur during the con-
dition identification step. Consequently, we further
investigate its performance, as shown in Table 12.
The results indicate that the performance of the con-
dition identification step remains unsatisfactory.

Step 1 Step 2 Step 3

GPT-3.5 (api) 2.5 2.8 1.8
Llama-2-70b (vllm) 29.9 63.2 28.7
Llama-2-13b (vllm) 6.0 6.1 3.8
Mistral 27.2 78.1 28.7

Table 13: Run-time efficiency of our method. Where
step 1 stands for Condition Identification and Logical
Construction, step 2 for Condition Verification, and step
3 for Expression Solution and Answer Generation.

E Run-Time Efficiency

We report the run-time efficiency for GPT-3.5,
Llama-2-70b, Llama-2-13b, and Mistral-7b aver-
aged on two datasets in Table 13. We calculated the
second per iteration (s/it) as a metric for runtime
efficiency.

F More Detailed Results

We report the detailed results on ConditionalQA
according to different question types in Table 14
for GPT-3.5, Table 15 for Llama-2 (70B), Table 16
for Llama-2 (13B) and Table 17 for Mistral.

G Prompt Examples

We provide an example of the prompt for condition
identification and logical construction in Table 18
for ConditionalQA and in Table 21 for ShARC.
We provide an example for condition verification
in Table 19 for ConditionalQA and in Table 22
for ShARC. We provide an example for answer
generation in Table 20 for ConditionalQA and in
Table 23 for ShARC.
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Yes/No Extractive Conditional Overall
EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

Zero-Shot 82.1/82.1 17.0/17.0 29.5/55.0 19.7/32.1 40.7/49.1 12.9/16.0 59.5/71.0 23.9/29.5
Chain of Thought 80.4/80.4 54.2/54.2 31.3/55.0 29.6/50.1 45.8/53.6 13.1/16.4 59.3/70.0 45.4/54.6
Code Prompting 81.1/81.1 62.6/62.6 32.9/50.2 32.2/47.2 47.2/54.3 8.5/11.5 60.4/68.2 50.8/57.5
Self-Ask 76.2/76.2 49.8/49.8 26.1/52.8 25.3/49.7 49.7/58.3 13.5/17.5 54.9/66.9 41.3/52.2
Chain of Condition 87.4/87.4 67.1/67.1 35.2/55.6 31.8/50.0 56.0/62.2 18.9/20.7 64.6/73.7 52.9/61.0

Table 14: Result of different prompting methods on GPT-3.5-Turbo.

Yes/No Extractive Conditional Overall
EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

Zero-Shot 68.2/68.2 36.9/36.9 10.8/27.0 7.1/16.7 52.9/55.7 9.2/9.5 44.0/51.2 26.6/30.9
Chain of Thought 78.2/78.2 49.1/49.1 40.1/60.6 35.5/53.7 48.7/53.8 11.4/13.6 62.2/71.4 45.5/53.7
Code Prompting 76.2/76.2 17.0/17.0 24.9/44.3 5.4/12.9 56.9/61.1 19.6/21.2 54.4/63.1 15.9/19.2
Self-Ask 79.7/79.7 35.4/35.4 31.8/55.6 30.0/50.9 53.1/61.6 17.6/20.9 59.2/69.9 36.1/45.5
Chain of Condition 84.5/84.5 54.8/54.8 35.4/60.4 32.2/52.0 49.3/57.0 17.4/19.6 64.7/75.2 47.7/56.0

Table 15: Result of different prompting methods on Llama-2(70B).

Yes/No Extractive Conditional Overall
EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

Zero-Shot 66.4/66.4 35.7/35.7 9.1/25.3 6.3/14.4 51.0/54.1 6.2/7.2 42.3/49.6 26.1/28.9
Chain of Thought 69.7/69.7 40.5/40.5 37.5/57.5 29.9/43.6 42.0/50.2 10.6/13.5 56.8/65.8 38.7/44.8
Code Prompting 65.7/65.7 8.5/8.5 17.7/26.3 4.1/6.9 49.5/51.9 11.8/12.1 45.9/49.7 11.0/12.3
Self-Ask 65.7/65.7 34.4/34.4 22.2/48.9 18.1/36.0 35.2/41.5 5.7/7.5 47.9/59.9 30.3/38.3
Chain of Condition 77.6/77.6 52.5/52.5 29.8/51.6 26.2/44.8 45.8/52.6 13.8/15.4 57.2/67.1 43.0/51.3

Table 16: Result of different prompting methods on Llama-2(13B).

