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Abstract

In different NLP tasks, detecting harmful con-
tent is crucial for online environments, espe-
cially with the growing influence of social me-
dia. However, previous research has two main
issues: 1) a lack of data in low-resource set-
tings, and 2) inconsistent definitions and crite-
ria for judging harmful content, requiring classi-
fication models to be robust to spurious features
and diverse. We propose ToxiCraft, a novel
framework for synthesizing datasets of harm-
ful information to address these weaknesses.
With only a small amount of seed data, our
framework can generate a wide variety of syn-
thetic, yet remarkably realistic, examples of
toxic information. Experimentation across vari-
ous datasets showcases a notable enhancement
in detection model robustness and adaptability,
surpassing or close to the gold labels. Dataset
is available at this GitHub repository.

▲! This paper has instances of hateful and of-
fensive language to serve as examples.

1 Introduction

The 21st-century digital realm presents vast con-
nectivity and information exchange opportunities
alongside the challenge of widespread harmful con-
tent like cyberbullying, hate speech, and misinfor-
mation, impacting individuals and communities
negatively. As such, the development of effective
mechanisms for detecting and mitigating harmful
content is of paramount importance (Breitfeller
et al., 2019; Casula and Tonelli, 2023; Plaza-del
arco et al., 2023).

The emergence of the Transformer-based model
(Vaswani et al., 2017) led to the development of
complex models capable of identifying toxic con-
tent with remarkable accuracy. However, the ef-
fectiveness of these models hinges on the quality
and diversity of the datasets used for their train-
ing (Banko and Brill, 2001). Traditional datasets,

Figure 1: Harmful detection approaches

often curated manually, tend to lack the diversity re-
quired to cover the multifaceted nature of harmful
content. Consequently, while these models excel
at recognizing explicit instances of toxicity, they
struggle when faced with subtler forms (Casula and
Tonelli, 2023).

Many datasets containing harmful content are
typically sourced from social media platforms like
Twitter or online forums (Davidson et al., 2017;
Grimminger and Klinger, 2021a; Waseem and
Hovy, 2016; Sachdeva et al., 2022). However,
these datasets often exhibit significant class im-
balances, particularly concerning specific types of
toxic language. Training a model to detect specific
harmful content or opting for smaller models due
to resource or latency constraints requires substan-
tial amounts of human-labeled data. Unfortunately,
such data are scarce in downstream tasks and ex-
pensive to annotate (Breitfeller et al., 2019; Juuti
et al., 2020). Additionally, smaller or low-resource
datasets face challenges like limited linguistic diver-
sity and a higher risk of overfitting (Klubička and
Fernández, 2018). Privacy concerns also emerge
when using social media data obtained without user
consent for research purposes (Casula and Tonelli,
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2023). Furthermore, dataset decay is also a notable
issue, especially with online social media, includ-
ing abusive content, which are often deleted over
time (Casula and Tonelli, 2023)1.

Recent advancements in large language models
(LLMs) such as the GPT series (Brown et al., 2020)
have prompted researchers to explore their poten-
tial for generating synthetic data (Yoo et al., 2021;
Ye et al., 2022b; Gao et al., 2023). While LLM-
based data augmentation often improves model per-
formance, findings are mixed regarding whether
synthetic data generated by LLMs can consistently
match the effectiveness of models trained on real-
world, human-annotated data (Li et al., 2023).
LLMs have also shown promise in generating syn-
thetic data for training harmful content detection
models. However, work in this area remains limited
(Sen et al., 2023) and much of the existing research
is relatively outdated (Juuti et al., 2020; Geet d’Sa
et al., 2021; Liu et al., 2020; Geet d’Sa et al., 2021;
Wullach et al., 2021). Moreover, the effectiveness
of LLMs in this domain is hindered by their dif-
ficulty with subjective tasks and their tendency to
amplify biases inherent in human-annotated train-
ing data. These biases stem from inconsistent stan-
dards used in defining ‘gold’ labels, and LLMs
often struggle to capture the complex nuances and
diversity of human communication in highly sub-
jective tasks.

To address these challenges, we introduce the
ToxiCraft Framework, which enhances robustness
and reduces bias in synthetic data generation. The
ToxiCraft Framework is specifically designed to
produce higher-quality synthetic data that better
supports model training. An example of the pro-
cess is illustrated in Figure 1. In Figure 1, (A) is
direct training where a smaller model is trained on
a limited dataset, that may affect model quality. (B)
shows the use of large language models to do harm-
ful detaction. (C) illustrates Zero-shot Synthesis,
where use LLMs to generate a synthetic dataset
via zero-shot prompts, used to train smaller models
without additional data. Our ToxiCraft method (D)
employs carefully crafted prompts and attributes,
utilizing GPT-4 as the backbone to generate a syn-
thetic dataset for training more refined smaller mod-
els. A more detailed explanation of our approach
can be found in Section 3. To summarise, our work

1Twitter’s policy only allows the display of post IDs rather
than the text itself, making content inaccessible over time,
often due to deletion by either the user or Twitter, particularly
in cases involving harmful information.

has the following key contributions:

• We identify a limitation of traditional simple
zero-shot prompting methods in data synthesis
which leads to a lack of diversity.

