
Findings of the Association for Computational Linguistics: EACL 2024, pages 16821–16843
November 12-16, 2024 ©2024 Association for Computational Linguistics

Solving for X and Beyond: Can Large Language Models Solve Complex
Math Problems with More-Than-Two Unknowns?

Kuei-Chun Kao1, Ruochen Wang1, Cho-Jui Hsieh1

1Department of Computer Science, University of California, Los Angeles
{johnson0213, ruocwang}@g.ucla.edu

chohsieh@cs.ucla.edu

https://johnsonkao0213.github.io/Formulate_and_Solve/

Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance in solving
math problems, a hallmark of human intelli-
gence. Despite high success rates on current
benchmarks; however, these often feature sim-
ple problems with only one or two unknowns,
which do not sufficiently challenge their rea-
soning capacities. This paper introduces a
novel benchmark, BeyondX, designed to ad-
dress these limitations by incorporating prob-
lems with multiple unknowns. Recognizing the
challenges in proposing multi-unknown prob-
lems from scratch, we developed BeyondX us-
ing an innovative automated pipeline that pro-
gressively increases complexity by expanding
the number of unknowns in simpler problems.
Empirical study on BeyondX reveals that the
performance of existing LLMs, even those fine-
tuned specifically on math tasks, significantly
decreases as the number of unknowns increases
- with a performance drop of up to 70% ob-
served in GPT-4. To tackle these challenges,
we propose the Formulate-and-Solve strategy,
a generalized prompting approach that effec-
tively handles problems with an arbitrary num-
ber of unknowns. Our findings reveal that this
strategy not only enhances LLM performance
on the BeyondX benchmark but also provides
deeper insights into the computational limits of
LLMs when faced with more complex mathe-
matical challenges.

1 Introduction

Mathematical problem-solving is a fundamental
aspect of human intelligence, necessitating both
language comprehension and reasoning skills. Re-
cently, LLMs pretrained on extensive web-scale
datasets, have exhibited exceptional abilities in ad-
dressing a variety of complex tasks. Consequently,
mathematical challenges are frequently employed
to benchmark the reasoning abilities of LLMs.
Studies have shown that these models demonstrate
human-level efficacy in solving math problems,

aided by diverse prompting techniques include in-
context learning (Wei et al., 2022; Kojima et al.,
2022; Wang et al., 2022) and the integration of ex-
ternal computational tools (Gao et al., 2022; Chen
et al., 2022; Liu et al., 2023; He-Yueya et al., 2023).

Existing math datasets (see Table 7) used to
evaluate LLMs often consist of algebraic prob-
lems involving only one or two unknown variables.
While current results on these datasets are promis-
ing, their simplicity masks the true capabilities and
limitations of these models. For instance, GPT-
4 (Achiam et al., 2023) achieves a 98% success
rate on the GMS8K (Cobbe et al., 2021) dataset,
suggesting that performance on these benchmarks
is nearing saturation. This highlights the need for
the development of more complex problem sets de-
signed to rigorously stress test LLMs and provide
a more accurate measure of their performance.

While quantifying the complexity of these math
problems is multi-dimensional, one common mea-
sure is the number of unknowns required to solve
the problem. Problems with more unknowns in-
volve larger systems of equations, reflecting more
complex relationships between the quantities, and
thus demanding more sophisticated solving meth-
ods. However, creating datasets that include prob-
lems with multiple unknowns presents significant
challenges, as it is difficult for humans to manu-
ally develop a sufficient number of these complex
problems from scratch. As a result, existing math
datasets are dominated by problems with at
most two unknowns (Cobbe et al., 2021; Koncel-
Kedziorski et al., 2016, 2015; Roy and Roth, 2018).

This paper tackles the aforementioned challenge
systematically, by presenting three key contribu-
tions: (1) the development of a multi-unknown
math benchmark, (2) an empirical study assess-
ing the performance of current LLMs on this new
benchmark, and (3) the introduction of a special-
ized prompting strategy designed to enhance the
ability of LLMs to solve multi-unknown problems.

16821

https://johnsonkao0213.github.io/Formulate_and_Solve/

C1: BeyondX - The first multi-unknown alge-
braic benchmark. To efficiently generate a large
corpus of multi-unknown problems, we developed
a novel pipeline that automatically expands existing
problems to N unknowns. This pipeline operates
on three key ideas: (1). Scenario Expansion: New
problems are derived by extending the scenarios
(such as financial calculations or grocery shopping)
of existing simpler problems, ensuring contextual
relevance. (2). Progressive Extrapolation: We
add unknowns incrementally — one at a time —
progressing from problems with two unknowns to
three, four, and so on. This step-by-step approach
makes the problem generation process significantly
more manageable. (3). Decomposed Problem Gen-
eration: Instead of creating an entire problem at
once, we decompose the process. The LLM is
carefully instructed to first introduce new unknown
variables into the base scenarios, generate the corre-
sponding equations, translate these equations into
semantic statements, and finally integrate them into
the comprehensive problem statement.

C2: Existing LLMs struggles with increasing
unknowns. Utilizing our BeyondX benchmark,
we conduct a comprehensive evaluation of cur-
rent LLMs, which includes both general-purpose
models like GPT-3.5 (Brown et al., 2020), GPT-
4, Gemini-Pro (Team et al., 2023), and Mistral-
7B (Jiang et al., 2023) as well as models specifi-
cally fine-tuned on mathematical problems (Wiz-
ardMath (Luo et al., 2023), OpenMath (Toshniwal
et al., 2024), and MetaMath (Yu et al., 2023)). Our
findings reveal a significant drop in performance
as the number of unknowns in problems increases
- a staggering ∼ 70% degradation on GPT-4 for
instance.

• This marked decline indicates that current
benchmarks may overstate the algebraic capa-
bilities of these models.

• Additionally, despite efforts to fine-tune
LLMs on previous math corpus, they still
struggle with multi-unknown problems.

• Even sophisticated prompting strategies,
which utilize detailed natural language expla-
nations, fail to substantially aid LLMs in over-
coming these more complex challenges.

C3: Formulate-and-Solve A prompting method
to tackle multi-unknown problems. Traditional
prompting methods for LLMs typically do not ac-
count for the complexity inherent in systems of
equations, potentially limiting the math-solving ca-

pabilities of these models. Addressing whether
the observed performance drop in LLMs is primar-
ily due to inadequate prompting strategies forms a
critical part of future investigation. As the initial
step, we propose Formulate-and-Solve, an auto-
mated prompting method that generalizes to an ar-
bitrary number of unknowns. This strategy refines
current approaches by integrating general math-
solving principles to automatically craft relevant
multi-unknown in-context examples for LLMs.

Our empirical evaluations demonstrate that
Formulate-and-Solve outperforms traditional
prompting methods on both standard algebra
problem datasets and our more challenging
BeyondX dataset. Importantly, our findings
suggest that while the inherent limitations of LLMs
contribute to their underperformance on complex
problems, inadequate prompting strategies are
a substantial bottleneck. By enhancing these
strategies, Formulate-and-Solve not only improves
LLM performance but also provides clearer
insights into the actual computational limitations
of current models when faced with advanced
mathematical challenges.