Yes/No Extractive Conditional Overall
EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds EM/F1 w/conds

Zero-Shot 68.5/68.5 36.3/36.3 10.8/25.4 7.9/17.0 55.3/56.9 4.7/5.1 44.1/50.7 26.7/30.8
Chain of Thought 80.5/80.5 41.2/41.2 28.9/51.8 26.9/46.3 51.4/59.9 15.9/18.7 58.3/68.6 37.7/46.4
Code Prompting 72.7/72.7 10.1/10.1 15.5/24.3 1.0/1.5 53.9/55.9 16.9/17.3 48.4/52.3 10.4/10.6
Self-Ask 74.1/74.1 58.3/58.3 16.7/40.8 15.6/36.2 41.9/50.7 13.7/17.0 49.6/60.5 41.2/50.4
Chain of Condition 80.4/80.4 51.9/51.9 22.8/41.3 21.7/36.8 43.4/48.1 9.0/11.1 55.5/63.8 40.7/47.5

Table 17: Result of different prompting methods on Mistral.

- Please find all the paragraphs that contain conditions for the suggested answer based on the provided documents.
- Provided Documents:
<h1>Joining a workplace pension</h1>
<p>All employers must provide a workplace pension scheme. This is called ‘automatic enrolment’.</p>
<p>Your employer must automatically enrol you into a pension scheme and make contributions to your pension if all of the
following apply:</p>
<li>you’re classed as a ‘worker’</li>
<li>you’re aged between 22 and State Pension age</li>
<li>you earn at least £10,000 per year</li>
<li>you usually (‘ordinarily’) work in the UK (read the detailed guidance if you’re not sure)</li>
- Question: I am 23 years old. I have just got a new job in UK that will have a salary of £18,000 per year. I do not want to
pay into a pension at this time. Does my employer need to automatically enrol me onto a pension?
- Suggested Answer: yes
- Response:
Reasoning: The user is asking whether the employer needs to automatically enrol the user onto a pension. According to
the documents, the employer need automatically enrol the user into a pension scheme if the user is classed as a worker,
aged between 22 and State Pension age, earns at least £10,000 per year, and usually works in the UK. So these are the
prerequisites that all need to be satisfied, they are placed next to each other in the documents and are all needed to be
satisfied, so they are in the same group and the relationship between them is "and".
Conditions: [{"contents": ["<li>you’re classed as a ‘worker’</li>", "<li>you’re aged between 22 and State Pension age</li>",
"<li>you earn at least £10,000 per year</li>", "<li>you usually (‘ordinarily’) work in the UK (read the detailed guidance if
you’re not sure)</li>"], "relationship": "and"}]

Table 18: ConditionalQA prompt example for condition identification and logical construction.
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- Please check the relevance, find the condition and check the satisfaction of the condition.
- Reference Document:
<h1>Who must send a tax return</h1>
<p>You must send a tax return if, in the last tax year (6 April to 5 April), you were:</p>
<li>self-employed as a ’sole trader’ and earned more than $31,000 (before taking off anything you can claim tax relief
on)</li>
<li>a partner in a business partnership</li>
<p>You will not usually need to send a return if your only income is from your wages or pension. But you may need to
send one if you have any other untaxed income, such as:</p>
<li>money from renting out a property</li>
<li>tips and commission</li>
- Segment to Check: <li>self-employed as a ’sole trader’ and earned more than $31,000 (before taking off anything you can
claim tax relief on)</li>
- Question: I decided to start freelancing and working for myself and made freelancing my main job, taxes are not
automatically deducted from my income. I have an income from my job for this tax year. How do I pay taxes on my income?
- Suggested Answer: send a tax return
- Response:
Reasoning: The user is asking how to pay taxes on his income. The segment is about a prerequisite, and by looking at
the reference document, we know this prerequisite is for the user to pay taxes return, so this segment is relevant to the
question and answer, and contains a condition that the user needs to be self-employed as a "sole trader" and earned more
than $31,000. Then let’s check the satisfaction of this in the question. We can see in the question, the user mentions that he
decided to start freelancing and working for himself and made freelancing his main job, and he has an income for this tax
year. But he does not explicitly mention the amount of income he earned, so we could not determine whether he earned
more than $31,000, and the satisfaction of this condition is "not mentioned".
Satisfaction: not mentioned

Table 19: ConditionalQA prompt example for condition verification.

