
Findings of the Association for Computational Linguistics: EACL 2024, pages 16648–16658
November 12-16, 2024 ©2024 Association for Computational Linguistics

Look Who’s Talking Now: Covert Channels From Biased LLMs

Daniel Silva1, Frederic Sala2, Ryan Gabrys1,
1Naval Information Warfare Center Pacific, 2University of Wisconsin-Madison,
{daniel.silva61, ryan.c.gabrys}.civ@us.navy.mil, fsala@wisc.edu

Abstract

Large language model-based steganography en-
codes hidden messages into model-generated
tokens. The key tradeoff is between how much
hidden information can be introduced and how
much the model can be perturbed. To address
this tradeoff, we show how to adapt strategies
previously used for LLM watermarking to en-
code large amounts of information. We tackle
the practical (but difficult) setting where we do
not have access to the full model when trying to
recover the hidden information. Theoretically,
we study the fundamental limits in how much
steganographic information can be inserted into
LLM-created outputs. We provide practical en-
coding schemes and present experimental re-
sults showing that our proposed strategies are
nearly optimal.

1 Introduction

Steganography is the art of hiding information
within other non-secret text or data, commonly
referred to as covertext. This technique ensures
that only someone with the appropriate decoding
key can access the hidden information, thus provid-
ing a layer of security. Initially used in historical
contexts for espionage and secret communications,
steganography has evolved with technological ad-
vancements. When coupled with large language
models (LLMs), steganography embeds hidden in-
formation into text generated by these models.

Our approach is to bias the output distribution
of the LLM in order to allow for the encoding of
the hidden message (the stegotext). However, in
order to maintain secrecy, we bound the maximum
bias allowed for each sampled token. We study the
central challenge for such techniques: the tradeoff
between the secrecy of the scheme, which is usu-
ally measured in terms of how statistically similar
the stegotext and the covertext are, and how much
information can be communicated by the stegotext.

To recover the stegotext, we must use a decoding
function. One key aspect of our work is that we
do not necessarily assume that this function has ac-
cess to the underlying LLM. Instead, we consider
the following two scenarios: (i) The LLM is only
accessible during encoding, (ii) The LLM is acces-
sible during encoding and a quantized version of
the model is accessible for the decoding. We also
consider a third scenario where the encoder and
decoder both have access to the same model and
show that under this (much simpler) setting, nearly
optimal steganogographic schemes exist. We as-
sume in all three cases that the encoder always
initially samples from the unquantized LLM before
potentially biasing its output distribution.

Our contributions are the following. First, we
introduce a simple encoding model whose struc-
ture is an extension of previous techniques used in
watermarking, but with the goal of encoding larger
quantities of information. We propose encoding
schemes for each of the three scenarios and evalu-
ate these in light of theoretical bounds we develop.

Experimentally, using data extracted from sev-
eral large language models, we show that when
the maximum bias is at least two, positive informa-
tion rate schemes are achievable, and that in many
cases, our schemes empirically appear to approach
the optimum information rate.

2 Related Works

We briefly present some related work, predomi-
nantly focusing on steganography and watermark-
ing with large language models.

LLM Steganography and Watermarking.
There are a large number of works tackling
watermarking for large language models; such
watermarking techniques share aspects with
steganography as they seek to encode hidden
messages in language model aspects. We highlight
two such works: Kirchenbauer et al. (2024)

16648

tackles digital watermarking in the , proposing
methods that ensure watermarks persist despite
modifications to the generated text. The goal
is to enhance traceability of content and ensure
authenticity. Zhao et al. (2023) introduces a
framework for robust watermarking. Their method
supports the embedding and efficient verification
of watermarks with provable guarantees.

On the steganography side, Ziegler et al. (2019)
introduced a method for neural network-based
steganography. The underlying technique uses
arithmetic encoding. The basic setting is similar
to ours: the goal is to embed a hidden message in
such a way that model’s generated output does not
change in a detectable way. Similarly, de Witt et al.
(2023) focused on achieving near-perfect stegano-
graphic security through a technique called mini-
mum entropy coupling.

On a more theoretical note, Zhang et al. (2021)
proposes a generative linguistic steganography
method that is provably secure. They ensure that
modifications made to embed information are com-
pletely imperceptible.

Prompt Engineering, Black-Box Approaches.
Recent studies have explored the use of prompt
engineering and black-box approaches to steganog-
raphy in LLMs. Wu et al. (2024) shows how soft
prompts can be used to guide LLMs to generate
data that includes embedded steganographic con-
tent without needing direct access to model inter-
nals. This method proves particularly useful in
scenarios where users must rely on black-box API
interactions.