• Enhances low-resource harmful information
datasets to address the pervasive issue of harm-
ful dataset sources decay, making the en-
hanced datasets publicly available to ensure
reproducibility and broader utility.

• We introduce a novel data synthetic frame-
work, mitigating biases and ensuring a closer
reflection of real-world complexities and
demonstrating its efficacy in generating the
diverse and high-quality data.

• Applications of the synthesized data in fine-
tuning smaller models, highlight the practical
value of LLM generated data.

2 Related Work

2.1 Harmful Information Detection
Early studies established classifiers to detect harm-
ful information using neural network models
(Zhang et al., 2018) or word embedding methods
(Kshirsagar et al., 2018). In recent years, mod-
els based on the Transformer architecture have
demonstrated remarkable capabilities, prompting
researchers to explore further. Rajput et al. (2021)
conducted research on the ETHOS hate speech de-
tection dataset, comparing classifiers’ performance
in hate speech detection by replacing or integrat-
ing word embeddings (fastText, GloVe, or FT +
GV) with BERT embeddings. Aluru et al. (2020)
contrasted simple models (such as LASER embed-
dings with logistic regression) and BERT models
in scenarios with scarce and abundant linguistic
resources. Lin et al. (2024) generated explana-
tions through multimodal debates between LLMs,
enhancing the transparency and explainability of
harmful meme detection. da Silva Oliveira et al.
(2024) validated the effectiveness of ChatGPT in
identifying harmful Spanish-language speech. Our
ToxiCraft framework extends these developments
by leveraging LLMs not only for direct detection
but also for enhancement of the training data pool
through synthetic data generation. Unlike methods
that rely solely on existing data, ToxiCraft enriches
the dataset, which is particularly critical in the
ever-evolving domain of online content where new
forms of harmful expression continuously emerge.
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2.2 Large Language Models

Transformer (Vaswani et al., 2023) architecture
has revolutionized the field of NLP (Chang et al.,
2023). Large Language Models (LLMs) based on
the Transformer architecture are pre-trained on ex-
tensive corpora, resulting in models with vast pa-
rameter scales and exceptional learning capabilities.
The BERT model (Devlin et al., 2019a) utilizes the
bidirectional encoder from Transformer to process
input text, generating rich context-aware word em-
beddings, with variants including ALBERT (Lan
et al., 2020), RoBERTa(Liu et al., 2019), and De-
BERTa(He et al., 2021). OpenAI have launched
the GPT series of large language models based on
Transformer’s decoder, including GPT-2 (Radford
et al., 2019), GPT-3 (Brown et al., 2020), Instruct-
GPT (Ouyang et al., 2022), and GPT-4 (OpenAI
et al., 2024). These large language models are
garnering increasing research interest, not only ex-
hibiting outstanding performance in a broad range
of tasks in the natural language understanding sec-
tor—such as sentiment analysis (Scaria et al., 2023;
Fei et al., 2023), text classification (Peña et al.,
2023) but also demonstrating remarkable capabili-
ties in natural language generation tasks like sum-
marization (Wang et al., 2023b), translation (Wang
et al., 2023a), and question answering (Yan et al.,
2021).

2.3 Data Synthesis

Traditional data synthesis methods have employed
techniques ranging from synonym replacement to
token-level manipulations, as exemplified by the
works of (Zhang et al., 2016) and (Wei and Zou,
2019). These methods, while useful, offer limited
contextual understanding and diversity. The ad-
vent of translation models (Fadaee et al., 2017) and
masked filling (Kumar et al., 2020) brought im-
provements in maintaining semantic consistency,
yet they still fall short in generating the context-
rich synthetic data required for complex tasks such
as harmful content detection. In contrast, ToxiCraft
leverages the latest advancements in LLMs for data
synthesis, transcending the limitations of earlier
approaches by producing contextually nuanced and
varied synthetic instances. Unlike methods that
require fine-tuning on annotated data, which in-
curs substantial human labor costs (Yang et al.,
2020; Mohapatra et al., 2021; Kumar et al., 2021),
ToxiCraft efficiently synthesizes data without in-
tensive manual effort. In comparison to zero-shot