2 Related Work

2.1 Math Word Problem Generation

Early research on math word problem (MWP)
generation relied heavily on pre-defined struc-
tures, including domain knowledge, equations, and
text templates (Nandhini and Balasundaram, 2011;
Williams, 2011; Polozov et al., 2015). More re-
cently, researchers began using pre-trained models
fine-tuned on equation-to-MWP examples (Wang
et al., 2021). Studies on using LLMs for MWP
generation are scarce. Existing work includes eval-
uating GPT-3’s ability to mimic specific problem
types (Zong and Krishnamachari, 2023) and us-
ing GPT-4 to improve readability in existing prob-
lems (Norberg et al., 2023). However, these ap-
proaches are limited to replicating existing prob-
lem structures, such as the number of unknowns or
equation templates. Our work focuses on how to
expand existing one or two unknown problems into
more complex multiple unknowns.

2.2 Math Word Problem Solver

Mathematical reasoning skills are crucial for in-
telligent systems, leading to a surge in research.
In the past, studies focused on how statistical and
deep learning NLP models could solve arithmetic

16822

and algebraic problems (Hosseini et al., 2014;
Koncel-Kedziorski et al., 2015; Roy and Roth,
2016; Liang et al., 2016; Ling et al., 2017). Re-
cently, researchers have introduced increasingly
challenging math datasets (Saxton et al., 2019;
Amini et al., 2019; Miao et al., 2020; Patel et al.,
2021; Hendrycks et al., 2021) to improve difficulty,
diversity, and robustness. However, these methods
struggle to adapt to problems outside their training
data. This limitation has driven the rise of LLMs
in mathematical reasoning.

2.3 Math Reasoning with LLMs
Many prompting techniques have emerged to un-
lock the reasoning abilities of LLMs (Qiao et al.,
2022). Chain-of-Thought (CoT) Prompting (Wei
et al., 2022; Kojima et al., 2022; Wang et al., 2022)
was proposed to generate the reasoning steps be-
fore submitting the answer. Later, several other
works (Nye et al., 2021; Zhou et al., 2022; Droz-
dov et al., 2022; Wang et al., 2023) also proposed
different approaches to utilize LLMs to solve rea-
soning tasks by allowing intermediate steps or plan-
ning first before solving. All of these methods
allow LLMs to process all steps without using
any external tools or refinements. For incorporat-
ing external tools, Programming-of-Thought (PoT)
prompting (Chen et al., 2022; Gao et al., 2022)
utilizes LLMs with code pretraining to write a pro-
gram as a rationale that explains the reasoning pro-
cess. Equation-of-Thought (EoT) (Liu et al., 2023;
He-Yueya et al., 2023) prompting tackles MWPs
by converting them into linear equation systems,
which are then solved by a symbolic solver. Al-
though PoT and EoT tried to use external tools to
solve MWPs, they did not consider the scenario of
multiple unknown variables.

Recent LLMs advancements for math reason-
ing involve various training approaches. One
method focuses on pretraining data specifically
designed for math, such as Minerva (Lewkowycz
et al., 2022), Llemma (Azerbayev et al., 2023), and
DeepSeekMath (Shao et al., 2024). Another ap-
proach involves generating synthetic questions and
answers that mimic existing benchmarks. For ex-
ample, the WizardMath series (Luo et al., 2023)
that improves mathematical reasoning in Mistral
7B (Jiang et al., 2023) with problems sourced
primarily from GSM8K and MATH (Hendrycks
et al., 2021) via output from closed-source LLMs.
MetaMath (Yu et al., 2023) and MMIQC (Liu and
Yao, 2024) focus on expanding existing questions

in GSM8K and MATH. MetaMath rewrites ques-
tions in various ways, while MMIQC combines
existing math pretraining data such as OpenWeb-
Math (Paster et al., 2023) with question-answer
variations from MetaMath. The Mammoth series
(including Mammoth2) (Yue et al., 2023, 2024)
uses curated instruction tuning datasets (MathIn-
struct, WebInstrcut) with reasoning rationales for
training. The OpenMathInstruct (Toshniwal et al.,
2024) series utilizes synthetic instruction data from
open-source LLMs with strong math reasoning abil-
ities.

3 Automatic Generation of
Multi-Unknown Algebra Problems via
Progressive Expansion

3.1 Challenges for Constructing
Multi-Unknown Datasets

Generating new problems with LLMs. Creat-
ing correct, diverse, and solvable math problems
manually is an exceptionally laborious task. The
complexity of this task increases with the addi-
tion of each unknown, as more unknowns require
consideration of additional relationships within the
problem scenario. To automatize this process, we
employ LLMs to generate the problems, with hu-
man verifiers subsequently ensuring the quality and
solvability of these problems.

Limitations of naive generation. Directly
prompting LLMs to generate multi-unknown al-
gebra problems has often resulted in poor quality
outputs. Firstly, generating problem scenarios from
scratch tends to produce a narrow range of prob-
lem types, as evidenced by the lack of diversity
reported in Table 18. Secondly, attempting to gen-
erate all relevant relationships and corresponding
equations in a single step frequently leads to vi-
olations of problem constraints, rendering many
problems unsolvable as detailed in Table 19.

3.2 Generating New Problems via Progress
Expansion

Pipeline overview. To address the aforemen-
tioned challenges, we introduce a novel approach
called Progressive Expansion, which applies a
divide-and-conquer strategy: (1). Scenario Diver-
sification: We begin by expanding existing simpler
problems to increase scenario diversity. This lever-
ages the rich variety of simpler problem scenarios
as a foundation for more complex questions. (2).

16823

Figure 1: An example question of multi-unknown algebra problem generation and its corresponding reasoning steps.
The prompts used for each step can be found Appendix 16.

Incremental Expansion: Instead of expanding prob-
lems from 1-2 unknowns to N unknowns in a single
leap, we incrementally introduce one new variable
at a time. This step-by-step approach simplifies the
transformation from N − 1 unknowns to N , mak-
ing it more manageable and controllable for LLMs.
(3). Enhanced Solvability: The problem expansion
is broken into several simpler stages, making the
entire generation more tractable for LLMs.

Multi-step problem expansion. The process of
expanding problems is systematically divided into
five steps, as illustrated in Figure 1. Step 1: Under-
standing the source problem. First, we instruct the
LLM to analyze the original problem (including
solutions) and explicitly explain the role of each
unknown variable. This “perception step" lays the
groundwork for subsequent expansions. Step 2:
Introducing a new unknown. The LLM then intro-
duces an additional unknown variable related to the
existing problem framework and assigns an appro-
priate initial value (oracle value) to this variable.
Step 3: Expanding equation sets. Next, the LLM
generates a new equation that delineates the quanti-
tative relationships between the new and existing
variables. To ensure these equations are solvable,
we integrate a Program Verifier module to assess
and adjust their correctness as needed. Step 4: Add
equations to the problem statement We translate
the newly formed equations into text and incorpo-
rate them into the original problem statement to
maintain consistency and flow. Step 5: Final refine-

ment. Finally, we engage the LLM in a thorough
polishing phase to refine the problem statement,
ensuring it is fluent and coherent.