Cryptographic Watermarking. Christ et al.
(2023) introduces cryptographically-inspired un-
detectable watermarks for language models, where
the presence of the watermark can only be con-
firmed through the possession of a secret key

Our Approach. Our approach shares a common
goal with Kirchenbauer et al. (2024), as we aim to
design schemes that perturb or bias the outputs of
a large language model in a controlled manner to
embed information. The key difference is that we
focus on encoding the maximum possible amount
of information within a given bound on the pertur-
bation magnitude.

Similar to the challenges addressed in de Witt
et al. (2023) and Ziegler et al. (2019), one of our
primary obstacles is designing codes that minimize
the statistical distance (or divergence) between the

generated stegotexts and the covertexts. Our prob-
lem is more challenging than these previous works,
as we do not assume the decoder has access to to-
ken distributions during decoding, aligning with
black-box approaches. In contrast to these recent
methods, we aim to maximize the information rate
by allowing the encoder to retain access to the in-
ternal state of the LLM during encoding, even if
this assumption does not hold during decoding.

3 Problem Formulation

A language model is a function f that accepts
as input a sequence of tokens x(−Np), . . . , x(t−1).
This sequence can be partitioned into two dis-
joint subsequences consisting of: (i) the prompt
xp = (x(−Np), . . . , x(−1)), and (ii) the sequence
xt−1 = (x(1), . . . , x(t−1)), which is the first t− 1
tokens previously produced by the model. Given
the input (xp,xt−1), the model outputs a vector
of V logits, one for each word of the vocabulary
V = [V]. These logits are passed into a softmax
function producing a distribution over V . The next
token at time t is then sampled according to the re-
sulting distribution. We refer to the probability that
the t-th token is equal to the k-th element from the
vocabulary V as p(t)k and represent the distribution

at time t as the vector p(t) =
(
p
(t)
1 , p

(t)
2 , . . . , p

(t)
V

)
.

For inputs x(−Np), . . . , x(t−1), f outputs

f (xp,xt−1) = p(t). (1)

For a distribution p = (p1, p2, . . . , pV) over the
set of tokens, we use the notation Z ∼ p to denote
the fact that Z is sampled from the distribution p
so that the probability that Z is equal to the k-th
token is pk if Z ∼ p.

Recall xp =
(
x(−Np), x(−Np+1), . . . , x(−1)

)
is

our input prompt. Our goal is to develop an embed-
ding function denoted f̂ that can hide a message
in the tokens produced by the LLM. To obtain the
hidden message, we also need an efficient decoder
D. For a given a binary message to be hidden
u ∈ {0, 1}m and a starting prompt xp, the embed-
ding function and decoder must satisfy a pair of
properties detailed below. Let Y1 ∼ f̂ (xp,u) and
recursively define Yt as

Yt ∼ f̂ (xp, Y1, . . . , Yt−1,u) .

Requirements. We have two requirements:

1. Reliability Property: D (xp, Y1, . . . , YN) =
u, with probability at least 1 − ∆ for small

16649

∆ > 0, where ∆ becomes increasingly small
as m,N increases.

2. Security Property: For any t ∈ [N] and se-
quence of tokens xt−1, the following holds:
for all k ∈ [V] we have p̂

(t)
k /p

(t)
k ≤ β.

That is, each token p̂
(t)
k is the result of bias-

ing the original distribution by a factor of at
most β. Here, p̂(t) = f̂ (xp,xt−1,u) and
p(t) = f (xp,xt−1).

The first condition ensures that we can recover
our information bits with vanishing levels of error.
The second condition seeks to ensure f̂ makes the
generated stegotext similar to the covertext. The
level of similarity is controller by the parameter β.
We will study the properties of β in the following.

Approach. We use a simple strategy to encode
the binary information from u into the tokens. At
each generation step, we partition the token vocab-
ulary into two parts, so that the tokens in one part
represent 1, and the others represent 0. Since we
do not directly control the choice of next token, to
make it more likely a token from the correct part
(the one representing the next bit of u we wish to
hide), we bias the probabilities of tokens in this part.
This makes it easier to achieve reliability. How-
ever, to meet the security property, we can only
bias up to a level β. In some scenarios, this will
lead to a decoding error probability that is too high
(violating reliability). To account for this case, we
first encode u with an error-correcting code, which
protects against such errors. However, by coding,
we may sacrifice efficiency (so that we may need
many more tokens to hide a message compared to
its length). We address this tradeoff next.

Goals. Our primary aim is to develop techniques
that, for fixed levels of β, achieve the largest possi-
ble information rate. We explain this below.

We assume that our hidden information u ∈
{0, 1}m is comprised of m i.i.d. bits (each bit is
equal to one with probability 1/2). It is easy to
adapt these results for other distributions, but we
do not do so here for simplicity. As detailed earlier,
at the beginning of the embedding process, we first
perform an intermediate encoding step where the
information u ∈ {0, 1}m is encoded into a binary
codeword E(u) = c ∈ C ⊆ {0, 1}N .

