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Abstract

Recent large vision-language multimodal mod-
els pre-trained with huge amount of image-
text pairs show remarkable performances in
downstream tasks. However, the multimodal
pre-training has limitations in terms of re-
sources and training time when it comes to
obtaining new models that surpass existing
models. To overcome these issues, we pro-
pose TransferCVLM, a method of efficient
knowledge transfer that integrates pre-trained
uni-modal models (and cross-modal fusion-
encoder) into a combined vision-language
model (CVLM), without pre-training the
CVLM with large amount of multimodal data,
and then for each task application, fine-tunes
the CVLM and transfers the multimodal knowl-
edge of a teacher vision-language model to
the CVLM by using knowledge distillation
techniques. We demonstrate that 1) the fine-
tuned CVLM performs comparable to other
vision-language models of similar size, that
2) the multimodal knowledge transfer consis-
tently enhances the CVLM, and the knowledge-
transferred CVLM composed of large-size uni-
modal models outperforms the teacher mul-
timodal model in most of downstream tasks,
and that 3) TransferCVLM can also be used
for model compression when using small-size
unimodal models. We estimate that the train-
ing of TransferCVLM takes only 6% of pre-
training of other vision-language models. Our
code is available at https://github.com/DMCB-
GIST/TransferCVLM.

1 Introduction

Ever since neural networks and deep learning
proved successful in addressing visual and textual
comprehension problems, numerous tasks have sur-
faced with the goal of comprehending and pro-
cessing both images and text simultaneously, such
as visual question answering, image-text retrieval,

*Hyunju Lee is the corresponding author.

and visual entailment (Goyal et al., 2017; Plummer
et al., 2015; Xie et al., 2019). Developing models
proficient in these tasks is vital given that many
real-world problems involve multiple modalities.

A trend in deep learning is self-supervised learn-
ing, and models pre-trained in self-supervised man-
ner are predominant in most domains. There have
been several approaches to pre-training multimodal
models for the multimodal tasks, either pre-training
a randomly initialized model from scratch (Singh
et al., 2022; Wang et al., 2023b), or combining two
unimodal pre-trained models and further pre-train
the combined model (Kim et al., 2021; Zeng et al.,
2022; Dou et al., 2022; Xu et al., 2023). Both
approaches require to pre-train the models with
unlabeled multimodal data, typically pairs of text
and image, to learn cross-modal dependencies, but
the pre-training with a large amount of unlabeled
multimodal data is hugely costly. Moreover, for
the latter approach, when there are new better uni-
modal pre-trained models (e.g. GPT-3 < GPT-3.5
< GPT-4) (Brown et al., 2020), it should repeat the
costly pre-training.

To reduce the repetitive cost of large-scale mul-
timodal pre-training of the second approach, we
propose a method to transfer cross-modal depen-
dencies from an existing multimodal pre-trained
model to a combination of two new unimodal pre-
trained models for a given task. With the proposed
knowledge transfer, when there are better unimodal
pre-trained models, we do not have to redo pre-
training the models with a large amount of unla-
beled multimodal data.

We present TransferCVLM, a method of effi-
cient knowledge transfer from an existing vision-
language pre-trained model (VLM; e.g. FLAVA
(Singh et al., 2022)) to a combination of two uni-
modal pre-trained models for vision and language
(e.g. BERT (Devlin et al., 2019), ViT (Dosovitskiy
et al., 2020)). For this paper, we consider the two
popular settings that the vision pre-trained model is
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encoder-only, and the language pre-trained model
is either encoder-only or encoder-decoder. We first
build a new multimodal model (CVLM) by con-
catenating the encoders of the two unimodal pre-
trained models and connecting the two encoders
with, if any, the fusion encoder (FE) of the existing
multimodal model (VLM). We then fine-tune both
multimodal models (VLM, CVLM) with labeled
multimodal data of a given task and finally trans-
fer the cross-modal dependencies of the existing
model (VLM; teacher) to the new model (CVLM;
student) via a knowledge distillation technique.

Our contributions can be summarized as follows:

• We propose a novel knowledge transfer ap-
proach of transferring cross-modal knowl-
edge from an existing multimodal pre-trained
model (VLM) to a new model (CVLM) com-
posed of unimodal pre-trained models, with-
out multimodal pre-training of the new model
CVLM. This may reduce the burden of multi-
modal pre-training when adapting unimodal
pre-trained models for multimodal down-
stream tasks.

• TransferCVLM with base-size unimodal mod-
els: We show that the CVLM fine-tuned with
labeled task data performs the task compara-
bly to the existing vision-language pre-trained
model VLM of similar size.

• TransferCVLM with large-size unimodal mod-
els: We show that the proposed multimodal
knowledge transfer consistently enhances the
fine-tuned CVLM, and that the knowledge-
transferred CVLM composed of large-size
unimodal models outperforms the teacher
model VLM in most of downstream tasks.

• TransferCVLM with small-size unimodal
models: We show that TransferCVLM may
be used for model compression when using
small-size unimodal models.

• We demonstrate the effectiveness of Trans-
ferCVLM on multiple vision-language down-
stream tasks, including visual question an-
swering, visual entailment, image-text re-
trieval, and image captioning.