3.3 Constructing the Benchmark

Seed problems. We select ALG514 (Kushman
et al., 2014) and DRAW-1K (Upadhyay and Chang,
2017) as the foundational seed problems to expand.
These datasets are particularly suitable as they in-
clude full solutions with oracle equation sets.

Statistics. With this generation process, we se-
lected a total of 464 problems. Specifically, there
are 194 problems with three unknowns, 158 prob-
lems with four unknowns, and 112 problems with
five unknowns. In addition, since our generated
dataset is expanded from the existing dataset, it con-
tains various topics or subjects including moving
objects, liquids, interest, distance, and geometry.

4 Benchmarking Existing LLMs and
Prompting Methods

4.1 LLMs for solving multi-unknown algebra
problems

To evaluate the performance of various LLMs on
BeyondX, we consider the Zero-shot-CoT prompt-
ing method (details in Section 6.1) and test the per-
formance of both General-Purpose LLMs (GPT-3.5,
GPT-4, Gemini-Pro, Mistral-7B) and Mathemati-
cally fine-tuned LLMs (WizardMath, OpenMath,
MetaMath).

16824

(a) Zero-shot-CoT performance
of Close-source model.

(b) Zero-shot-CoT performance
of Open-source model.

(c) Different prompting methods
performance of GPT-3.5.

Figure 2: Preliminary study of different LLMs and prompting methods on multi-unknown algebra datasets.

In Figure 2a and Figure 2b, the results show
a significant performance drop with multiple un-
knowns on both closed-source and open-source
LLMs. For example, GPT-4 achieves near 90%
accuracy when solving problems with 1 or 2 un-
knowns, but the performance drops to 20% when
solving problems with 5 unknowns. This highlights
that current LLMs with Zero-shot-CoT are not able
to solve multi-unknown problems, and this limi-
tation was not recognized in the literature due to
lack of datasets. In addition, mathematically fine-
tuned LLMs exhibit a significant performance drop
when encountering problems with more than two
unknowns. This reveals a limitation of current fine-
tuning methods, highlighting the need for improved
algorithms or training sets.

4.2 Prompting Methods

Figure 2a demonstrates that state-of-the-art LLMs
cannot solve multi-unknown problems with Zero-
shot-CoT prompting. To investigate whether this
issue can be mitigated with better prompting meth-
ods, we evaluated nine existing prompting methods
using GPT-3.5, categorized into three types:
Zero-shot. Zero-shot-CoT (Kojima et al., 2022)
and Plan-and-Solve (Wang et al., 2023) prompting.
Few-shot with manual demonstrations. CoT (Wei
et al., 2022), PoT (Gao et al., 2022), EoT (Liu
et al., 2023), and Declarative (He-Yueya et al.,
2023) prompting.
Few-shot with automatic demonstrations. Analog-
ical (Yasunaga et al., 2023), Auto-Zero-shot-CoT.

In Figure 2c, we observe zero-shot and few-shot
CoT prompting methods seem inadequate when
solving multi-unknown problems. We find that
while CoT correctly sets up the equations, it fails
to accurately solve the system of equations. Ad-
ditionally, even though some prompting methods
like PoT, EoT, and Declarative use external tools
as a calculator and equation solver, they manually

design their demonstration for simpler problems
and fail to generalize to more complex multiple
unknown scenarios. Although some methods con-
struct demonstrations automatically from the prob-
lem context (Analogical, Auto-Zero-shot-CoT),
they still suffer from poor performance. Since
LLMs themselves do not have enough capabil-
ity to solve multi-unknown problems, the gener-
ated demonstrations are often of low quality. This
raises concerns about prompt engineering requiring
"human-in-the-loop" solutions with domain knowl-
edge integrated through instructions.

Therefore, in the next section, we will go through
a detailed formulation of Formulate-and-Solve
prompting. Our method can significantly bridge
the gap as shown in Figure 2c.

5 Automatic Solver of Algebra Problems

To investigate whether the observed performance
drop is primarily due to inadequate prompting
strategies or the limitation of LLMs. we develop
Formulate-and-Solve, an automated prompting
method designed for LLMs to solve math prob-
lems with an arbitrary number of unknowns. We
also show that our method performs competitively
to state-of-the-art algorithms even for non-algebra
problems in Appendix A.1.

A major challenge in applying the prompting
method to multi-unknown problems is the scarcity
of hand-crafted demonstrations. Traditional ex-
amples with a single unknown do not scale well
to more complex, multi-unknown scenarios, ne-
cessitating automated demo generation. Further-
more, while LLMs can be guided by prompts to
solve these systems of equations, they often re-
quire external tools due to their limited ability to
independently solve and explicitly formulate these
problems into a system of equations.

To overcome these limitations, we propose
Formulate-and-Solve, a framework that incorpo-

16825

rates a set of principles to instruct LLMs in gen-
erating demonstrations automatically. This frame-
work empowers LLMs to translate problems into
equations and subsequently utilize external tools
to solve them. The overall pipeline is illustrated in
Figure 3 and we include the actual prompts used in
each step in Appendix 17.

Figure 3: The overview of Formulate-and-Solve.

Automatic generated demonstrations. Conven-
tional prompting methods require creating and eval-
uating human-written examples to guide LLMs
in solving algebra problems, which is time-
consuming. Our approach leverages intuitive
human-solving steps as instructions. Based on
these instructions, the LLM iteratively generates its
solution demonstrations (approximately five). To
find the most effective demonstrations, we generate
ten sets of demonstrations and assess their accu-
racy on twenty problems. The set with the highest
accuracy is chosen as the best.

Solving strategy. Our proposed method lever-
ages the strengths of both LLMs and symbolic
solvers. We cooperate with the human-solving
steps in the instruction to convert algebra prob-
lems into the corresponding systems of equations.
Recognizing the limitations of LLMs for complex
systems, an external symbolic solver (e.g., SymPy)
is employed to solve the system of equations. In
the cases of unsolvability or errors that occur in
solving the system of equations, the finalization
module relies solely on the original prompt and re-
sponse. This strategy ensures adaptability in some
scenarios where the response is not formatted. Fur-
thermore, by incorporating the historical prompt

and response within the finalization module, the
approach facilitates the continuation or refinement
of the solution response.

6 Experimental Results

6.1 Experimental Setting
Dataset. Our experiments are conducted on five
algebra problem sets, including existing widely-
used ones (ALG514, DRAW-1K, AsDiv, HMWP)
and the proposed BeyondX benchmark. AsDiv
consists of a wide range of math problems and
we only take the algebra problem subset. Also,
since HWMP is a Chinese dataset, we use GPT-4
to translate the problem into English. We find that
while most translation results effectively convey
the intended meaning. The five datasets differ in
size and complexity, as shown in Table 1. We also
report the average number of unknowns in each
dataset. Note that we split the proposed dataset
into three subsets, correspond to problems with 3
(BeyondX_3), 4 (BeyondX_4), and 5 (BeyondX_5)
unknowns, while the problems in all other datasets
have ≤ 2 unknowns.