The motivation for the encoding process is stan-
dard in the error-correcting codes literature. The
idea is that each hidden message sequence u is

encoded (via the encoder E) into a longer code-
word from a set of codewords (a code) C. These
codewords have longer length, so that N > m, and
therefore take more tokens to embed. However,
the code C has additional structure that makes it
possible to reliably decode into the original mes-
sage despite errors affecting codeword bits. Our
goal therefore is to obtain this desirable property
while maximizing the information rate m

N . More
formally, using coding-theoretic terminology, we
refer to any coding scheme that satisfies the two
properties as an (N,m, β)-stego code with rate m

N .
Our aim is to develop codes that achieve the

maximum possible rate under two different scenar-
ios. (i) Decoder Uninformed (DU): At the time of
decoding, the distribution p(t) is unknown. (ii) De-
coder Informed (DI): At decoding, the distribution
of p̃(t) is known but not p(t), where p̃(t) represents
an approximation of p(t), which we assume is ob-
tained using a quantized model.

Embedding Process. The embedding procedure
for the hidden text relies on three inputs: (i) The
value of each component of c, the codeword repre-
senting a hidden message, (ii) A partition function,
which at each time step t assigns each token in V
either the logical value of 0 or 1, and (iii) the bias
parameter β > 1, which allows us to perturb our
distribution in order to represent the bits from c.

Recall that p(t) = f (xp,xt−1) and suppose that
P(t)
0 is the set of all tokens that, at time t, are as-

signed to zero by the partition function. Similarly,
let P(t)

1 = V \ P(t)
0 . We also denote the sum of

the probabilities of all the tokens in P(t)
0 as P

(t)
0

and P
(t)
1 = 1 − P

(t)
0 . For shorthand, we denote

the maximum of P (t)
0 and P

(t)
1 as P (t)

max and with a
slight abuse of notation we denote min (βPct , 1) as
⌊βPct⌋. Under this setup, for k ∈ [N] our biased
distribution is the following:

f̂
(
xp,xt−1,uk

)
= (2)

⌊βPct⌋p
(t)
k

P
(t)
ct

If k ∈ P(t)
ct ,

(1−⌊βPct⌋)p
(t)
k

1−P
(t)
ct

otherwise.

Note that (2) biases tokens in such a manner that
we are more likely to sample from the set of tokens
representing ct. We assume β > 1 and that the
information u is determined before the start of
encoding.

16650

Figure 1: KL divergence between original and biased
distributions as a function of P0 for several values of β
(colored curves). The crucial insight: near P0 = 1/2,
the divergence is not a function of β .

4 Insights and Methods

In order to achieve our goals, we must (i) se-
lect a partition function and (ii) choose an error-
correcting code that help us meet the two properties
and maximize information rate. In this section, we
first obtain some insights into the properties of our
problem to help us with these tasks. Equipped with
these, we propose a family of partition function
techniques and make our choice of error-correcting
code. We defer proofs and a full set of theoretical
results (including a coding-theoretic analysis on
the maximum rate of an (N,m, β)-stego code and
an achievability argument) to the Appendix.

We begin by considering the effect that β (the
maximum bias in the security property) has on
the the relationship between our biased and unbi-
ased language model distributions. A simple result
(Lemma 1), stated in the Appendix, helps us un-
derstand the behavior of D

(
p(t)||p̂(t)

)
, the KL

divergence between the original and biased distri-
butions. We illustrate this quantity as a function of
P (0) in Figure 1.

We observe some trends. First, for a fixed β,
D(p(t)||p̂(t)) is symmetric about the point P0 =

1
2 .

This is intuitive, as P0 = P1 = 1 − P0 results in
the same partition (with a reversal of the labels of
the parts). As expected, the KL divergence grows
as a function of β except in the interval near 1

2 . In
particular, when P0 ∈ (13 ,

2
3), the KL-divergence

does not depend on β, which implies that a key in-
gredient are partition functions that produce Pmax

close to 1
2 . More concretely, notice if we can de-

velop partition functions that guarantee with high

probability P0 lies within a small range around 1
2 ,

then there is no need to use larger values of β.
Our second insight comes from our develop-

ment of upper bounds on the achievable rate of
an (N,m, β)-stego code (Theorem 1 in the Ap-
pendix). The maximum rate is reached whenever
βP

(t)
min ≥ 1. This is intuitive, as when βP

(t)
min ≥ 1,

we can deterministically bias the tokens in such a
manner that we are guaranteed to extract the correct
part for each output token. One of the challenges
which we will encounter, however, is that the behav-
ior of P (t)

max is highly variable, and it can fluctuate
significantly between 1

2 and 1. This motivates our
error-correcting code approach: we allow a cer-
tain number of tokens to be incorrectly sampled
and then rely on the properties of C to correct the
incorrectly sampled tokens.