2 Methodology

We introduce the implementation of Transfer-
CVLM first to build an encoder-only model in Sec-
tions 2.1 (CVLM) and 2.2 (knowledge transfer)
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Figure 1: An overview of the TransferCVLM applied for
encoder-only vision model and encoder-only language
model, with an example of SNLI-VE task data.

and then an encoder-decoder model in Section 2.3.
We also explain details of experiments about adapt-
ing TransferCVLM to build a small-size model
in Section 2.4. Figure 1 depicts the overview of
TransferCVLM for encoder-only model.

2.1 Phase 1: Construction of Combined
Vision-Language Model (CVLM)

In this step, we combine vision and language uni-
modal pre-trained models with the fusion encoder
module of a pre-trained multimodal model to build
a new multimodal model called Combined Vision-
Language Model (CVLM). For an image-text pair
dataset X = {(x1i , x1t ), . . . (xmi , xmt )}, the uni-
modal representations of the j-th image (xji ) and
text (xjt ) are encoded via the unimodal encoders.
The two computed representations are then fed to a
pre-trained fusion encoder EF , which is taken out
from a multimodal pre-trained model. Before that,
we added a learnable linear projection to match the
dimensions of the fusion encoder input (dF ) and
the dimensions of the unimodal representations,
which can be varied depending on model selection.
Formally, the projected unimodal representations
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of the j-th image (xji ) and text (xjt ) are as follows:
{
Hj

V = projectionV (EV (x
j
i ))

Hj
L = projectionL(EL(x

j
t )),

(1)

where EV and EL are vision and language
pre-trained encoders, respectively, and Hj

V ∈
RlV ×dF , Hj

L ∈ RlL×dF . We assume that both
encoders are transformer-based, and thus the out-
puts of the encoders have their respective sequence
lengths lV and lL determined by the model input
settings.

Finally, these two projected representations are
combined with the multimodal classification token
t[CLS] and fed to the fusion encoder module:

Hj
F = EF (C(t[CLS], H

j
V , H

j
L)), (2)

where Hj
F ∈ R(1+lV +lL)×dF . C(·) denotes

the combination scheme according to the fusion
method (e.g., concatenation, cross-attention). Note
that we use the final output representation of the
first token t[CLS], also known as classification em-
bedding, as the input of the task-specific head
for downstream discriminative tasks (visual entail-
ment, visual question answering, and image-text
retrieval).

In practice, multimodal pre-trained models have
slightly different structures from each other. For
instance, both FLAVA (Singh et al., 2022) and X-
VLM (Zeng et al., 2022) consist of two unimodal
encoders and one fusion encoder, but their fusion
encoders are different such that FLAVA’s fusion
encoder is a simple self-attention encoder, while X-
VLM’s fusion encoder incorporates ‘asymmetric’
cross-attention (Hendricks et al., 2021), receiving
the vision encoder output as key and value and the
language encoder output as query. Note that the
fusion encoder of FLAVA is ‘symmetric’, not dif-
ferentiating between vision and language encoder
outputs. Thus, when we construct CVLM with
FLAVA and X-VLM as teacher models, we con-
nect vision and language encoders with the copy of
the corresponding teacher’s fusion encoder.

2.2 Phase 2: Multimodal Knowledge Transfer
The CVLM constructed in the previous step can
be fine-tuned and used for downstream tasks like
other multimodal pre-trained models. Since the two
unimodal backbones already have an accomplished
ability to understand their respective modalities,
and the fusion module also has initial knowledge

for merging multimodal representations, CVLM
shows high performance only with the fine-tuning
without additional pre-training.

However, the fine-tuning of CVLM only using
downstream task data suffers from the limited quan-
tity of labeled task data, which might be insuf-
ficient to learn the dependencies (or alignments)
among the three modules of two unimodal back-
bones and fusion encoder. To address this issue,
we apply a knowledge distillation technique to
transfer knowledge about the interaction between
modalities and representation alignment. Our ap-
proach is inspired by the DoKTra framework (Choi
et al., 2022), which applies knowledge distillation
for domain knowledge transfer from an existing
domain-specific pre-trained language model to a
new generic pre-trained language model. We mod-
ify the DoKTra framework for multimodal knowl-
edge transfer from an existing multimodal pre-
trained model to the CVLM with unimodal pre-
trained models in order to distil the the knowledge
about intermodality interactions and representation
alignment, as described below.

First, we set the pre-trained multimodal model
(FLAVA, X-VLM) as the teacher and CVLM as
the student. To provide both models with initial
knowledge about the target downstream task, we
fine-tune each model on the training data of the
task using task-specific loss Ltask, such as cross
entropy, binary cross entropy with logits, or con-
trastive loss.

After initial fine-tuning of the teacher model and
CVLM, knowledge distillation is applied to transfer
the teacher’s multimodal understanding knowledge
to the CVLM. We set the final hidden state of the
first token of each of the three modules (vision and
language encoders, and fusion encoder) as the dis-
tillation target (that is, [CLS] embeddings). This
is because the classification embedding serves as
an encoding that condenses the entire input into
a single vector and is commonly used in discrimi-
native subtasks. Our distillation objective LKD is
formulated as follows:

LKD(x
j) = Ldist(S

j
V , T

j
V ) + Ldist(S

j
L, T

j
L)

+ Ldist(S
j
F , T

j
F ), (3)

where Ldist is a distance metric and Sj
V , Sj

L, Sj
F are

the classification embeddings of student model’s
vision, language and fusion encoders, respectively.
Note that Sj

V , Sj
L, Sj

F are the [CLS] embeddings of
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Hj
V , Hj

L, Hj
F from Eq. (1) and (2) and that knowl-

edge distillation is performed using the projected
outputs after matching the output dimensions of
the unimodal encoders to the input dimension of
the fusion encoder. Similarly, T j

V , T j
L, T j

F are the
classification embeddings of teacher model’s en-
coders. In this study, we use mean squared error
(MSE) as distance metric, while DoKTra employed
activation boundary transfer loss (Heo et al., 2019).
Please see Appendices C and D for more details.