- Please answer the question based on the provided documents and known information.
- Provided Documents:
<h1>Joining a workplace pension</h1>
<p>All employers must provide a workplace pension scheme. This is called ‘automatic enrolment’.</p>
<p>Your employer must automatically enrol you into a pension scheme and make contributions to your pension if all of the
following apply:</p>
<li>you’re aged between 22 and State Pension age</li>
<li>you earn at least £10,000 per year</li>
<li>you usually (‘ordinarily’) work in the UK (read the detailed guidance if you’re not sure)</li>
- Question: I am 23 years old. I have just got a new job in UK that will have a salary of £8,000 per year. I do not want to
pay into a pension at this time. Does my employer must enrol me onto a pension?
- Known Information: Q: You’re aged between 22 and State Pension age? A: Yes; Q: You earn at least £10,000 per year? A:
No; Q: You usually (‘ordinarily’) work in the UK (read the detailed guidance if you’re not sure)? A: Yes
- Answer Type: yes/no
- Response:
Reasoning: The user is asking whether the employer needs to automatically enrol the user onto a pension. In the documents,
the employer must automatically enrol the user into a pension scheme if the user is aged between 22 and State Pension
age, and earns at least £10,000 per year, and usually works in the UK. In the known information, we know the user is aged
between 22 and State Pension age, and usually works in the UK, but the user earns less than £10,000 per year. Therefore,
the user does not satisfy the requirement of earning at least £10,000 per year, so the answer to the question is "no".
Answer: No

Table 20: ConditionalQA prompt example for answer generation.
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- Please find all conditions based on the provided documents.
- Provided Documents:
6. Immigration control
You may be able to get Child Tax Credit if you’re either working in the UK or you’re not working because you’re:
* retired
* pregnant or looking after children
* sick or disabled or your partner has died
- Question: I was born in North Carolina and my husband and I are still trying to conceive. May I be able to get Child Tax
Credit?
- Response:
Reasoning: The user is asking whether she may be able to get Child Tax Credit. According to the documents, you may be
able to get Child Tax Credit if you’re either working in the UK, or if you are not working because you’re retired, pregnant or
looking after children, sick or disabled, or your partner has died. So there are precondition that the user needs to satisfy
before she may be able to get Child Tax Credit, and there relationship is "or".
Conditions: {"contents": ["You’re working in the UK", "You’re not working because you’re retired", "You’re not working
because you’re pregnant", "You’re not working because you’re looking after children", "You’re not working because you’re
sick", "You’re not working because you’re disabled", "Your partner has died"], "relationship": "or"}

Table 21: ShARC prompt example for condition identification and logical construction.

- Please check the satisfaction of the given condition("satified" or "contradicted" or "not mentioned") based on the provided
documents.
- Provided Documents:
6. Immigration control
You may be able to get Child Tax Credit if you’re either working in the UK or you’re not working because you’re:
* retired
* pregnant or looking after children
* sick or disabled or your partner has died
- Condition to Check: Youŕe working in the UK
- Known Information: Q: Are you working in the UK? A: No
- Question: I was born in North Carolina and my husband and I are still trying to conceive. May I be able to get Child Tax
Credit?
- Response:
Reasoning: The condition to check is whether the user is working in the UK. According to the known information about the
user, she mentioned that she is not working in the UK. So the condition is contradicted by the known information.
Satisfaction: contradicted

Table 22: ShARC prompt example for condition verification.

- Please answer the question based on the provided document.
- Provided Document:
6. Immigration control
You may be able to get Child Tax Credit if you’re either working in the UK or you’re not working because you’re:
* retired
* pregnant or looking after children
* sick or disabled or your partner has died
- Known Information: Q: Are you working in the UK? A: No; Q: You are retired? A: No; Q: You are pregnant? A: No; Q:
You are looking after children? A: No; Q: You are sick or disabled? A: Yes
- Question: I was born in North Carolina and my husband and I are still trying to conceive. May I be able to get Child Tax
Credit?
- Response:
Reasoning: The user is asking whether she may be able to get Child Tax Credit. According to the documents, you may be
able to get Child Tax Credit if you’re either working in the UK, or if you are not working because you’re retired, pregnant or
looking after children, sick or disabled, or your partner has died. In the known information, the user mentioned that she is
not working in the UK, she is not retired or pregnant or looking after children, but she is sick or disabled. So she is still
eligible to get Child Tax Credit.
Answer: Yes

Table 23: ShARC prompt example for answer generation.
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