4.1 Partitioning And Coding
Now are ready to introduce our partition function
and error-correcting code approaches.

Partition Functions. Recall the purpose of the
partition function, denoted Ft, is to assign to each
token in V to either P(t)

0 or P(t)
1 as described in (2).

Assume that at each step t, Pr(ct = 0) = Pr(ct =
1) = 1/2. Using our insights, we can minimize
the KL distance and maximize the potential infor-
mation rate by designing partitioning schemes that
are approximately balanced.

Unfortunately, this goal is related to the NP-
complete subset sum difference problem where the
aim is to identify two disjoint sets P0,P1 ⊆ V
where

∣∣∑
k∈P0

pk −
∑

k∈P1
pk
∣∣ is minimal1. For

shorthand, for any partition P0,P1 we will refer to
the difference in magnitude between the two parti-
tions as the partition bias. Our goal is to develop
partitioning schemes that minimize the partition
bias under the DU and the DI settings. Recall that
for the DI setting the decoder has access to p̃(t),
which is an approximation of p(t).

In both the DU and DI settings, the decoder does
not have access to the true distribution p(t). For
DU, we use a pseudo-random (and invertible) hash
function. The remainder of this section will be ded-
icated to investigating potential partition functions
that can address the DI scenario. In addition to
considering the partition bias, we also measure the
partition error, defined as

∑
k∈[V]

∣∣∣p(t)k − p̃
(t)
k

∣∣∣.
1Guaranteeing the difference is below a certain threshold

ensures such a partitioning scheme is highly desirable both in
terms of security and potential information rate

16651

For DI, we investigate the following three types
of partitioning schemes:

1. Approximate subset-sum (ASU): We use an ϵ-
approximation algorithm where ϵ = .01. The
algorithm takes as input a target probability
T and identifies (to within a multiplicative
factor of 1 + ϵ) the largest partition whose
probabilities sum to less than T . We set T =
1
2 . This approach gives the lowest partition
bias but the largest partition error.

2. Hash: The partition function in this case con-
sists of an invertible hash function, which is
seeded with the previously generated token.
Although the partition error is zero, the parti-
tion bias can be quite large.

3. Greedy. We consider three variations:
(a) Greedy ascending (GA): The tokens are

first ordered in a list in ascending order
according to their probabilities. P0 is
initialized to be the emptyset. Starting
from the beginning of the list, each token
is added to P0 if and only if after the
addition of the new token the sum of all
the probabilities in P0 is at most 1

2 .
(b) Greedy descending (GD): GD uses the

same logic as GA except that the tokens
are first ordered in descending order.

(c) Greedy random (GR): GR also uses the
same logic as GA except that the tokens
are initially placed in a random order.

In general, ASU yields partitions with the lowest
partition bias and the largest partition error whereas
Hash has no partition error but has a large partition
bias. The performance of the greedy approaches
tend to be in between the two extremes offered by
Hash and ASU. In order to find a better compro-
mise between the tradeoff between the partition
bias and the partition error, we explored the follow-
ing two-round “hybrid” approaches:

1. Hash approximate (HA): This approach con-
sists of a labeling procedure comprised of
two rounds. In the first round, we gener-
ate two partitions Pmax and Pmin using the
Hash approach discussed previously. Then,
in the second round, we employ ASU to re-
label a subset of tokens from Pmax. In par-
ticular we instantiate ASU to identify a set
of elements P ′ ⊆ Pmax given a target sum of
T = Pmax−Pmin. Any tokens which were ini-
tially assigned to Pmax but were subsequently
assigned to P ′ in the second round, have their

Figure 2: Partition error across various choices of parti-
tion functions.

labels updated so that after the completion of
the two rounds we update Pmin = Pmin ∪ P ′

and Pmax = V \ Pmin.
2. Hash Greedy: Similar to before, there are

three variations of Hash Greedy all of which
follow a similar two-round format. The first
round of all three variations is exactly the
same where in the first round (and similar to
HA), two partitions Pmin and Pmax are cre-
ated using the Hash approach. The goal in
the second stage will be to identify a subset
of tokens P ′ ⊆ Pmax whose target sum is
T = Pmax − Pmin.
(a) Hash Greedy Ascending (HGA) uses the

GA approach to determine P ′.
(b) Hash Greedy Descending (HGD) em-

ploys GD to determine P ′.
(c) Hash Greedy Random (HGR) leverages

GR to identify P ′.

Partition Function Comparisons. To gain a bet-
ter understanding of these tradeoffs with our pro-
posed schemes, we generated 64,000 tokens using
OPT-1.3B (Zhang et al., 2022) with prompts from
the C4 RealNewsLike (Raffel et al., 2020) dataset
where 200 output tokens are generated per prompt.