Our knowledge distillation method utilizes clas-
sification embeddings instead of classification log-
its. However, using only the above distillation
objective for a fine-tuned model can cause catas-
trophic forgetting (McCloskey and Cohen, 1989)
about the output probability distribution calculation.
To prevent this, we design the loss to minimize both
distillation objective and task-specific loss simul-
taneously in the knowledge distillation procedure.
The final objective for knowledge distillation be-
tween the teacher and CVLM can be summarized
as follows:

LKT = αLKD + (1− α)Ltask, (4)

where α ∈ [0, 1) is a hyperparameter to balance
between the two loss functions.

2.3 TransferCVLM for Encoder-Decoder
Models

To perform generative tasks such as image caption-
ing, VLMs incorporating transformer decoder mod-
ules are also being introduced (Cho et al., 2021;
Wang et al., 2022; Alayrac et al., 2022). We se-
lect GIT (Wang et al., 2022) as another alternative
teacher model for TransferCVLM to verify the fea-
sibility of extending to decoder modules and gener-
ative tasks. GIT consists of a single image encoder
and a single text decoder, without a fusion module.
Therefore, we construct the student model using a
unimodal image encoder and a decoder-only lan-
guage model without reusing teacher parameters,
and applied phase 2 of TransferCVLM. In gener-
ative tasks, the representation of all tokens is uti-
lized for task execution, unlike discriminative tasks.
Therefore, we made slight modifications to phase 2
by pooling the representations of all generated and
ground-truth tokens and setting them as the targets
for knowledge distillation.

Formally, in decoder-based CVLM, the represen-

tations of each module are as follows:




Hj
V = projectionV (EV (x

j
i ))

Hj
L = embL(x

j
t )

Hj
D = DL([H

j
V ; t[BOS];H

j
L; t[EOS]]),

(5)

where EV is a vision pre-trained encoder, embL
is an embedding of language model, and DL is a
pre-trained language decoder model. Similar to
the encoder-based TransferCVLM, the distillation
objective is formulated as follows:

LKD(x
j) = Ldist(S

j
V , T

j
V )+Ldist(S

j
DV , T

j
DV )

+ Ldist(S
j
DL, T

j
DL), (6)

where S, T are pooled representations of the stu-
dent and teacher, respectively. SDV , SDL refer
to the pooled representations of the regions corre-
sponding to the image and text, respectively, in the
CVLM’s decoder output. Each region was average-
pooled separately, formulated as follows.

Sj
DV =

∑lV
k=1H

j
D(k)

lV
, Sj

DL =

∑lV +lL+2
k=lV +2 Hj

D(k)

lL
.

(7)

Teacher’s pooled representations T j
DV , T

j
DL can

also be calculated in the same manner as described
above.

2.4 Extensibility of TransferCVLM for Model
Compression

In this section, we explain the adaptation of Trans-
ferCVLM for multimodal model compression. Re-
cent studies have proposed multimodal model com-
pression based on knowledge distillation (Fang
et al., 2021; Wang et al., 2023a), but they require
costly pre-training on extensive unlabeled data (see
Section 4.2 for details). However, TransferCVLM
does not require such large-scale pre-training and
can be used for model compression if we select
small backbones for CVLM construction.

For model compression, we revise Phase 2
(called Phase 2MC , MC stands for Model Com-
pression.) to perform knowledge distillation from a
’large’ CVLM, fine-tuned and knowledge-distilled
by Phases 1 and 2 (teacher), to a ’small’ CVLM
fine-tuned by Phase 1 (student). This approach is
motivated by the observation that Phases 1 and 2
of TransferCVLM can produce a student model
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Figure 2: Visualization of (a) revised TransferCVLM for model compression and (b) construction of FLAVA-small
for comparison.

that outperforms the teacher model, especially with
large backbones (see Section 3.3 for details).

Since there is no prior work on model compres-
sion via knowledge distillation for multimodal mod-
els without pre-training a student model, we also
devised a robust baseline method for comparison.
We constructed a baseline student model by reduc-
ing the parameters of the teacher model, excluding
odd-numbered layers from each module, resulting
in a model nearly half the size. After fine-tuning
with task-specific data (Phase 1), we applied the
same knowledge distillation method as Transfer-
CVLM (Phase 2) to gain additional insights from
the fine-tuned teacher model.

Figure 2 illustrates the overview of revised Trans-
ferCVLM for model compression and construction
of the baseline for comparison.