Dataset Avg #Unknowns Avg #Words Size
ALG514 1.8 41.4 514
DRAW-1K 1.7 35.8 200
AsDiv 1.6 27.9 154
HMWP 1.3 77.3 548
BeyondX_3 3 65.1 194
BeyondX_4 4 94.5 158
BeyondX_5 5 118.8 112

Table 1: Statistics of existing algebra evaluation dataset.

Models. For experiments in this section, we uti-
lize GPT-3.5, GPT-4, and Gemini-Pro as repre-
sentatives of general-purpose LLMs. We also
opt to exclude open-sourced LLMs, as they typ-
ically struggle with multi-unknown problems due
to their limited capacity to process and follow long
prompts. The versions of these models and system
prompts we used for the experiments are listed in
Appendix D.1.

Baselines. We compare Formulate-and-Solve
with three types of prompting baselines: (1) Zero-
shot. We include Zero-shot-CoT (Kojima et al.,
2022) and Plan-and-Solve (PS) (Wang et al., 2023)
prompting. The former appends “Let’s think step
by step” to the prompt without any demo. The
latter appends “Let’s first understand the problem
and devise a plan to solve the problem. Then, let’s
carry out the plan and solve the problem step by
step” to the prompt without any demo. (2) Few-
shot with manual demonstrations. CoT (Wei et al.,

16826

Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
Method CoT PS CoT PoT† EoT† DR† AG AZ Ours†

MU_1 79.3% 77.2% 82.8% 80.0% 25.5% 51.7% 33.8% 90.3% 89.7%
MU_2 46.2% 40.8% 52.7% 77.3% 26.7% 67.0% 33.9% 87.9% 93.7%
BeyondX_3 11.3% 9.8% 12.4% 52.1% 3.6% 55.2% 10.3% 0.5% 93.8%
BeyondX_4 6.3% 8.9% 3.2% 32.3% 0.0% 21.5% 10.1% 2.5% 84.9%
BeyondX_5 6.2% 5.4% 2.7% 36.6% 0.0% 5.4% 9.8% 1.8% 71.4%
Average 29.9% 28.4% 30.7% 55.7% 11.2% 40.1% 19.6% 36.6% 86.7%

Table 2: Experiment results across various unknowns using GPT-3.5. † means the method uses external tools.

Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
Method CoT PS CoT PoT† EoT† DR† AG AZ Ours†

Single
ALG514 91.2% 85.7% 91.2% 93.4% 31.9% 59.3% 38.5% 93.4% 92.3%
DRAW-1K 59.3% 63.0% 68.5% 57.4% 14.8% 38.9% 25.9% 85.2% 85.2%
AsDiv 68.3% 71.4% 71.4% 75.0% 26.8% 53.5% 54.0% 76.1% 81.7%
HMWP 21.5% 14.6% 22.0% 25.2% 4.2% 10.3% 21.0% 31.0% 37.7%
Average 60.1% 58.7% 63.3% 62.8% 19.4% 40.5% 34.8% 71.4% 74.2%

Double
ALG514 47.0% 40.7% 53.4% 81.8% 29.6% 68.8% 34.5% 90.5% 96.5%
DRAW-1K 43.8% 41.1% 50.7% 64.4% 18.5% 61.6% 32.2% 80.1% 85.6%
AsDiv 55.0% 49.5% 37.4% 11.0% 15.7% 59.0% 31.9% 79.5% 80.7%
HMWP 16.4% 9.9% 18.7% 39.8% 9.9% 26.3% 28.1% 50.3% 58.5%
Average 40.6% 35.3% 40.0% 49.2% 18.4% 53.9% 31.7% 75.1% 80.3%

Table 3: Experiment results across various algebra problem datasets which include single and double unknown
using GPT-3.5. † means the method uses external tools.

2022) creates eight hand-crafted natural language
examples as demonstrations. PoT (Gao et al., 2022)
creates eight hand-crafted Python code examples
as demonstrations and uses programming tools to
get the final answer. EoT (Liu et al., 2023) creates
eight hand-crafted equation examples as demonstra-
tions and uses symbolic solvers to obtain the final
answer. Declarative (DR) (He-Yueya et al., 2023)
creates three hand-crafted examples with princi-
ples as demonstrations and uses symbolic solvers
to obtain the final answer. (3) Few-shot with au-
tomatic demonstrations. (Yasunaga et al., 2023)
proposed Analogical prompting (AG), designed to
automatically guide LLMs to self-generate relevant
examples as demonstrations before proceeding to
solve the problem. We come up with another naive
method: selecting examples from the dataset and
employing Zero-shot-CoT (Kojima et al., 2022) to
generate examples as demonstrations. We refer to
this method as Auto-Zero-shot-CoT (AZ).

6.2 Main Results

To investigate which reasoning methods and mod-
els better solve multi-unknown problems, we sum-
marize the performance of different prompting
methods using GPT-3.5 in Table 2 and Tables 3. We
also evaluate and compare various prompting meth-
ods with GPT-4 and Gemini-Pro in Appendix A.3.

Comparison with various prompting baselines.
Table 2 and Figure 2c present the accuracy com-

parison of our method with existing approaches on
datasets containing 1 to 5 unknowns. We combine
ALG514 and DRAW-1K into MU_1 and MU_2
for problems with 1 and 2 unknowns, respectively,
and use BeyondX for problems with 3, 4, or 5 un-
knowns. Figure 2c illustrates that only our method
maintains reasonable accuracy when the number of
unknowns exceeds two, while other methods expe-
rience a significant performance decline. For prob-
lems with five unknowns, our method achieves a
66.7% accuracy, while the best alternative achieves
only 34.2%.

This improvement is attributed to our instruc-
tional approach and automatic demonstrations,
which effectively address general algebra problems.
Furthermore, datasets with multiple unknowns typ-
ically involve longer questions and necessitate the
construction of more equations for a solution. We
find that using lengthy natural language reasoning
steps can easily introduce operational and calcula-
tion errors. In contrast, our method guides LLMs to
generate a system of equations as an intermediate
reasoning step, making it less prone to mistakes dur-
ing equation formulation. As a result, our method
maintains high accuracy when using a symbolic
solver to solve the equations. We also observe that
leveraging external tools, such as programming
or symbolic solvers, to tackle algebra problems
generally yields better performance than directly
obtaining the final answer from the model in the

16827

Instruction Demos Solver Equation U1 U2 U3 U4 U5
✗ ✗ ✓ ✓ 77.8% 74.0% 60.0% 33.8% 18.3%
✗ ✓ ✓ ✓ 79.6% 77.4% 79.0% 56.3% 48.3%
✓ ✗ ✓ ✓ 64.1% 81.2% 82.0% 68.3% 60.0%
✓ ✓ ✗ ✓ 59.3% 73.3% 43.0% 16.8% 15.0%
✓ ✓ ✓ ✓ 85.2% 87.6% 90.0% 81.3% 66.7%

Table 4: Ablation experiment results across various number of unknowns using GPT-3.5. Our method achieves the
highest accuracy among all.

presence of multiple unknowns.
Next, we verify whether Formulate-and-Solve

maintains its effectiveness for problems with one
or two unknowns. For this, we compare it with
baselines on commonly used algebra datasets con-
taining one or two unknowns, with the results pre-
sented in Table 3. The results demonstrate that
Formulate-and-Solve again achieves the best per-
formance. Compared with other automatic few-
shot methods such as AZ, the performance gap is
considerably smaller (5.2% on average) for one or
two unknowns than for multiple unknowns (48.4%
on average). This is likely because it is easier to
generate a high-quality demo for problems with one
or two unknowns. Also, we cannot see a big dif-
ference between the zero-shot and few-shot CoT in
this experiment since the manual few-shot demon-
strations that are commonly used in previous work
are beneficial for solving arithmetic problems, not
algebra problems.