Figures 2 and 3 show the distribution of the
partition error and the partition bias across the 9
partition functions discussed thus far. We can inter-
pret Figure 2, for example, by observing that the
lines shown under the 0.1 label on the x-axis in-
dicate that for the Hash scheme the partition error
is at most 0.1 100% of the time (in fact, as dis-
cussed earlier the partition error is always zero for
the Hash scheme). Furthermore, for the GD parti-
tion approach roughly 90% of the time the partition
error is at most 0.1.

Figure 3 displays the frequency with which each

16652

Figure 3: Partition bias across various choices of parti-
tion functions

partition function yielded Pmin < 1
t as a function

of t. As an example, for the point t = 2, Pmin < 1
2

nearly 100% of the time. However, when t = 4,
we see more variation with respect to the parti-
tion bias and in particular, we observe ASU re-
sulted in Pmin < 1

4 with a frequency of around .25
whereas hash exhibited much larger partition bias
with Pmin < 1

4 occurring with a frequency of close
to .5.

An interesting insight gained from this is that in-
creasing the bias parameter β in (2) does not yield
much benefit beyond β = 3 for the better partition-
ing schemes. For example, looking at HGA, the
fact that Pmin < 1

3 with a frequency of roughly
.33 implies that if we set β = 3 in (2) then .33 of
the time we have βPmin < 1 implying that it is
possible to still sample an incorrect token at most
.33 of the time if the value of the bit we wish to en-
code maps to the smaller partition. Increasing the
bias parameter to β = 5, we see that βPmin < 1,
which using the same logic implies that it is still
possible to sample an incorrect token at most .25
of the time.

For the experimental results in the following sec-
tion, we used the HGA partition function for the DI
scenario, since HGA seems to offer a good trade-
off between exhibiting low levels of partition errors
while maintaining smaller partition bias. For exam-
ple, from Figure 2, it can be observed that HGA has
a partition error of at most 0.05 with a frequency
of roughly 95% and where Pmin < 1

3 roughly 1
3 of

the time.

Coding Schemes. Recall from Section 3 that
we encode the information u ∈ {0, 1}m into a
codeword c ∈ C ⊆ {0, 1}N . Then, the token
distribution, which is sampled to produce the
output token of the LLM, is biased according to

each bit of the codeword c as discussed in (2).
The codes C we use are LDPC codes (Gallager,
1962) from the DVB-S2 standard (Yadav and
Parhi, 2005). This family offers a flexible range of
compatible rates and it has been shown to achieve
near Shannon limit performance. For our results,
we ran simulations using such codes of rates
1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9
and 9/10. Each had a block length of 64800 bits.

For both the encoding and decoding functions,
we use the DVB-S2 repository (ldp). The decoding
proceeds follows. Suppose y = (y1, . . . , yN) de-
note the sequence of tokens encoded according to
(2) and let Suppose z = (G1(y1), . . . , Gt(yN)) =
(z1, . . . , zN) ∈ {0, 1}N represent the logical val-
ues extracted using the labeling Gt. For the DU
setting, we initialized the decoder log likelihood
ratios (LLRs) to be

LLRj =

{
log
(
1−∆
∆

)
, if zj = 0

log
(

∆
1−∆

)
, otherwise,

(3)

where the parameter ∆ was determined beforehand
via experimentation.

The LLRs for the DI setting were less straight-
forward. For t ∈ [N], we begin by making use
of the quantized LLM to determine the probabil-
ity vector p̃(t). Next, we perform the HGA ap-
proach discussed in Section 4.1 provided the input
p̃(t), which produces the partitions P̃(t)

0 , P̃(t)
1 as

output. Recall we refer to the resulting labeling at
Gt where given a token k as input Gt(k) = 0 if
k ∈ P̃(t)

0 and otherwise Gt(k) = 1. For shorthand,
let P̃ (t)

0 =
∑

k∈P̃(t)
0

p̃
(t)
k and P̃

(t)
1 = 1− P̃

(t)
0 .

For the DI setting, given j ∈ [N] we set the j-th
LLR to be:

LLRj =

log

(
⌊βP̃ (t)

0 ⌋(1−µ̃)+
(
1−⌊βP̃ (t)

0 ⌋
)
µ̃

(
1−⌊β(1−P̃

(t)
0)⌋

)
(1−µ̃)+⌊β(1−P̃

(t)
0)⌋µ̃

)
, zj = 0

log

((
1−⌊βP̃ (t)

0 ⌋
)
(1−µ̃)+⌊βP̃ (t)

0 ⌋µ̃

⌊β(1−P̃
(t)
0)⌋(1−µ̃)+

(
1−⌊β(1−P̃

(t)
0)⌋

)
µ̃

)
, zj = 1,

where µ̃ is an approximation for µ. The details
behind the computations are verified in the appen-
dices.

5 Experimental Results

We evaluated the performance of our coding
schemes, focusing on determining the highest
achievable information rate given a fixed level of
bias.