3 Experiments

3.1 Downstream Tasks
We evaluated our proposed methodology on various
types of tasks. For classification tasks, we selected
visual question answering using VQAv2 (Goyal
et al., 2017) and visual entailment using SNLI-
VE (Xie et al., 2019). For the image-text retrieval
task, we used the Flickr30k (Plummer et al., 2015)
dataset. Additionally, for the decoder-based mod-
els, we utilized Flickr30k for generative captioning
as well. We also used COCO (Lin et al., 2014) for
generative captioning task. We used accuracy as
the evaluation metric for classification, Recall@1
and 5 for retrieval, and CIDEr (Vedantam et al.,
2015) for captioning. As the task-specific losses
(Ltask), we used binary cross-entropy for VQAv2,
cross-entropy for SNLI-VE and captioning, and
contrastive loss and matching loss, both based on
cross-entropy, for image-text retrieval. Please re-
fer to Appendix A for the detailed explanation and
statistics of the downstream task datasets.

3.2 Implementation Details

For the construction of encoder-only CVLM, we
select encoder part of T5 (Raffel et al., 2020) as
the language backbone and Swin Transformer (Liu
et al., 2021) as the vision backbone. Swin pro-
vides pre-trained models of various patch sizes,
window sizes, and image sizes, and we use the
-patch4-window12-384 models. The maximum
sequence length of the language encoder is set to
24. We use -base or -large as the size of the uni-
modal backbones. For the encoder-decoder CVLM,
we combined the decoder-only language model
GPT-2-small or -medium (Radford et al., 2019)
with Swin.

PyTorch and Transformers were used for the
implementation of all experimental stages. Our
experiments were performed with NVIDIA RTX
3090 24GB GPU for base size models and NVIDIA
A100 40GB GPU for large size models. Please re-
fer to Appendix E for details about hyperparameter
search.

3.3 Experimental Results

Table 1 presents the main experimental results
of TransferCVLM on the three multimodal down-
stream tasks. Since recent developments in vision-
language models and their knowledge distillation
have primarily focused on pre-training, there are
no methodologies available for fair comparison to
ours. Therefore, to enable performance compari-
son, we designed baseline models under the same
conditions as our methodology, utilizing only one
vision-language pretrained encoder and two uni-
modal pretrained encoders. We established three
baselines, incrementally increasing the model size.
The first baseline involves concatenating two uni-
modal outputs directly for classification (UE con-
cat). The second baseline employs the same ar-
chitecture as our CVLM but initializes the fusion
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Model # Params VQAv2 SNLI-VE Flickr30k-TR Flickr30k-IR

R@1 R@5 R@1 R@5
FLAVA (Teacher) 241M 68.34±.24 78.38±.25 60.90±.14 83.40±.08 46.92±.18 75.32±.11
UE concat 200M 60.37±.17 72.21±.14 - - - -
CVLM w/ random FE 241M 68.57±.15 75.63±.25 - - - -
UE+ME concat 442M 62.44±.31 78.92±.05 - - - -
TransferCVLM-base-phase 1 241M 69.51±.66 75.80±.19 62.80±.35 87.23±.32 51.05±.40 80.54±.34
TransferCVLM-base-phase 2 71.66±.12 78.52±.05 66.90±.14 88.50±.11 52.88±.18 81.34±.11
TransferCVLM-large-phase 1 575M 70.43±.99 76.38±.40 72.30±.46 92.20±.41 59.84±.47 86.14±.39
TransferCVLM-large-phase 2 72.77±.02 79.61±.17 73.30±.10 93.20±.09 59.96±.14 86.30±.11

Table 1: Main experimental results of TransferCVLM on three vision-language downstream tasks. The results that
outperform the teacher (FLAVA) are underlined. (TR: Image-Text Retrieval, IR: Text-Image Retrieval)

encoder randomly (CVLM w/ random FE). The
last approach involves concatenating the outputs of
three encoders (two unimodal and one multimodal)
and feeding them to the classifier (UE+ME concat).
Please refer to the appendix B for the visualized
architecture of each baseline model. Note that our
baseline designs are only feasible for classification
tasks (VQAv2 and SNLI-VE), and therefore we do
not have experimental results for retrieval task. We
denote the construction phase of CVLM as Phase
1 and the knowledge distillation phase as Phase 2.
Below are our findings from the experiment results.

First, the fine-tuned CVLM (Phase 1) shows
performance compatible with the teacher model
FLAVA. The fine-tuned CVLM with large-sized
backbones even outperforms FLAVA. This out-
come suggests that enhanced unimodal compre-
hension directly benefits multimodal downstream
tasks without further pre-training for unsupervised
multimodal alignment. Please note that the perfor-
mance on VQAv2 reported in the FLAVA paper
slightly differs from our fine-tuning results. This
discrepancy is primarily due to a difference in im-
age resolution between the model used in the paper
and the model that was actually released.

Second, the performance of both base-sized and
large-sized CVLM could be enhanced by an av-
erage of 1.73% through the application of knowl-
edge distillation (Phase 2). As a result, the en-
hanced base-sized CVLM by Phase 2 outperforms
the teacher model on every task, where the base-
sized CVLM has the same model size as the teacher.
This result is noteworthy because unlike general
knowledge distillation, where the final performance
of the student model is reportedly bound to the
teacher’s performance, TransferCVLM can pro-
duce a student that surpasses the teacher as keeping
the original strength of the student (Phase 1) and

Model VQAv2 SNLI-VE Avg.
X-VLM 74.40 80.02 77.21
T-CVLMX-VLM-base-phase 1 70.40 76.71 73.56
T-CVLMX-VLM-base-phase 2 73.36 79.14 76.25
T-CVLMX-VLM-large-phase 1 71.20 77.33 74.27
T-CVLMX-VLM-large-phase 2 74.56 79.92 77.24

Table 2: Experimental results of X-VLM based Trans-
ferCVLM. T-CVLM refers to TransferCVLM.