frameworks like ZEROGEN (Ye et al., 2022b), Su-
perGen (Meng et al., 2022), and PROGEN (Ye
et al., 2022a), which generate datasets from scratch
or suffer from low information content and redun-
dancy, ToxiCraft’s approach is designed to yield
high-quality synthetic data that is both diverse and
relevant to the seed data, thus ensuring its applica-
bility to real-world tasks. In the few-shot learning
domain, while Yu et al. (2023) rely on diverse at-
tribute prompts and PromDA (Wang et al., 2022)
along with MSP (Chen et al., 2023) utilize soft
prompts for data diversity and optimization, Tox-
iCraft differentiates itself by not only enhancing
the diversity but also focusing on the generation of
synthetic data that closely aligns with the intrica-
cies of harmful content. The integration of attribute
prompts within ToxiCraft’s framework ensures that
the synthesized data captures a broad spectrum of
harmful content, effectively addressing both the
volume and variety required for robust model train-
ing.

3 Methodology

In this section, we commence by defining the prob-
lem statement and subsequently introduce the Tox-
iCraft framework. ToxiCraft is designed as a ver-
satile and effective few-shot learning framework
that operates through dataset generation. ToxiCraft
framework are illustrated in Figure 2.

3.1 Problem Statement
In the context of online content moderation, par-
ticularly the detection of harmful information, the
problem can be modeled as a supervised classifica-
tion task. Given an input content sequence x, rep-
resented as tokens x = [x1, x2, . . . , x|x|], the goal
is to predict a binary output y, where y ∈ {0, 1}
indicates whether the content is harmful (y = 1)
or not (y = 0). The dataset D consists of pairs of
content sequences and their corresponding labels:

D = {(x(i), y(i))}Ni=1

where N represents the number of examples in the
dataset. The major challenge in this domain is the
scarcity of labeled examples of harmful content,
denoted as Dh:

Dh = {(x(i), y(i)) ∈ D : y(i) = 1}
Due to the sparse nature of Dh, there is a need
for effective methods to augment the dataset, espe-
cially enhancing the representation of the minority
class, which is harmful content in this scenario.
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Figure 2: Our ToxiCraft Framework Diagram, CAE & TSR step is elaborating on transforming the initial data into
multiple versions by altering the context while maintaining the core message or change the topic

To address the limitations posed by scarce harm-
ful content samples, we propose a data augmenta-
tion method - ToxiCraft that involves synthesizing
new content instances using LLMs. ToxiCraft uti-
lizes LLMs to augment the dataset with synthetic
instances, enhancing the representational diversity
of harmful content. The data augmentation func-
tion, defined by:

Aug(x) = {x′ : x′ = Φ(LLM, x, ϵ), ϵ ∼ P(ϵ)}

Here, Φ denotes the ToxiCraft framework which
is described in Section 3.2. And ToxiCraft uses
selected seed data to guide the synthesis, ensuring
that the generated content is relevant and varied. ϵ
represents a noise vector drawn from a probability
distribution P , introducing variations in the synthe-
sized outputs to prevent overfitting to the seed sam-
ples. Seed data S for ToxiCraft are selected from
Dh based on a random sampling process, which
aims to capture a diverse array of harmful content
types. The selection function S(d, n) picks n sam-
ples from d using a probability distribution tailored
to emphasize less represented content:

S(Dh, n) = {(x(i), y(i)) : x(i) ∈ Dh,

i ∈ random indices from Dh}

where n is the number of seed data chosen to guide
the LLM in data generation. Details on the selec-
tion process and the impact of seed data size are

provided in Section 4. The augmented dataset D′

is then:

D′ = D∪{(x′, y) : x′ ∈ Aug(x), S(Dh, n) ∈ Dh}

After that, we employ a smaller model, e.g., BERT,
fine-tuned on both D and D′. The training objec-
tive is to minimize the loss function L(θ) across
the augmented dataset:

L(θ) = 1

|D′|
∑

(x,y)∈D′
ℓ(hθ(x), y)

where ℓ represents a loss function appropriate for
binary classification tasks, such as cross-entropy.
The evaluation of the ToxiCraft framework using
the smaller model involves several key metrics:

Effectiveness: Measured by the accuracy and
Macro F1-score of the model on a held-out test set
T , not seen during training or augmentation:

Macro F1-Score(θ) =
1

K

K∑

k=1

F1k(θ)

where F1k(θ) = 2× Precisionk(θ)×Recallk(θ)
Precisionk(θ)+Recallk(θ)

and K
is the number of classes, which in this binary clas-
sification context, K = 2.