16653

Figure 4: Information Rates Across Different Schemes

Figure 5: KL divergence of HGA and Hash.

Setup. We use OPT-1.3B with prompts from the
C4 dataset’s RealNewsLike subset where 200 out-
put tokens are generated per prompt (Raffel et al.,
2020; Zhang et al., 2022). To address both sce-
narios, we simulated the performance of two code
designs:

1. Hash: For this setting, we used a pseudo-
random hash function for the function Ft

which at each time instance assigns each out-
put token a logical value 0 or a logical value 1.
The hash function at time t is seeded with the
output token from time t− 1 or the last token
of the input prompt when t = 1. (DU)

2. Hash Greedy Ascending (HGA): The func-
tion Ft is constructed using a two step labeling
process that relies on a combination of a hash
function along with a simple greedy algorithm
as described in Section 4.1. (DI)

In order to accommodate the length of our LDPC
code, we coded across a sequence of outputs taken
from various prompts. Since under our setting there
are 200 tokens per output prompt, our codewords
were embedded in the concatenation of 64800

200 =
324 prompts.

For both the Hash and HGA settings, the decod-
ing is straightforward. For Hash, we simply use
the previously generated token to recover the hash.
Once we know Ft, the recovery process amounts
to decoding an LDPC code over a channel whose
LLRs are given by (3). Similarly, for HGA, we use
the quantized version of the model to determine Ft

and then perform decoding.
To determine the highest information rate, we

let β vary from 1 to 7. We encoded up to 100
codewords and if each of the 100 codewords was
recovered error-free, we consider the rate of the
resulting code achievable.

Results. Figure 4 shows the rates achieved as a
function of the bias which was introduced. As ex-
pected, the rate is increasing as a function of the
bias. For the HGA method, in particular, we see the
rate increasing from .25 at β = 2 to .75 at β = 20.
For the Hash method, we were unable to achieve
positive rate schemes for β < 5. However, the
achievable rate for Hash increased from .25 when
β = 5 to .40 when β = 15. The HGA and Hash
lower bounds were computed using the expression
from (5). In general, both the upper and lower
bounds were tighter for the HGA method than the
Hash and we suspect these distances would con-
verge faster than the results for the Hash method.

Figure 5 displays the KL divergence as a func-
tion of β. Here we observe that the bias increases
from 0 at β = 2 for both methods to .175 for
Hash and .075 for HGA. In general, HGA exhibits
smaller KL divergence than the Hash, probably as
a result of the better quality partitions it produces.

Figures 6 and 7 focus on the result for HGA in
the regime where β is between 2 and 2.1. Note that
at β = 2, the KL divergence between our biased
and unbiased outputs is approximately zero imply-
ing that we were able to achieve perfect security
while encoding error-free at a rate of 1

4 . Note also
that the achievable rate improves dramatically in
this regime increasing from 1

4 at β = 2 to 1
2 using

β = 2.1. This means that by increasing the KL
divergence from 0 to only .0006, we can double
our achievable rate.

In order to investigate whether we could further
improve the trade-off between information rate and
security, we considered a third scenario where the
encoder has access to both the quantized and un-
quantized models. As with the other two methods,
we assume that the encoder will always sample
from a potentially biased version of the unquan-

16654

Figure 6: HGA Rate vs. Bias

Figure 7: HGA Rate vs. KL divergence

tized outputs, but here the idea will be to attempt to
reduce the number of tokens we bias by leveraging
the quantized model which is now shared between
the encoder and decoder. Our approach, which will
be discussed in the next paragraph, will be to only
bias the distribution when we know for certain that
the correct partition will be sampled at the output
(after biasing).

Under this setting, we considered the following
encoding procedure. Suppose P̃

(t)
min represents the

total probability of the smaller of the two partitions

Figure 8: Shared Quantized LLM

Figure 9: KL divergence, Shared Quantized LLM

under the quantized model. We assume that our
labeling function Ft is the same pseudo-random
function used by Hash in the previous simulations.
We will bias the token distribution at time t accord-
ing to (2) and sample from the resulting distribution
if P̃ (t)

minβ ≥ 1. Otherwise, we will simply sample
from the unbiased token distribution. The decoding
proceeds as follows. For every time t ∈ [N], we
check whether or not P̃ (t)

minβ ≥ 1, which is possible
since by assumption the decoder has access to the
quantized model. If P̃ (t)

minβ ≥ 1, then we assume
that the value of ct (the t-th bit of our codeword
c ∈ C) is equal to Ft(k) where k represents the
token which was sampled at time k. Otherwise, we
know that the t-th component of c was not encoded
using the current token and proceed to the next one.