Model Flickr30k COCO
GIT-base 78.58 123.35
T-CVLMGIT-small-phase 1 72.67 120.24
T-CVLMGIT-small-phase 2 77.36 122.64
T-CVLMGIT-medium-phase 1 75.74 121.15
T-CVLMGIT-medium-phase 2 79.91 123.88

Table 3: Experimental results of GIT based Transfer-
CVLM on two captioning datasets.

synergistically distilling additional knowledge of
cross-modal dependencies from the teacher to the
student. Furthermore, the consistent improvement
of both sized CVLMs by Phase 2 suggests that
TransferCVLM might be effective for a CVLM
of even a larger size, as larger-size unimodal pre-
trained models continue to emerge.

Additionally, TransferCVLM consistently out-
performed all three types of baseline models. This
suggests that TransferCVLM is the optimal choice
when employing one multimodal model and two
unimodal models. Note that the UE+ME concat
model is a type of ensemble model and comes with
roughly double the parameters, although it exhib-
ited slightly better results than TransferCVLM in
SNLI-VE.

We also conducted an ablation study on the ini-
tialization of the fusion encoder in CVLM, the se-
lection of the distillation objective function and
distillation target. The experimental results indi-
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Model # Params VQAv2 SNLI-VE Avg. Retain(%)
FLAVA (Teacher) 241M 68.34±.24 78.38±.25 73.36
FLAVA-small

135M
56.78±.45 71.07±.13 63.93

FLAVA-small + MSE 66.27±.01 74.83±.24 70.55 96.17
FLAVA-small + ABT 65.84±.02 75.93±.17 70.89 96.63
T-CVLM-small-phase 1

128M
64.79±.17 72.31±.19 68.55

T-CVLM-small-phase 2 67.83±.20 76.18±.11 72.01 98.16
T-CVLM-small-phase 2MC 68.26±.04 75.98±.06 72.12 98.31

Table 4: Comparisons of task-specific multimodal model compression methods. The column ‘Retain’ indicates the
ratio of the average performance of the corresponding model over the teacher model performance.

cate that our choice of reusing the parameters of
the teacher model and selecting MSE yield the best
results. For detailed information and results of the
ablation study, please refer to Appendix C.

3.4 Flexibility in Model Architecture Selection

Table 2 presents evaluation results of X-VLM-
based TransferCVLM. Firstly, the CVLM with
cross-attention (Phase 1) exhibited better perfor-
mance than the FLAVA-based CVLM in Table
1. This suggests that using not only advanced
unimodal encoders but also advanced fusion en-
coders can contribute to the performance of fine-
tuned CVLM. Secondly, we found that multimodal
knowledge distillation (Phase 2) for the X-VLM-
based CVLM could lead to a significant perfor-
mance improvement of 2.84% in average. Thirdly,
large-size model of X-VLM-based TransferCVLM
slightly outperformed the teacher model on the
VQAv2 task, though the other models did not out-
perform the teacher like FLAVA-based Transfer-
CVLM. We leave it as future work to study the
relationship between teacher model architecture
and the effect of TransferCVLM on different down-
stream tasks.

Table 3 illustrates the results of the GIT-based
TransferCVLM on the two captioning tasks. Trans-
ferCVLM exhibited substantial performance im-
provements of decoder-based models for the gen-
erative task. Remarkably, it consistently enhanced
performance regardless of the student model’s size,
and medium-sized models with sufficiently robust
initial performance even outperformed the teacher
when TransferCVLM was applied. Considering
that the GPT-2 model we utilized as the backbone
is relatively outdated, this suggests the potential
for achieving significantly higher performance by
employing more advanced text decoders.

3.5 Extensibility of TransferCVLM for Model
Compression

In this section, we demonstrate the effec-
tiveness of TransferCVLM as a model
compression method (Section 2.4). We ap-
plied TransferCVLM with small-sized uni-
modal backbones, namely T5-small and
Swin-small-patch4-window7-224, and com-
pared it with the baseline model described in
Section 2.4. As for the baseline, we also compared
two distance metrics, Mean Squared Error (MSE)
and activation boundary transfer (ABT) (Heo et al.,
2019) (see Appendices C and D for details).

Table 4 presents the evaluation results of the two
compression methods on the two vision-language
tasks. Even though both methodologies undergo a
similar number of training stages, including teacher
training, student training, and knowledge distilla-
tion, TransferCVLM with small-sized backbones
outperformed the baseline. Moreover, the results
of phase 2MC suggest the broad applicability of
TransferCVLM-phase 2 models, which are not only
well-performing models but also better teachers for
TransferCVLM-small models.

3.6 Efficiency Evaluation

To quantitatively evaluate the efficiency of Trans-
ferCVLM, we estimated and compared the relative
training time of conventional vision-language pre-
training and TransferCVLM. We set the goal of
the two methods as obtaining a base-sized vision-
language model with T5 and Swin for the VQAv2
task. We computed the relative training time under
the following assumptions: 1) All iterations take
the same time. 2) All subtasks of the two methods
take the same time per iteration if performed with-
out gradient accumulation. 3) Training with a large
batch size in our computing environment requires
gradient accumulation, and the time increases lin-
early with the number of steps in gradient accumu-
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Method Stage # of
training

data

Required
batch

size

Relative
training time
per iteration

# of
iterations

Relative
training time

per subtask

Total
relative

training time

VLP Pre-training 9M 4096 256 100k 25.6M 26.22MFine-tuning 658k 160 10 62k 0.62M

T-CVLM
CVLM fine-tuning

658k
160 10 62k 0.62M

1.644MTeacher fine-tuning 128 8 51k 0.408M
Knowledge distillation 64 4 154k 0.616M

Table 5: Efficiency evaluation results for comparison between vision-language pre-training and TransferCVLM in
terms of relative training time. (VLP: Vision-Language Pre-training)

lation per iteration. For instance, if the time taken
for one iteration without gradient accumulation is
1, it is 256 with 256 steps of gradient accumulation.