7 Discussion and Analysis

Ablation study. We analyze the significance of
each component within in Formulate-and-Solve
through an ablation study. We assess five vari-
ations: (1) Use only a system of equations as a
rationale for reasoning. (2) Remove the instruction
before demonstrations. (3) Remove demonstrations
after the instruction. (4) Use an LLM instead of a
symbolic solver to solve a system of equations. (5)
Formulate-and-Solve. We randomly select 60 prob-
lems for each unknown from ALG514, DRAW-1K,
and BeyondX to evaluate each variation. The re-
sults are provided in Table 4.

We observe that performance decreases signif-
icantly when instruction or demonstration is re-
moved, highlighting its role in guiding the LLM.
Interestingly, instruction has a greater impact than
demonstration. Replacing the symbolic solver with
an LLM also leads to a large decrease in accu-
racy. These findings confirm that all elements
in Formulate-and-Solve contribute significantly to
solving multi-unknown problems.

Error Reason Percentage (%)
(E1) Fewer or More Equations 17.4% (12/69)
(E2) Incorrect Equation 44.9% (31/69)
(E3) Incorrect Extraction Form 37.7% (26/69)

Table 5: Statistics of error analysis under GPT-3.5.

Error analysis. We delve deeper into the pri-
mary challenges that LLMs encounter when solv-
ing multi-unknown problems using Formulate-and-
Solve. To gain a quantitative understanding of
model failures, we conduct an error analysis in
Formulate-and-Solve with GPT-3.5 on BeyondX.
We collect all instances where predictions were
incorrect and annotate the main reasons for these
mispredictions. The error types include: (E1) gen-
erating too few or too many equations, (E2) pro-
ducing the correct number of equations but with
incorrect content, and (E3) generating responses in
the wrong format, preventing the extraction of the
equation system.

As illustrated in Table 5, the most common error
is E2 (incorrect equation). This indicates that cur-
rent LLMs equipped with prompting methods still
struggle to accurately formulate multi-unknown
equations in some cases. Besides, 37.7% of the
errors occur due to the wrong format of the re-
sponse, and 17.4% of the errors arise when LLMs
fail to align relevant information correctly with the
equations, resulting in either too few or too many
equations. The detailed qualitative analysis of the
error examples is in Appendix D.3.

Dataset Out-of-Domain In-Domain
MU_1 82.8% 82.4%
MU_2 52.7% 48.7%
BeyondX_3 12.0% 10.4%
BeyondX_4 3.1% 6.4%
BeyondX_5 2.5% 1.9%

Table 6: In- and Out-Domain demonstrations analysis
under GPT-3.5 via Few-shot-CoT.

Effectiveness of in-domain and out-of-domain
demonstrations. To investigate the impact of in-
domain demonstrations, we manually crafted five
demonstrations tailored to our multi-unknown prob-
lems. In Table 6, we compare the performance of
Few-shot-CoT prompting using these in-domain
and out-of-domain demonstrations. Although in-

16828

domain demonstrations can be beneficial, our re-
sults observe that factors like the quality and struc-
ture of demonstrations are also crucial.

8 Conclusion

We introduce BeyondX, the first benchmark for
evaluating LLMs on multi-unknown problems. Our
analysis reveals a significant performance drop in
LLMs and existing prompting methods when faced
with such problems. To address this, we propose
Formulate-and-Solve, a novel prompting method
that leverages instruction, automatic demonstra-
tions and a system of equations. Experiments
demonstrate the effectiveness of Formulate-and-
Solve in tackling multi-unknown problems.

Limitations

Scope of Benchmark.
Although our automatic generation method can de-
crease the labor-intensive data collection process,
our method still needs to be expanded from high-
quality problems with low unknowns. Besides, we
figure that some types or topics of the problems
cannot be extended to multiple unknown problems.
And, our benchmark is limited to English questions
and data. We look forward to future benchmarks on
a broader domain or modality and other languages.

Models and Reasoning Methods.
Although we experiment with many representative
models and reasoning methods in this paper, we
acknowledge that this does not cover all models
and frameworks. Besides, we acknowledge that our
approach falls short on more straightforward arith-
metic datasets since our method is more suitable
for algebra datasets. Further research is required to
explore new problem-solving methods for general
math reasoning tasks, including different modali-
ties.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models. In
The Eleventh International Conference on Learning
Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523–533.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

16829

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
271–281, Baltimore, Maryland. Association for Com-
putational Linguistics.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Huang,
Chung-Min Li, Shen-Yu Miao, and Keh-Yih Su. 2016.
A tag-based english math word problem solver with
understanding, reasoning and explanation. In Pro-
ceedings of the 2016 conference of the North Amer-
ican chapter of the association for computational
linguistics: Demonstrations, pages 67–71.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Haoxiong Liu and Andrew Chi-Chih Yao. 2024. Aug-
menting math word problems via iterative question
composing. arXiv preprint arXiv:2401.09003.

Tengxiao Liu, Qipeng Guo, Yuqing Yang, Xiangkun
Hu, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
2023. Plan, verify and switch: Integrated rea-
soning with diverse x-of-thoughts. arXiv preprint
arXiv:2310.14628.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Kumaresh Nandhini and Sadhu Ramakrishnan Bala-
sundaram. 2011. Math word question generation
for training the students with learning difficulties.
In Proceedings of the International Conference &
Workshop on Emerging Trends in Technology, pages
206–211.

Kole Norberg, Husni Almoubayyed, Stephen E Fancsali,
Logan De Ley, Kyle Weldon, April Murphy, and
Steven Ritter. 2023. Rewriting math word problems
with large language models. In AIEd23: artificial
intelligence in education, empowering education with
LLMs workshop.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,
and Jimmy Ba. 2023. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv
preprint arXiv:2310.06786.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Oleksandr Polozov, Eleanor O’Rourke, Adam M
Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo-
ran Popović. 2015. Personalized mathematical word
problem generation. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,
and Huajun Chen. 2022. Reasoning with lan-
guage model prompting: A survey. arXiv preprint
arXiv:2212.09597.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

Subhro Roy and Dan Roth. 2018. Mapping to declara-
tive knowledge for word problem solving. Transac-
tions of the Association for Computational Linguis-
tics, 6:159–172.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,

16830

https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.3115/v1/P14-1026
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92

Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruction
tuning dataset. arXiv preprint arXiv:2402.10176.