Robustness: In our setting, robustness is eval-
uated using cross-dataset evaluation, where data
augmented on one dataset is used to evaluate perfor-
mance on other datasets. Specifically, robustness
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is measured by the model’s performance consis-
tency across different datasets Di, with data aug-
mented from one dataset Dj and evaluated on an-
other dataset Dk. The variance of the model’s loss
across these datasets captures the robustness:

Robustness(θ,D) = VarDk
(ℓ(hθ(Dk), yk))

where hθ represents the model parameterized by θ,
ℓ(·) is the loss function, and Dk are the instances
from different datasets. Var captures the variance
in performance across these datasets, reflecting the
robustness of the model when trained on data from
Dj and tested on others. We also provide a pseu-
docode in Appendix A.

3.2 ToxiCraft Framework

In the ToxiCraft framework, we employed LLMs
as agents to analyze seed data containing harmful
information.
Attribute Extraction The LLMs’ task is to iden-
tify the attributes within this data to determine if
the content is harmful. This concept was inspired
by the research of Yu et al. (2023); however, un-
like their approach, we did not manually filter the
attributes generated by GPT. Instead, we retained
these attribute tags generated by the model itself
and cataloged all specific groups or themes indicat-
ing harm in the seed data, collectively termed the
‘Harmful Themes Index’. The advantage of auto-
mated attribute tagging is its capacity to process
and analyze data rapidly and on a large scale, signif-
icantly enhancing processing efficiency. To further
enhance the accuracy of generated attributes and
the robustness of the model, we introduced a new
step where LLM provides a confidence score when
generating attributes. Based on this confidence
score, we decided whether to retain the attribute
using a simple random function.

Even with a high confidence score, an attribute
may be randomly discarded by a small chance,
which could increase the robustness of the decision-
making process, reduce the risk of cumulative er-
rors, and avoid over-reliance on the model’s singu-
lar judgment. In this process, we considered the
possibility of errors in automated attribute tagging
but decided not to take model-based corrective mea-
sures. Instead, we chose to maintain a simple and
efficient system to quickly respond to and update
changes in the dataset. Although this approach is
simple, it can maintain a certain level of accuracy
and consistency without sacrificing efficiency.

ToxiCraft Prompt Next, we added manually-set
indicators to this data with Attribute Extraction by
GPT (we call this process as ‘ToxiCraft Prompt’)
and input 10% of the data extracted randomly from
the seed data pool together with ‘ToxiCraft Prompt’
to GPT. Manually-set indicators include the in-
tensification or weakening of tone, whether to in-
crease swear words, whether to use irony, country
and time. Each value will be randomly selected
or masked. Thus, it is possible that none of the
manually-set indicators are added, but at most only
one answer will be selected from each indicator.
For example, the country could be randomly set as
the United States and the year as 2023.
CAE and TSR According to the research by
Pavlopoulos et al. (2020) and (Geet d’Sa et al.,
2021), high-quality context can help better detect
harmful data. Considering the inherent length lim-
itations of the dataset (primarily from a harmful
dataset on Twitter before 2017 with a limit of 140
characters (about 20-35 words) and after 2017 with
a limit of 280 characters), we innovatively gener-
ated context-based preceding and succeeding text.
We employed a technique called ‘Contextual An-
choring Enhancement’, using dropout to randomly
abandon the preceding or succeeding text or retain
them all to enhance the model’s robustness. Fur-
thermore, we also checked the generated data and
used GPT to evaluate their quality. Among the
result data, we selected the top-performing 10%,
applied ‘Thematic Style Refinement’, transforming
the themes recorded in the ‘Harmful Themes In-
dex’, and added them to the seed data. We repeated
these steps until generating M results controlled by
hyperparameters, while the number of data gener-
ated per batch using 10% of seed data K was also
controlled by hyperparameters. The total ToxiCraft
framework genrated data are N .

ToxiCraft effectively utilizes the Chain of
Thought (COT) concept to gradually generate high-
quality training data. Additionally, we compared
the dataset generated by ToxiCraft with the dataset
generated only using simple COT prompts, and
detailed experimental results will be presented in
Section 4.

4 Experiment Setup

4.1 Datasets and Processing

In this section, we outline the data employed in our
experiments. We first introduce the four datasets
containing harmful information in Section 4.1.1.

16636



Following this, we consolidate these datasets and
present statistics in Section 4.1.2.