We performed efficiency experiments using an
RTX 3090 24GB GPU, with a maximum batch size
of 16. We estimated the time per iteration without
gradient accumulation by running the fine-tuning
subtask for a few iterations. For vision-language
pre-training, we used the hyperparameters set by
METER (Dou et al., 2022). The hyperparameters
for the other stages were based on previous experi-
ments.

Table 5 displays the approximated training time
for the two methods. As indicated, TransferCVLM
can obtain a vision-language model for VQAv2 ap-
proximately 16 times faster than pre-training. The
primary reason for the inefficiency of pre-training
is its need for a sufficiently large batch size for sta-
ble training. Several recent vision-language models
require a batch size of at least 1024 for their pre-
training (Dou et al., 2022). Although this can be
addressed with advanced computational devices,
it remains impractical for general environments
with only a few GPUs. Furthermore, handling and
preprocessing over 9 million image-text pair data
is labor-intensive. In contrast, TransferCVLM is
suitable for general devices since it only requires a
reasonable batch size and task-specific data.

4 Related Works

4.1 Vision-Language Pre-training

Recently, many pre-trained multimodal models ca-
pable of processing both modalities’ inputs simul-
taneously have been developed. CLIP (Radford
et al., 2021) is a prominent example that improves
visual understanding through language supervision
rather than performing multimodal tasks. CLIP
employs contrastive learning, aligning images and
text within the same embedding space. This trains
the model to group similar images and text closely
and separate dissimilar ones. Contrastive learn-

ing, often combined with image-text matching and
masked language modeling objectives, is standard
in vision-language pre-training, typically utiliz-
ing large-scale datasets such as COCO (Lin et al.,
2014), Visual Genome (Krishna et al., 2017), and
SBU captions (Ordonez et al., 2011).

There have been various attempts on model
architectures for modality fusion, which can be
grouped into categories: early fusion (Kim et al.,
2021; Bao et al., 2022; Wang et al., 2023b), late
fusion (Dou et al., 2022; Singh et al., 2022), in-
termediate fusion (Xu et al., 2023), early-late fu-
sion (Driess et al., 2023; Li et al., 2023; Wang
et al., 2022), and intermediate-late fusion (Gao
et al., 2023). The proposed method is developed for
late fusion and early-late fusion models as student
models. For late fusion model (FLAVA, X-VLM),
each modal data is processed with a large unimodal
model, combined with the other modal processed
data, and passed to a cross-modal encoder. For
early-late fusion (GIT), an image is processed with
a unimodal image encoder, and passed to a text
decoder that simultaneously performs two roles:
language encoding and multimodal fusion. How-
ever, it can be adapted for other fusion methods
when the teacher and student models have similar
structures. Knowledge distillation can be applied if
the teacher and student models have corresponding
vision, language, and fusion representations, even
with different dimension sizes. We leave adapta-
tion of TransferCVLM for the other fusion models
as future work.

4.2 Knowledge Distillation for Multimodal
Models

Knowledge distillation (Hinton et al., 2015) is
a technique for transferring knowledge typically
from a large model (called teacher) to a small
model (called student), and is mainly used for
model compression. In general, knowledge is trans-
ferred through the student learning to imitate the
teacher’s logit or intermediate representation. Re-
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cently, various approaches to apply knowledge dis-
tillation to multimodal models have been proposed.
Fang et al. (2021) proposed DistillVLM, which
compresses vision-language models using knowl-
edge distillation during pre-training, enhancing
smaller models with additional knowledge from
the teacher. Wang et al. (2023b) also proposed
knowledge distillation-based model compression
method for vision-language models. They incorpo-
rated several knowledge distillation objectives to
enhance the pre-training of a small model, called
EfficientVLM. Our method TransferCVLM also
transfers knowledge between multimodal models,
but is different from the two methods in that Trans-
ferCVLM does not involve any further pre-training.

Approaches to improving unimodal understand-
ing through the knowledge distillation from mul-
timodal models were also proposed. Kim et al.
(2022) transferred the representation of a pretrained
multimodal model to a small vision model. A
technique called cross-modal similarity matching
was added to efficiently utilize the characteristic
of image-text alignment. Similarly, Tang et al.
(2021) proposed a technique for distilling knowl-
edge from video-language models to improve the
understanding of language models. Please note that
the proposed student model consists of pre-trained
unimodal models and a cross-model encoder, but
the knowledge transfer is mainly for learning inter-
modal dependencies between the unimodal models.