Shyam Upadhyay and Ming-Wei Chang. 2017. An-
notating derivations: A new evaluation strategy and
dataset for algebra word problems. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 494–504, Valencia, Spain.
Association for Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609–2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Zichao Wang, Andrew Lan, and Richard Baraniuk. 2021.
Math word problem generation with mathematical
consistency and problem context constraints. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5986–
5999, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Sandra Williams. 2011. Generating mathematical word
problems. In 2011 AAAI Fall symposium series.

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and
Denny Zhou. 2023. Large language models as ana-
logical reasoners. arXiv preprint arXiv:2310.01714.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.
arXiv preprint arXiv:2405.03548.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Mingyu Zong and Bhaskar Krishnamachari. 2023. Solv-
ing math word problems concerning systems of equa-
tions with gpt-3. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
15972–15979.

16831

https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://aclanthology.org/E17-1047
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2021.emnlp-main.484
https://doi.org/10.18653/v1/2021.emnlp-main.484

Algorithm 1 Formulate-and-Solve Reasoning Al-
gorithm

Require: question Q, instruction I , reasoning
module R, symbolic solver S, finalize mod-
ule F

1: function AUTO DEMO(I , Question, K)
2: while K ̸= 0 do
3: D ← R(I +D +Question)
4: K ← K − 1
5: end while
6: return D ▷ D is a demo
7: end function
8: D ← AutoDemo()
9: p← I +D +Q ▷ p is a input prompt

10: eq ← R(p)
11: if S(eq) then ▷ Equation System is solvable
12: ans← F (Q+ eq + S(eq))
13: else
14: ans← F (Q+ eq)
15: end if
16: return ans ▷ Return the Answer

A Further Experiment

A.1 Generalization to common arithmetic
datasets

We analyze the generalizability of the Formulate-
and-Solve framework to other common arithmetic
datasets, such as GSM8K, SVAMP, AddSub, Sin-
gleEq, and MultiArith where some problems can
be seen as single unknown problems on GPT-3.5.
The details of these arithmetic datasets can be
seen in Table 8. From Table 9, we can observe
that our method can still perform a comparable
performance to other existing custom and manual
prompting methods for arithmetic tasks since these
datasets are much easier than multiple unknown
datasets and allow only minimal room for improve-
ment. Besides, our method is more generalized not
only to single unknown problems but also can deal
with multiple unknown problems automatically.

A.2 Experiments different mathematical
models on BeyondX

We further evaluate seven different existing math-
ematical models fine-tuned on Mistral-7B on Be-
yondX under Zero-shot-CoT setting. As shown
in Figure 4 and Table 10, the results indicate that
these open-source LLMs are still struggling with
more complex mathematical reasoning tasks in
multiple unknown problems. There is still a sig-

Figure 4: The performance of different existing open-
source models.

nificant amount of effort during pretraining or su-
pervised fine-tuning to instill enough multiple un-
known knowledge and the way of solving multiple
unknown system of equations into the models’ pa-
rameters to close the gap.

A.3 Experiments different models on
Formulate-and-Solve

We further assess the performance of Formulate-
and-Solve across various base models, such as GPT-
4 and Gemini-Pro. The results of the general al-
gebra dataset and the multi-unknown dataset are
shown in Table 14 and Table 15, and we also illus-
trate the performance curve of GPT-4 and Gemini-
Pro on different numbers of unknown in Figure 5a
and Figure 5b. The findings remain as GPT-3.5 and
our method outperforms a large gap among other
methods. Additionally, we observe that the perfor-
mance of the Gemini-Pro generally falls between
that of GPT-3.5 and GPT-4 across various datasets
and prompting methods.

A.4 Experiments different shots of
demonstrations on Formulate-and-Solve

We analyze the effect of varying the number of
automatic generated exemplars (K) in our approach
on GPT-3.5. Here, we show three variations with
K = 3, 5, and 8. In Table 11, we observe that LLM
demonstrates consistent performance under single
or double unknown in different datasets. When K
is bigger, on average, performance improves.

B Full Instruction

In this section, we show the full instructions in
Section 3 and Section 5.

16832

Dataset Rationale Size # of Variables Source Domain
SingleEQ Equation 508 1 Internet Arithmetic
MAWPS Equation 3320 1 Internet Arithmetic
AllArith Equation 831 1 Internet Arithmetic
Dolphin18K Equation 18460 1 Internet Arithmetic/Algebra
Math23K Equation 23162 1 Internet Arithmetic/Algebra
SVAMP Equation 1000 1 Internet Arithmetic/Algebra
GSM8K Natural Language 8792 1 Annotated Arithmetic/Algebra
AQuA Natural Language 100000 1 GMAT/GRE Arithmetic/Algebra
MATHQA Natural Language 37297 1 GMAT/GRE Arithmetic/Algebra
ASDiv Equation 2305 1-2 Internet Arithmetic/Algebra
ALG514 Equation 514 1-2 Internet Algebra
DRAW-1K Equation 1000 1-2 Internet Algebra
HMWP Equation 5470 1-2 Internet Algebra
BeyondX Equation 480 1-5 LLMs Generated Algebra

Table 7: List of existing math dataset.

(a) Different prompting methods performance of
Gemini-Pro.

(b) Different prompting methods performance of
GPT-4.

Figure 5: The performance on different numbers of unknown.

Dataset Domain Avg #Unknowns Evaluation Size
SingleEq Arithmetic 1 508
MultiArith Arithmetic 1 600
AddSub Arithmetic 1 395
SVAMP Arithmetic/Algebra 1 1000
GSM8K Arithmetic/Algebra 1 1319
ALG514 Algebra 1.8 514
DRAW-1K Algebra 1.7 200
BeyondX Algebra 3.8 464

Table 8: Statistics of existing math evaluation dataset.

B.1 Automatic generation of multi-unknown
algebra problems

We can see the full instructions in Table 16.

B.2 Automatic solver of multi-unknown
algebra problems

We can see the full instructions in Table 17.

C Detail Studies of Automatic Generation
of Multi-Unknown Algebra Problems

C.1 Construction steps

Starting from the 2 unknown problems in our seed
dataset ALG514 and DRAW-1K, we use Zero-shot

prompting with GPT-4 (gpt-4-0613) to generate
an initial demonstration using the instruction in Ta-
ble 16, which is then manually refined. The LLM
then iteratively creates additional demonstrations
(approximately five) based on the problem, the sys-
tem of equations, and the existing demonstrations.
Combining this information, the LLM generates
a new problem with N+1 unknowns and its cor-
responding system of equations. Finally, we use
GPT-4 to solve these newly generated problems,
discarding low-quality ones (where GPT-4 provides
incorrect answers) for the next round.