4.1.1 Harmful Information Datasets
Automated Hate Speech Detection (AHSD) de-
scribed by Davidson et al. (2017), comprises
24,802 tweets extracted using a hate speech lex-
icon. These tweets are manually categorized by
CrowdFlower workers into three distinct groups:
hate speech, offensive but not hate speech, and
neither, with an intercoder agreement of 92%.
Towards the Political Opponent (HTPO) de-
scribed by Grimminger and Klinger (2021b) en-
compasses 3,000 tweets related to the 2020 U.S.
Presidential election, annotated for both stance de-
tection (favorable or against candidates) and the
presence of hateful language, enabling nuanced
analysis of political discourse and sentiment.
Hate Speech and Offensive Content Identifica-
tion (HASOC) described by Mandla et al. (2021),
is part of the Hate Speech and Offensive Content
Identification track, consists of 17,657 tweets in
Hindi, German, and English, annotated for hate
speech and offensive content with three classifica-
tion levels: presence of hate or offensive content,
type of offense (hate, offensive, or profane), and
the nature of the insult (targeted or untargeted).
Call me sexist, but (CMS) described by Samory
et al. (2021), consists of 6,325 instances drawn
from Twitter and includes a comprehensive anno-
tation for expressions of sexism, where each entry
is independently labeled by five coders into cat-
egories based on content and phrasing, such as
sexist, maybe-sexist, civil, and uncivil.
It’s important to mention many datasets such as
AIRAIT (Waseem and Hovy, 2016), only their
tweet IDs and their labels were publicly available.
Regrettably, a substantial portion of tweets (>=
40% positive datas) were inaccessible through the
X API.

4.1.2 Data Processing and Splits
Our data preprocessing pipeline prioritizes identify-
ing harmful content in English. Thus, we exclude
any tweets in languages other than English and
verify language using a Roberta-based language
identifier. Additionally, to prevent overlap between
similar datasets, we remove near-duplicated entries
through normalization, ignoring duplicate entries
and removing URLs and mentions. The majority
of collected datasets focus on hate speech, and in
some cases, offensive speech, which we consider

harmful. For datasets with a binary hate classifica-
tion task or a more detailed classification like CMS,
where all "hate" subclasses are treated as one, we
categorize them as harmful. Datasets focusing on
specific types of hate speech, such as sexism, are
also considered harmful. Moreover, datasets con-
taining offensive speech are likewise classified as
harmful in our case. Finally, in datasets like AHSD
and HASOC, where a distinction between hate,
offensive, or profound speech exists, we include
entries labeled as hate speech or offensive, consid-
ering them as harmful. Entries labeled as normal
or not-hateful are categorized as not harmful.

Table 1 shows the final numbers of data and
classes after processing. Datasets divided into train-
ing, validation, and testing sets in a ratio of 7:1:2,
respectively.

Dataset Harmful Non-Harmful
AHSD 1200* 4081
HTPO 351 2508

HASOC 1200* 4292
CMS 1203 4000*

Table 1: Dataset Breakdown: Harmful vs. Nonharmful
Content Numbers in AHSD, HTPO, HASOC, CMS. *

indicates that dataset sizes have been downsized to
simulate reality low-resources setting.

4.2 Baselines

We contrast our method with various baseline
approaches, including those that utilize LLM-
powered data augmentation techniques.
All Gold Labels: This method utilizes the entire
gold-labeled training dataset for training the mod-
els. It serves as a baseline by providing compre-
hensive data exposure, which allows the models
to learn from a complete range of examples in the
dataset.
Seed Gold Labels with In-context Learning:
This approach expands the seed data by generat-
ing new data instances from the seed data samples,
where samples for in-context learning and target-
context selection are randomly picked. It tests the
model’s ability to generalize from an enhanced but
limited dataset, simulating training under resource-
constrained conditions.
ToxiCraft: Our proposed method that enhances
seed data with synthetically generated data, expand-
ing the training dataset by adding new examples
that mirror the characteristics of the seed data. This
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Methods/Seed Count
AHSD HTPO HASOC CMS

BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

Gold Labels - 86.0 88.0 74.0 69.0 58.2 57.3 85.2 85.4

In-context Learning w/ Seed

50 34.9 35.2 23.5 22.8 8.1 10.4 34.4 37.5
100 47.8 49.5 48.2 46.3 17.9 20.5 49.3 52.0
150 65.2 68.1 54.6 55.1 21.4 21.4 58.9 57.4
200 63.2 68.0 59.2 58.7 32.6 31.1 63.8 66.2

ToxiCraft w/ Seed (Ours)

50 62.4 63.7 40.6 38.9 15.2 16.0 53.2 55.9
100 74.7 73.9 47.8 44.3 27.3 28.2 75.6 70.4
150 85.5 87.1 58.0 59.3 44.1 43.6 86.0 84.8
200 89.0 88.4 70.3 70.5 58.9 56.1 86.3 86.5

Table 2: Comparison of Model Performances Across Different Databases and Data Generation Methods. The
comparison parameter is MacroF1. Results outperformed training on gold label are underlined while the best

performance on each dataset are bolded. Some baseline results come from Antypas and Camacho-Collados (2023).

method not only expands the quantity of available
training data but also diversifies the types of train-
ing examples. It aims to overcome data scarcity
and improve model robustness by broadening the
training scenarios.