5 Conclusion

We present a novel knowledge transfer method
TransferCVLM for quickly building enhanced mul-
timodal models of CVLM by using latest uni-
modal pre-trained models and by distilling cross-
modal knowledge from a teacher of multimodal pre-
trained model, without any pre-training with large
amount of multimodal data. The proposed method
consistently improves performance of CVLM
across downstream tasks and across model archi-
tectures, even outperforming the teacher model in
many cases when using large-size unimodal pre-
trained models. When using small-size unimodal
pre-trained models, TransferCVLM can be used
as model compression method without large-scale
pre-training.

Limitations

Here, we summarize the limitations of Transfer-
CVLM to inspire future works.

Firstly, we explored only a limited number of
models and tasks. There is a need for validation
on more multimodal discriminative tasks, such as
NLVR2 (Suhr et al., 2018) or HatefulMemes (Kiela
et al., 2020), which are commonly used to evaluate
the performance of vision-language models. Addi-
tionally, experiments with emerging billion-scale
and advanced unimodal backbones should be con-
ducted. Furthermore, future work could consider
validation for various fusion encoders, including
multiway transformers (Bao et al., 2022), bridge
layers (Xu et al., 2023), and other diverse fusion
encoders.

Secondly, our methodology has limitations in
multimodal fusion methods. Since our methodol-
ogy assumes the use of unimodal backbones, it
is only applicable to models employing the late
fusion or early-late fusion method introduced in
Section 4.1. Future work could explore variations
that are applicable across various fusion method-
ologies, such as early fusion and intermediate-late
fusion.
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A Details and Statistics of the
Downstream Task Datasets

VQAv2 (Goyal et al., 2017) is a visual question-
answering task frequently used in the evaluation
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Figure B1: Model architecture of the baseline models. (VE: Vision Encoder, TE: Text encoder, FE: Fusion Encoder,
ME: Multimodal Encoder)

Split VQAv2 SNLI-VE Flickr30k COCO
Train 443,757 529,527 145,000 566,747
Dev 214,354 17,858 1,014 5,000
Test 447,793 17,901 1,000 5,000

Table A1: The statistics of the downstream task datasets

of vision-language models. VQAv2 consists of im-
ages and corresponding questions, and the model
must answer the questions based on the given im-
ages. Following previous studies (Anderson et al.,
2018; Kim et al., 2021; Chen et al., 2020), we con-
verted VQAv2 task into a multi-label classification
for training and used the trained model to select
the most likely answer from 3129 most frequent
answer candidates for inference. In addition, after
searching for hyperparameters using the develop-
ment set, we train the model with the combination
of the training set and the development set, and
report the evaluation results for the test-dev set.

SNLI-VE (Xie et al., 2019) is an inference task
to predict multimodal entailment. SNLI-VE re-
quires the model to predict whether a premise im-
age semantically entails a given hypothetical text.
Similar to the existing natural language inference
tasks, the model classifies the input hypothetical
text as one of entailment, neutral, or contradiction.

Flickr30k (Plummer et al., 2015) consists of
31,000 images, each with 5 human-annotated cap-
tions, and we used the commonly utilized Karpathy
split (Karpathy and Fei-Fei, 2015). When applied
to image-text and text-image retrieval, we calcu-
lated similarity scores for all images and texts, and
then computed matching probabilities for the top-
128 candidates to make inferences. For captioning,
we generated captions using greedy decoding by

inputting the image and [BOS] token.
The COCO Captioning dataset (Lin et al., 2014)

consists of over 330,000 images, each annotated
with 5 descriptive captions. We also used the stan-
dard Karpathy split and same decoding scheme
with Flickr30k captioning.

Table A1 shows the statistics of the downstream
task datasets.

B Baseline Model Architecture

Figure B1 illustrates the structural design of each
baseline model.

C Ablation Study

We conducted an ablation study to investigate
how each component contributed to the proposed
method. In phase 1 of TransferCVLM, we reuse the
parameters of teacher’s fusion encoder to provide
initial knowledge to CVLM before fine-tuning. To
ablate this, we constructed a CVLM with randomly
initialized fusion encoders of the same architecture
(L = 6, H = 768, A = 12). For phase 2, we com-
pared the distillation objective function (MSE) with
activation boundary transfer (ABT) loss (Heo et al.
2019) which DoKTra utilized for their distillation
phase (See Appendix D for detailed formulation
of the objective functions). We also ablated the
LKD itself of Phase 2 to demonstrate that the per-
formance improvement in Phase 2 is not solely due
to the additional fine-tuning stage. We used same
setting and configuration with TransferCVLM-base
in Table 1 except for the ablated component.

Table C1 presents the results of the ablation
study. In phase 1, the reuse of the parameters
from the teacher’s fusion encoder outperformed the
random initialization of the fusion encoder. This

16744



Phase Ablation VQAv2

Phase 1
Teacher fusion encoder 69.51±.66
Random init. 68.57±.15

Phase 2
MSE 71.66±.12
ABT 71.06±.05
w/o KD loss (Ltask only) 70.22±.22

Table C1: Ablation study of TransferCVLM on VQAv2
dataset.