Figures 8 and 9 show the results of the procedure
described in the previous paragraph that leverages
knowledge of the quantized LLM at both the en-
coder and decoder. Consistent with our previous
results, HGA exhibits the highest performance both
in terms of rate and KL divergence. For all levels
of β tested, the use of the quantized LLM at encod-
ing also reduced the KL divergence. Both methods
converge to within 0.05 of the symmetric capacity
of Hash (see Appendix for details of this notion).

6 Conclusion

We studied large language-model based steganog-
raphy with the goal of maximizing the amount of
information that can be hidden in LLM generated
text. We studied the fundamental limits of this
problem and proposed simple techniques that are
close to optimal, including in challenging settings
where, when decoding, we do not have access to
the decoder, or only to a quantized version.

16655

7 Limitations

One limitation we face is that our technique de-
pends on the availability of good error-correcting
codes with appropriate lengths.

References
Ldpc. https://github.com/xdsopl/LDPC.

Miranda Christ, Sam Gunn, and Or Zamir. 2023. Un-
detectable watermarks for language models. Cryp-
tology ePrint Archive, Paper 2023/763. https:
//eprint.iacr.org/2023/763.

Thomas M. Cover and Joy A. Thomas. 2006. Elements
of Information Theory 2nd Edition (Wiley Series in
Telecommunications and Signal Processing). Wiley-
Interscience.

Christian Schroeder de Witt, Samuel Sokota, J. Zico
Kolter, Jakob Foerster, and Martin Strohmeier. 2023.
Perfectly secure steganography using minimum en-
tropy coupling. Preprint, arXiv:2210.14889.

R. Gallager. 1962. Low-density parity-check codes.
IRE Transactions on Information Theory, 8(1).

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2024.
A watermark for large language models. Preprint,
arXiv:2301.10226.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Jiaxuan Wu, Zhengxian Wu, Yiming Xue, Juan
Wen, and Wanli Peng. 2024. Generative text
steganography with large language model. Preprint,
arXiv:2404.10229.

M.K. Yadav and K.K. Parhi. 2005. Design and im-
plementation of ldpc codes for dvb-s2. In Confer-
ence Record of the Thirty-Ninth Asilomar Conference
onSignals, Systems and Computers, 2005.

Siyu Zhang, Zhongliang Yang, Jinshuai Yang, and
Yongfeng Huang. 2021. Provably secure generative
linguistic steganography. In Findings of the Associa-
tion for Computational Linguistics: ACL-IJCNLP
2021, pages 3046–3055, Online. Association for
Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
Opt: Open pre-trained transformer language mod-
els. ArXiv, abs/2205.01068.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei
Li, and Yu-Xiang Wang. 2023. Provable ro-
bust watermarking for ai-generated text. ArXiv,
abs/2306.17439.

Zachary Ziegler, Yuntian Deng, and Alexander Rush.
2019. Neural linguistic steganography. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1210–1215, Hong
Kong, China. Association for Computational Linguis-
tics.

A Analysis

For shorthand, let p̂(t) = f̂ (xp,xt−1,u) and
p(t) = f (xp,xt−1). Let C be the code from (2)
from the encoding process and let Ct be a random
variable that represents the value of the t-th bit
of a codeword c ∈ C. Let Mt be a random vari-
able that represents the largest partition at time t.
In particular, Mt = 0 if P

(t)
0 = P

(t)
max. We as-

sume throughout this section that Pr (Ct = 0) = 1
2 ,

Pr (Mt = 0) = 1
2 and that Mt and Ct are indepen-

dent.

Lemma 1. The KL-divergence between the out-
puts of a biased LLM whose tokens are sampled
according to (2) and an unbiased LLM at time t is

D
(
p(t)||p̂(t)

)
=

− P
(t)
0 log

(
⌊βP (t)

0 ⌋+ 1− ⌊β(1− P
(t)
0)⌋

2P
(t)
0

)

− (1− P
(t)
0)×

log

(
1− ⌊βP (t)

0 ⌋+ ⌊β(1− P
(t)
0)⌋

2(1− P
(t)
0)

)
.

Furthermore, if β = 2, then D
(
p(t)||p̂(t)

)
= 0.

Next, we consider the maximum achievable rate
of (N,m, β)-stego codes. Our bound, which ap-
pears in Theorem 1, depends on the underlying
code C employed by (2) during the encoding, the
partition functions used, along with the bias β. In
the expressions and discussions that follow we
assume H is the binary entropy function and it
equal to zero outside the range of (0, 1). Let
Ft : [V] → {0, 1} be a function which at time t pro-
vides the logical partition for the token provided as
input belongs to. Similarly, let Gt : [V] → {0, 1}
be the partition function for the decoder. For any
k0 ∈ P(t)

0 , k1 ∈ P(t)
1 , t ∈ [N], we assume µ =

Pr (Ft(k0) ̸= Gt(k0)) = Pr (Ft(k1) ̸= Gt(k1)).