C.2 Quality validation
We recruit 12 raters to validate whether the gener-
ated problems are reasonable and whether they are
consistent with the generated system of equations.
We show the ratio of problems that are marked as
“unreasonable” by raters in Table 12. To understand
why LLMs struggle with our instruction, we an-
alyzed unreasonable problems in Table 20. Our

16833

Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
Method CoT PS CoT PoT† EoT† DR† AG CoT Ours†

MultiArith 94.3% 95.3% 98.7% 98.2% 50.2% 90.5% 73.8% 95.7% 97.7%
GSM8K 77.9% 75.1% 79.5% 75.7% 28.2% 59.4% 52.9% 77.7% 71.4%
AddSub 91.9% 89.9% 94.9% 92.4% 55.4% 89.6% 64.8% 94.9% 91.5%
SingleEq 95.7% 97.0% 98.4% 97.6% 53.0% 92.3% 67.5% 97.6% 96.3%
SVAMP 82.7% 82.1% 80.8% 84.8% 44.9% 76.9% 59.5% 82.1% 81.6%
Average 88.5% 87.6% 90.5% 89.7% 46.3% 81.7% 63.7% 89.6% 87.7%

Table 9: We compare the results across various arithmetic problem datasets using GPT-3.5. † means the method
uses external tools.

Model name Dataset Tool-Integrated MU_1 MU_2 BeyondX_3 BeyondX_4 BeyondX_5
Mistral-7B (Base) - - 7.3% 5.5% 3.1% 1.3% 8.0%
Arithmo-Mistral-7B MetaMathQA &MathInstruct ✗ 43.5% 26.8% 12.9% 9.5% 8.9%
MetaMath-Mistral-7B MetaMathQA ✗ 46.7% 51.0% 15.5% 15.2% 16.1%
WizardMath-Mistral-7B Not released ✗ 65.2% 58.7% 20.6% 13.3% 14.3%
MMIQC-Mistral-7B MMIQC ✗ 29.6% 12.4% 8.2% 7.0% 6.2%
MAmmoTH-Mistral-7B MathInstruct ✓ 46.8% 23.7% 4.6% 4.4% 4.5%
MAmmoTH2-Mistral-7B WebInstruct ✓ 69.0% 68.0% 25.8% 16.5% 9.8%
OpenMath-Mistral-7B OpenMathInstruct-1 ✓ 12.1% 5.3% 5.7% 1.9% 0.9%

Table 10: Experiment results of open-source math models that are fine-tune on Mistral-7B base model across various
algebra problem datasets under Zero-shot-CoT setting.

K-Shot 3-shot 5-shot 8-shot
Single

ALG514 92.3% 92.3% 95.6%
DRAW-1K 82.6% 85.2% 90.7%
AsDiv 79.7% 81.7% 85.5%
HMWP 34.5% 37.7% 38.0%
Average 72.3% 74.2% 77.5%

Double
ALG514 96.0% 96.5% 97.1%
DRAW-1K 84.9% 85.6% 85.6%
AsDiv 82.7% 80.7% 81.7%
HMWP 57.9% 58.5% 60.9%
Average 80.4% 80.3% 81.3%

Table 11: Performance comparison of our method across
different shots using GPT-3.5.

Source Dataset Avg #unknowns Size Avg #words Unreasonable Problem Rate
ALG514 3 97 68.8 25.4% (33/130)

4 78 96.6 20.4% (20/98)
5 55 128.4 11.3% (7/62)

DRAW-1K 3 97 61.5 30.2% (42/139)
4 80 92.4 25.2% (27/107)
5 57 109.2 14.9% (10/67)

Table 12: Statistics of Proposed dataset. Unreasonable
Problem Rate means #Unreasonable Problem/ #Total
Human Seen Problem

findings reveal several limitations. First, LLMs
cannot directly derive complex constant meanings
requiring decomposition (Case 1). Second, unclear
instructions lead to repetitive equations (Case 2).
Third, introducing new variables might not be effec-
tive for all problems (e.g., river rate and distance,
Case 3). Finally, LLMs may generate inconsistent
numerical values within problems (Case 4).

C.3 Full examples

In Figure 6, we show the full examples of our pro-
posed generation method under each unknown.

D Detail Studies of Automatic Solver of
Algebra Problems

D.1 Model hyperparameters

The hyperparameters for the experiments for study-
ing Formulate-and-Solve and other prompting
methods are set to their default values to ensure
consistency in our experiment. Table 13 details
the specific generation parameters for the various
LLMs we evaluate.

D.2 Overall pipeline

We describe the overall pipeline of Formulate-and-
Solve in Algorithm 1.

D.3 Qualitative analysis of error cases

We show every type of error case that GPT-3.5
cannot answer correctly in Table 21. From E1, the
system of equations is missing an equation about
the relation "Total number of cars: 20". From
E2, the first equation is wrong since the relation is
"Total sum of the average miles per gallon obtained
by the three cars is 75", which means "a + b +
c = 75". From E3, since the response format is
different from the demonstration, we cannot extract
the system of equations from the response.

16834

Model Version Generation Setup
Close-source

GPT-3.5 gpt-3.5-turbo-1106 temperature = 0, max tokens = 2048
GPT-4 gpt-4-1106-preview temperature = 0, max tokens = 2048
Gemini-Pro gemini-1.0-pro temperature = 0, max tokens = 2048

Open-source
Mistral-7B mistralai/Mistral-7B-v0.1 do_sample=True, temperature=0.001, max tokens = 2048
Arithmo-Mistral-7B akjindal53244/Arithmo-Mistral-7B do_sample=True, temperature=0.001, max tokens = 2048
MetaMath-Mistral-7B meta-math/MetaMath-Mistral-7B do_sample=True, temperature=0.001, max tokens = 2048
WizardMath-Mistral-7B WizardLM/WizardMath-7B-V1.1 do_sample=True, temperature=0.001, max tokens = 2048
MMIQC-Mistral-7B Vivacem/Mistral-7B-MMIQC do_sample=True, temperature=0.001, max tokens = 2048
MAmmoTH-Mistral-7B TIGER-Lab/MAmmoTH-7B-Mistral do_sample=True, temperature=0.001, max tokens = 2048
MAmmoTH2-Mistral-7B TIGER-Lab/MAmmoTH2-7B do_sample=True, temperature=0.001, max tokens = 2048
OpenMath-Mistral-7B nvidia/OpenMath-Mistral-7B-v0.1-hf do_sample=True, temperature=0.001, max tokens = 2048

Table 13: Model names, versions, and generating setups for various LLMs.