KD Target VQAv2
All encoders 71.26±.12
Fusion encoder only 70.26±.18
Unimodal encoders only 68.81±.14

Table C2: Ablation study on the distillation target of
TransferCVLM on the VQAv2 dataset.

outcome suggests that CVLM could acquire initial
knowledge for fusing representations from multi-
ple modalities. Such a characteristic is well-suited
for our method, given that TransferCVLM does
not undergo the process of learning cross-modal
dependencies through pre-training. For phase 2,
training the model with only Ltask once more re-
sulted in a very slight performance improvement.
However, the performance could be significantly
improved only by applying the knowledge distilla-
tion loss through the transfer of the teacher model’s
knowledge. Moreover, distillation with MSE out-
performed ABT, which is the distillation objective
of DoKTra. The experiments of DoKTra were con-
ducted on downstream tasks that are characterized
by relatively limited data within specific domains.
As a result, activation boundary distillation, known
for its effectiveness in scenarios with scarce data,
demonstrated strong performance. On the other
hand, the two multimodal tasks used in our experi-
ments are characterized by relatively abundant data,
suggesting that the utilization of MSE was more
appropriate.

We also performed an ablation study on the dis-
tillation target with VQAv2 for previous versions
of CVLM (the only difference being the implemen-
tation of the task-specific layer). The results are
presented in Table C2. As shown in the results, the
best performance was achieved when distillation
was applied to all encoders, so we applied the same
method to the latest version of CVLM reported in
section 3.

We conducted a similar ablation study on the
encoder-decoder model and the captioning task

Phase Ablation Flickr30k
Phase 1 None 75.74

Phase 2
MSE 79.91
ABT 34.17
w/o KD loss (Ltask only) 70.70

Table C3: Ablation study of TransferCVLM on
Flickr30k captioning dataset.

KD Target Flickr30k
All modules 79.91
Encoder only 74.88
Decoder only 78.55

Table C4: Ablation study on the distillation target of
TransferCVLM on the Flickr30k captioning dataset.

(Flickr30k). Since we did not reuse teacher param-
eters in the encoder-decoder model, we excluded
ablations related to Phase 1. Additionally, we con-
ducted experiments by dividing the distillation tar-
gets into the entire model, encoder only, and de-
coder only. Tables C3 and C4 present the results,
further demonstrating that our choices were opti-
mal.

D Formulation of the Distillation
Objectives

We used mean square error as the distance metric
Ldist in the knowledge distillation stage, which is
formulated as:

Ldist(S, T ) = LMSE(S, T ) =

dF∑

i=1

(si − ti)
2,

(8)

where S = {s1, ..., sdF }, T = {t1, ..., tdF }.
The activation boundary transfer loss we com-

pared in our ablation study is formulated as follows:

ρ(x) =

{
1, if x > 0

0, otherwise.
(9)

LABT (S, T ) = ∥ρ(T )⊙ σ(µ1− S)

+(1− ρ(T ))⊙ σ(µ1+ S)∥22,
(10)

where ⊙ is the element-wise product and 1 is a dF -
dimensional vector, with all values equal to 1. µ is
the margin, which is a hyperparameter for training
stability and set to 1.0. σ is an activation function
such as ReLU.
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VQAv2 SNLI-VE F30k-R F30k-C COCO
lr 1e-4 1e-5 1e-5 2e-6 2e-6
lr scheduler cosine cosine linear linear linear
epochs 10 3 10 10 10
batch size 128 128 16 64 512
warmup ratio 0.1 0.1 0.1 0.0 0.0

Table E1: The hyperparameters for fine-tuning of teacher (FLAVA and GIT). F30K-R and -C refers to Flickr30k
retrieval and captioning tasks, respectively.

VQA SNLI-VE F30k-R F30k-C COCO
small base large small base large base large small medium small medium

lr 1e-4 1e-4 1e-4 2e-5 1e-5 2e-5 2e-5 5e-5 1e-5 2e-5 1e-5 1e-5
lr scheduler linear cosine linear cosine cosine cosine linear linear linear linear linear linear
epochs 15 15 15 6 5 5 20 10 10 10 10 10
batch size 128 160 400 32 32 40 16 40 40 40 16 16
warmup ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Table E2: The hyperparameters for fine-tuning of CVLM (Phase 1).

VQA SNLI-VE F30k-R F30k-C COCO
small base large small base large base large small medium small medium

lr 1e-4 1e-4 1e-4 1e-4 5e-5 5e-5 2e-5 2e-5 2e-5 1e-5 1e-5 1e-5
lr scheduler cosine cosine cosine cosine cosine cosine linear linear linear linear linear linear
epochs 15 15 15 9 6 8 10 10 10 10 10 10
batch size 64 64 80 64 32 40 16 32 16 64 16 64
warmup ratio 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
α 0.5 0.5 0.5 0.9995 0.999 0.9995 0.7 0.5 0.8 0.9 0.9 0.9

Table E3: The hyperparameters for multimodal knowledge transfer (Phase 2).

E Hyperparameter Searching

In this section, we report the searching scheme and
actual values of the hyperparameters we used in our
experiments. All our experiments were triplicated
with random seeds of [42, 123, 528].

In the knowledge distillation phase, our method
uses the hyperparameter α to balance the task-
specific loss with the knowledge distillation loss.
The search range of the hyperparameter α was de-
termined empirically based on the ratio of LKD

and Ltask. α was chosen among {0.3, 0.5, 0.7}
for VQAv2 and Flickr30k retrieval, {0.99, 0.995,
0.999, 0.9995} for SNLI-VE, and {0.7, 0.8, 0.9}
for captioning tasks.

Tables E1 to E3 show the hyperparameters used
in each stage. We conduct a grid search on the
development set to find the best hyperparameters.
Since we experimented with small, base, and large
models (small and medium in case of GPT-2) on
different devices, we had to set different search
units for the batch size.
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