16656

https://github.com/xdsopl/LDPC
https://eprint.iacr.org/2023/763
https://eprint.iacr.org/2023/763
https://eprint.iacr.org/2023/763
https://eprint.iacr.org/2023/763
https://arxiv.org/abs/2210.14889
https://arxiv.org/abs/2210.14889
https://arxiv.org/abs/2301.10226
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2404.10229
https://arxiv.org/abs/2404.10229
https://doi.org/10.18653/v1/2021.findings-acl.268
https://doi.org/10.18653/v1/2021.findings-acl.268
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:259308864
https://api.semanticscholar.org/CorpusID:259308864
https://doi.org/10.18653/v1/D19-1115

Figure 10: Symmetric capacity from 1.

Theorem 1. As N → ∞, the maximum rate of an
(N,m, β)-stego code is:

RS

(
P (t)
max, β, µ

)
=

1

N

N∑

t=1

H

(
1

2
+
(
⌊βP (t)

max⌋

− ⌊β(1− P (t)
max⌋

(
1− µ

2

)
+
(
⌊β(1− P (t)

max⌋

− ⌊βP (t)
max⌋

)µ
2

)

− 1

2
H
(
⌊βP (t)

max⌋ (1− µ) +
(
1− ⌊βP (t)

max⌋
)
µ
)

− 1

2
H
(
⌊β(1− P (t)

max⌋ (1− µ)

+
(
1− ⌊β(1− P (t)

max⌋
)
µ
)
.

For shorthand, we will refer to the quantity in
Theorem 1 as the symmetric capacity of the chan-
nel. In order to better understand this quantity, we
have plotted the function NRS (Pmax, β, µ) as a
function of Pmax Figure 2 for µ = 0.

Similar to the result regarding the KL-
divergence, the symmetric capacity is symmetric
about the point P0 =

1
2 , and we therefore plot the

maximum rate as a function of Pmax.
Next we turn our attention to the task of ob-

taining upper bounds on the achievable rate of an
(N,m, β)-stego code. Here, we will focus on the
Decoder Uninformed (DU) setting since a lower
bound for the DU setting will trivially also hold for
the DI case as well. One of the challenges to devel-
oping such bounds (and subsequent efficient coding
schemes) on the set of achievable rates stems from
the fact that the partitioning itself is a difficult prob-

lem and the assignment of tokens to logical values
itself can depend on the probabilities of each of the
tokens at each instant in time.

In order to circumvent some of these difficulties,
we will use two simple ideas: First, we employ a
pseudo-random function to assign each token with
equal probability to be in one of the two partitions.
The goal here is to reduce the need for higher bias
parameters in certain settings. Second, we make
use of error-correcting codes to address the setup
where there are some tokens that require a bias
value that is beyond the acceptable range due to
our security property. In such cases, it may be
highly likely (despite the fact that we bias) that the
incorrect token is still sampled.

Our next result shows that when the variance of
the generated token distributions is low enough, the
approach from the previous paragraph is still capa-
ble of producing high rate codes. For shorthand,
we say that a categorical distribution p has square
magnitude s if the cross-product of p with itself is
equal to s.

Lemma 2. Suppose that for a fraction of 1 −
ϵ tokens, the output distribution of f from (1)
has square magnitude at most Vp where Vp <

α2
(
1− 2(1−α)

β

)2
. Then, given access to a pseudo-

random function g(t) : V → {0, 1}, there exists an
efficient scheme that achieves a rate 1−H (ζ), for
N large enough, where

ζ = ϵ+ (1− ϵ)
(
α+ α2

)
,

provided ζ < 1
2 .

One of the attractive properties of the previous
lemma is that we do not require knowledge of P (t)

max,
and instead only require a bound on the square mag-
nitude of the underlying categorical distributions.
Unfortunately, the fact that the bound is not written
in terms of P (t)

max also makes difficult to compare
the previous lemma with Theorem 1 since Theo-
rem 1 requires knowledge of P (t)

max for each time
instance. In order to develop a lower bound that
is more comparable to Lemma 1, for a sequence

of length N , suppose that Pr(Π = p) is

∣∣∣t:P (t)
min=p

∣∣∣
N .

Then, from Theorem 1, we have
∫ 1

0
Pr (Π = x)NRS(1− x, β, µ) dx. (4)

For the lower bound, we note that if the partitions
Pmin,Pmax are the result of using an invertible

16657

hash, then using similar logic as in the proof of
Lemma 2, errors can occur during decoding only if
Pminβ < 1. Then, we can achieve a rate of at least

1−H

(
Pr
(
Π <

1

β

))
. (5)

by treating each token where Pminβ < 1 as a
random error under the binary symmetric channel
(Cover and Thomas, 2006). In the next section, we
investigate one of the key details of our proposed
scheme, which is the design of the partitioning
function.

16658