4.3 Implementation Details

We employed GPT-4 (OpenAI et al., 2024) as our
agent model. For generations, in our experiment,
we set N to be 1000, K to be 100, and M to be 3.
For smaller-scale classification tasks, we utilized
two language models of a reasonable size: BERT-
base (Devlin et al., 2019b) and RoBERTa-base (Liu
et al., 2019) as downstream models. The imple-
mentations provided by Hugging Face (Wolf et al.,
2020) were utilized for training and evaluating all
language models. The fine-tuning parameters are
listed in B, and we used macro-F1 to report the eval-
uation scores, ensuring consistency across models
and tasks.

5 Experimental Results

Main Results We conduct experiments on two dif-
ferent data augmentation scenarios and report the
results of training data augmentation in Table 2 and
the LLM generated successful rate results in Table
3. As shown in table, using the complete gold-
labeled dataset, generally sets a high benchmark,
notably on the AHSD and CMS datasets, indicating
that comprehensive data access typically results in
better model performance. Conversely, ‘In-context
Learning with Seed’ shows a performance increase
with larger seed sizes, but significantly underper-
forms with smaller seeds (50, 100), indicating chal-
lenges in training models with limited data. Our

Dataset AHSD HTPO HASOC CMS

Target Size 1000 1000 1000 1000
Success (%) 78.6 52.2 75.2 69.1

Table 3: Target Size and Success Rate of GPT-4
Generated Synthetic Data Across Datasets

Toxicarft substantially outperforms or comparable
with all baselines across different settings demon-
strating the effectiveness of our approach. Notably,
our approach, which enhances seed data with syn-
thetically generated labels, demonstrates substan-
tial performance gains, especially with larger seeds
(150, 200). These results approach or even surpass
those from training with all gold labels, highlight-
ing the potential of synthetic data to effectively
supplement training datasets and enhance learning
outcomes. The lower performance across all meth-
ods in the HTPO dataset, which focuses on political
harmful content, suggests that such content poses
additional complexities and nuances that are chal-
lenging for models to learn. Our framework not
only improves as more seed data is available but
also illustrates that well-generated synthetic data
can serve as a robust tool for augmenting training
datasets, thus potentially reducing reliance on ex-
tensive manually labeled data. In term of models,
RoBERTa generally outperforms BERT, especially
in higher data regimes (e.g., "ToxiCraft with Seed
Data" at seed 200 across multiple datasets). This
could be attributed to RoBERTa’s more robust pre-
training, which might be better at handling the nu-
ances introduced by synthetic data augmentation.

Analysis on Generated Success Rate The high
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success rate of 78.6% for the AHSD dataset sug-
gests that GPT-4 excels in generating data that
closely matches the characteristics and complex-
ities of this particular dataset. It’s important to
note that both the success rate and the macroF1
generated from a small amount of seed data for
AHSD are high, the possibility of a data breach
cannot be ruled out. Conversely, the lower suc-
cess rate of 52.2% for the HTPO dataset, which
focuses on political harmful content, highlights the
challenges faced in synthetic data generation when
dealing with nuanced and sensitive content. It’s
possible that the GPT series may have been specifi-
cally tuned for political topics, which could explain
the difficulties encountered in generating synthetic
data for this dataset.

Figure 3: Harmful detection approaches

Analysis on Robustness Figure 3 reveals Toxi-
Craft’s robust ability to generate synthetic data that
enhances model generalization across datasets. In
the AHSD to HASOC evaluation, we observe that
as the seed size increases, the performance of mod-
els trained on ToxiCraft synthetic data rises signifi-
cantly, peaking at a Macro F1 score of 67 for the
200 seed size. This surpasses the gold label per-
formance for the AHSD dataset, which stands at a
Macro F1 score of 54. Similarly, for the HASOC
to HTPO evaluation, the upward trend continues
with the performance of the 200 seed size reaching
a Macro F1 score of 58, again outperforming the
gold label performance, benchmarked at 56. These
results not only demonstrate ToxiCraft’s capacity
to produce high-quality synthetic data that captures
the complexity of harmful content but also its ef-
fectiveness in adapting to different datasets. The
ability to exceed gold label performance suggests
that ToxiCraft could potentially reduce the need for
extensive labeled datasets, particularly in special-
ized or sensitive areas like political content, where
data acquisition is challenging.

6 Ablation Study

In this section, we present the results of our abla-
tion study, which focuses on three key aspects: the
choice of model, the impact of different modules,
and the robustness of our framework under differ-
ent settings. These experiments were conducted on
the AHSD dataset, HTPO dataset, with 200 seed
data and BERT as the downstream model.

6.1 Study on Backbone Model

In the early stages of our research, we experi-
mented with several open-source models, including
LLaMA2 13B, LLaMA3 8B and Flan-T5-XXL, as
alternatives to GPT-4. However, the success rates
and overall performance of these models were sig-
nificantly lower than those achieved by GPT-4.

Table 4 summarizes the success rate and macro-
F1 scores for each model. AHSD Dataset with 100
seed data is listed in C. GPT-4 clearly outperforms
the alternatives, which justifies its selection as the
preferred model for our experiments.

Model Success Rate (%) Macro-F1
GPT-4 78 89.0
LLaMA2 13B 32 38.7
Flan-T5-XXL 27 34.1
LLaMA3 8B 22 62.5

Table 4: Comparison of models on the AHSD dataset
with 200 seed data and BERT as the downstream model.

6.2 Study on Modules

To assess the contributions of individual compo-
nents in our framework, we conducted ablation
studies by systematically removing key modules.
The results, displayed in Table 5, highlight the sig-
nificance of each module in model performance.
ToxiCraft Prompt: Removing the manually-set
indicators in the ToxiCraft Prompt caused a no-
table decrease in macro-F1 score, from 89.0 to
85.2 on the AHSD dataset, and from 70.3 to 58.5
on the HTPO dataset, underscoring the importance
of prompt tuning in the data generation process.
CAE: Excluding the CAE module reduced perfor-
mance to 84.3 macro-F1 on the AHSD dataset and
63.8 on the HTPO dataset, demonstrating its crucial
role in capturing contextual information.
TSR: Removing the TSR module resulted in the
lowest performance (83.6 macro-F1 for AHSD,
65.1 for HTPO), further emphasizing its impor-
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tance in improving model robustness and general-
ization.

Method AHSD HTPO
Full model 89.0 70.3
w/o ToxiCraft Prompt* 85.2 58.5
w/o CAE 84.3 63.8
w/o TSR 83.6 65.1

Table 5: Ablation study results on both the AHSD and
HTPO datasets using MacroF1. * indicates ToxiCraft
Prompt with manually set indicators.

6.3 Study of the Cross-Dataset Benefits of
Modules

To further validate the robustness of our frame-
work, we evaluated its performance on the HASOC
dataset, using the AHSD dataset for data gener-
ation. As shown in Table 6, the full ToxiCraft
framework exhibited the highest macro-F1 score
(67.3), confirming its effectiveness in generating
robust training data across datasets. When the man-
ually set indicators in the ToxiCraft Prompt were
removed, the macro-F1 score dropped significantly
to 49.5, further underscoring the importance of
these indicators in enhancing data diversity and
performance. The exclusion of the CAE module re-
sulted in a lower macro-F1 score of 50.3. Similarly,
the absence of TSR led to a reduction in perfor-
mance (57.4 macro-F1). In comparison, using only
gold label data yielded a macro-F1 score of 54.7,
showing the advantage of our method.

Method Macro-F1
Gold label 54.7
ToxiCraft 67.3
ToxiCraft Prompt w/ * 58.6
ToxiCraft Prompt w/o * 49.5
w/o CAE 50.3
w/o TSR 57.4

Table 6: Robustness study on the HASOC dataset using
data generated from the AHSD dataset, * means manu-
ally set indicators.

7 Managing Risks of Generating Hateful
Content

The use of large language models (LLMs) to gen-
erate hateful content presents significant ethical
concerns, particularly around amplifying harmful
biases. To mitigate these risks, we implemented

strict content review processes to filter inappropri-
ate outputs and limited the scope of generation to
controlled experimental environments. We care-
fully ensured that synthetic data remained focused
on research objectives. All experiments adhered
to ethical guidelines, underwent reviews, and com-
plied with responsible AI standards. The datasets
generated were made available with clear warnings
to promote transparency and encourage responsible
use in future research. We will actively collaborate
with the community to monitor, responding swiftly
to any indications of misuse.

8 Conclusion

In this study, we introduced ToxiCraft, a framework
that effectively enhances data augmentation for
harmful content detection tasks in low-resource set-
tings. ToxiCraft utilizes Large Language Models to
synthetically expand seed datasets, overcoming the
diversity and volume limitations of conventional
augmentation methods. Our extensive evaluations
demonstrate that ToxiCraft significantly improves
model robustness, outperforming or closed to base-
lines trained with gold label datasets. This work
contributes to the ongoing efforts to develop data-
efficient and adaptable models for sensitive content
moderation, and sets a foundation for future re-
search on leveraging synthetic data generation in
various domains.

9 Future Work

Future research for ToxiCraft will focus on three
main objectives: 1) enhancing multilingual capabil-
ities, 2) refining the seed data selection process, and
3) reducing reliance on high-cost LLMs. For multi-
lingual data generation, future efforts will explore
translating harmful content from English into other
languages while preserving both local nuances and
the target language characteristics. In terms of op-
timizing seed data selection, the focus will be on
refining the methodology to identify the most di-
verse and representative examples within a dataset.
One proposed approach is to analyze word embed-
dings and select seed data points whose vectors
are the least similar, ensuring broad coverage of
the data space. Lastly, cost-effective model explo-
ration will involve identifying more affordable and
transparent alternatives to GPT-4, such as the Mis-
tral model, for generating high-quality synthetic
samples of harmful content (Hui et al., 2024).
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10 Limitations

In our investigation of the ToxiCraft framework,
we have recognized a few limitations that warrant
further attention: (1) While our approach, which
centers around GPT-4, has shown proficiency in
generating synthetic data for harmful content detec-
tion, its performance on niche or underrepresented
content types is yet to be fully understood. The
adaptability of ToxiCraft to a wider array of nu-
anced domains remains an area for exploration.
(2) The efficacy of ToxiCraft relies partly on the
availability of initial seed data of high quality. Ob-
taining such data can pose challenges, particularly
in highly specialized or sensitive contexts. Future
work will need to address strategies for seed data
selection in scenarios where gold standard labels
are scarce or non-existent. (3) The utilization of
models like GPT-4 brings about concerns related
to accessibility and reproducibility. The propri-
etary nature of such models and potential licensing
restrictions may limit widespread adoption and in-
dependent verification of the results.

11 Ethical Consideration

The generation of synthetic data for harmful con-
tent detection necessitates careful ethical consid-
erations. It involves handling potentially sensitive
or offensive material, and there is a responsibility
to ensure that such data does not perpetuate harm
or bias. Rigorous validation processes and ethical
oversight are essential to prevent the reinforcement
of such biases in synthetic data. Collaboration with
subject matter experts and ethicists will be critical
to navigate these challenges effectively and respon-
sibly in future iterations of ToxiCraft.
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A Pseudocode for ToxiCraft

Algorithm 1 ToxiCraft Data Augmentation

1: procedure TOXICRAFT(D,Dh, n)
2: S ← SelectSeedData(Dh, n) ▷ Select

seed data from harmful examples
3: D′ ← D ▷ Initialize augmented dataset

with original data
4: for each (x, y) ∈ S do
5: ϵ ∼ P(ϵ) ▷ Sample noise vector
6: x′ ← Φ(LLM, x, ϵ) ▷ Generate

synthetic instance
7: D′ ← D′ ∪ {(x′, y)} ▷ Add synthetic

instance to dataset
8: end for
9: return D′

10: end procedure
11: function SELECTSEEDDATA(Dh, n)
12: indices← RandomIndices(Dh, n) ▷ Get

random indices for seed selection
13: return {(x(i), y(i)) : i ∈ indices}
14: end function
15: function RANDOMINDICES(Dh, n)
16: count← size of Dh

17: return n random unique indices from 1 to
count

18: end function

B Training parameter

We fine-tuned the learning rate, warm-up steps,
number of epochs, batch size, and other hyperpa-
rameters for each model. For BERT, we use learn-
ing rate=1.8282× 10−5, epoch=3, batch=4, warm-
up step=30.And for RoBERTa, we use learning
rate=1.1856× 10−5, epoch=3, batch=4, warm-up
step=30. All fine-tuning experiments were con-
ducted using A40 and GTX 4080 Super GPU, and
the results are reported in terms of macro-F1 score.

C AHSD Dataset with 100 seed data
Success rate

Table 7 presents the performance of different mod-
els on the AHSD dataset, using 100 seed data and
evaluated with BERT as the downstream model.

Model Success Rate (%) Macro-F1
GPT-4 76 74.7
LLaMA2 13B 42 10.8
Flan-T5-XXL 33 16.1

Table 7: Comparison of models on the AHSD dataset
with 100 seed data and BERT as the downstream model.

D Example of ToxiCraft framework

In Figure 4, we provide a example of our ToxiCraft
to help better understand.
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Figure 4: Our ToxiCraft Framework example
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