Model Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
CoT PS CoT PoT† EoT† DR† AG AZ Ours†

Gemini

MU_1 51.0% 52.4% 67.9% 77.2% 46.9% 82.8% 62.1% 84.8% 86.2%
MU_2 67.1% 69.6% 51.3% 46.6% 36.6% 92.3% 32.5% 83.5% 93.1%
BeyondX_3 23.7% 23.7% 19.1% 18.6% 0.5% 86.1% 14.9% 13.4% 95.9%
BeyondX_4 12.0% 12.0% 10.1% 18.4% 0.0% 80.4% 12.7% 8.2% 87.3%
BeyondX_5 9.8% 12.5% 12.5% 10.7% 0.0% 65.2% 8.9% 11.6% 75.0%
Average 32.7% 34.1% 32.2% 34.3% 16.8% 81.3% 26.2% 40.3% 87.5%

GPT-4

MU_1 88.3% 87.6% 86.2% 86.9% 36.9% 84.8% 87.6% 89.0% 95.2%
MU_2 92.3% 92.4% 86.3% 87.2% 32.3% 83.1% 76.3% 92.3% 96.3%
BeyondX_3 76.3% 72.7% 67.5% 73.7% 2.6% 90.7% 13.9% 86.1% 97.4%
BeyondX_4 29.7% 32.3% 31.0% 50.0% 0.6% 83.5% 1.9% 41.8% 90.5%
BeyondX_5 21.4% 19.6% 17.0% 43.8% 1.8% 60.7% 0.9% 28.6% 81.3%
Average 61.6% 60.9% 57.6% 68.3% 14.8% 80.6% 36.1% 67.5% 92.1%

Table 14: Experiment results across various unknowns using Gemini-Pro and GPT-4. † means whether the method
uses external tools.

D.4 Full examples
In Table 22 and Table 23, we show the input
and output examples for each unknown using
Formulate-and-Solve in GPT-3.5.

16835

Model Setting Zero-shot Few-shot (Manual) Few-shot (Automatic)
CoT PS CoT PoT† EoT† DR† AG AZ Ours†

Single

Gemini

ALG514 55.0% 55.0% 82.4% 89.0% 52.8% 86.8% 70.3% 89.0% 94.5%
DRAW-1K 44.4% 48.2% 43.3% 57.4% 37.0% 75.9% 48.2% 77.8% 72.2%
AsDiv 47.9% 49.3% 57.8% 75.0% 60.6% 74.7% 49.3% 74.7% 77.5%
HMWP 18.6% 17.0% 22.3% 15.1% 23.6% 23.1% 26.0% 30.8% 46.6%
Average 41.5% 42.3% 51.4% 59.1% 43.5% 65.1% 48.4% 68.1% 72.7%

GPT-4

ALG514 92.3% 93.4% 92.3% 90.1% 39.9% 86.8% 93.4% 93.4% 98.9%
DRAW-1K 81.5% 77.8% 75.9% 81.5% 31.9% 81.5% 77.8% 81.5% 88.9%
AsDiv 88.9% 88.9% 88.9% 62.5% 11.3% 81.7% 84.1% 83.1% 90.1%
HMWP 54.9% 52.8% 53.1% 22.0% 0.3% 31.3% 32.6% 55.4% 54.9%
Average 79.4% 78.2% 77.5% 64.0% 20.8% 70.3% 72.0% 78.4% 83.2%

Double

Gemini

ALG514 69.3% 69.3% 53.9% 47.8% 39.7% 94.8% 33.3% 86.8% 95.3%
DRAW-1K 61.0% 70.6% 43.8% 43.2% 27.4% 84.9% 30.1% 74.0% 87.0%
AsDiv 77.1% 74.7% 63.9% 7.5% 7.2% 85.5% 49.4% 74.7% 84.3%
HMWP 25.2% 32.2% 32.8% 26.9% 2.9% 56.7% 25.7% 43.9% 61.7%
Average 58.1% 61.7% 48.6% 31.3% 19.3% 80.5% 34.7% 69.8% 82.1%

GPT-4

ALG514 97.2% 96.9% 91.5% 89.8% 32.4% 84.4% 80.1% 94.3% 98.8%
DRAW-1K 78.1% 79.5% 71.2% 79.5% 32.1% 79.5% 65.1% 86.3% 89.0%
AsDiv 86.8% 85.7% 83.5% 11.6% 2.4% 79.5% 39.6% 91.6% 90.4%
HMWP 64.3% 64.9% 57.3% 56.3% 1.2% 57.9% 38.6% 71.4% 75.4%
Average 81.6% 81.8% 75.9% 59.3% 17.0% 75.3% 55.8% 85.9% 88.4%

Table 15: Experiment results across various algebra problem datasets which include single and double unknown
using Gemini-Pro and GPT-4. † means whether the method uses external tools.

Instruction for Automatic Generation of Multiple Unknown Algebra Problems
1. Write down each variable meaning in a system of equations by understanding the relation between a system of equations
and a math word problem.
2. Introduce a new variable based on the existing variable meaning. Then, assign a value to the new variable based on the
solution of the existing system of equations.
3. Add new terms and new equations to the existing system of equations to generate a solvable three-unknown system of
equations.
4. Introduce new statements that are related to the existing math word problem or modify the existing statement to rewrite the
problem into a three-unknown math word problem based on the new system of equations and the same original scenario.
5. Formulate and rephrase the statements and scenario into a coherent and reasonable math word problem.

Table 16: Actual instruction of algebra problem generation.

Instruction for Automatic Solver of Algebra Problems
1. Determine what the question is asking.
2. Write down the relevant information in simple statements.
3. Assign symbols (must be an alphabetic character e.g., x, y, z etc.) to unknown values that must be found.
4. Determine how the statements relate to each other mathematically.
5. Give the equations only here, with each equation on a new line.

Table 17: Actual instruction of algebra problem solver.

16836

(a) Two-unknown (source problem) (b) Three-unknown

(c) Four-unknown (d) Five-unknown

Figure 6: Example problems with different numbers of unknown generated from the same source problem.

16837

Prompt:
Generate a three-unknown math word problem and its corresponding system of equations.
Example 1:
Word Problem:
Three friends, Alice, Bob, and Carol, decide to pool their money to buy a gift for a friend. Alice contributes twice as much
as Bob, while Carol contributes $10 more than Bob. The total amount they collect is $110. How much did each person
contribute?

System of Equations:
Let A represent the amount Alice contributes,B represent the amount Bob contributes, and C represent the amount Carol
contributes. Based on the information given:
1. A = 2B (Alice contributes twice as much as Bob)
2. C = B + 10 (Carol contributes $10 more than Bob)
3. A + B + C = 110 (The total amount collected is $110)
Example 2:
Word Problem:
During a school fundraiser, three students, Emily, Daniel, and Fiona, sold raffle tickets. Emily sold 5 more tickets than Daniel.
Fiona sold twice as many tickets as Emily. Together, they sold a total of 155 tickets. How many tickets did each student sell?

System of Equations:
Let E represent the number of tickets Emily sold, D represent the number of tickets Daniel sold, and F represent the number
of tickets Fiona sold. Based on the information given:
1. E = D + 5 (Emily sold 5 more tickets than Daniel)
2. F = 2E (Fiona sold twice as many tickets as Emily)
3. E + D + F = 155 (Together, they sold a total of 155 tickets)
Example 3:
Word Problem:
In a small bakery, three types of pastries are made daily: croissants, muffins, and scones. The number of croissants made is
twice the number of muffins. The bakery made 30 more scones than muffins. At the end of the day, they counted a total of
210 pastries. How many of each type of pastry were made?

System of Equations:
Let C represent the number of croissants, M represent the number of muffins, and S represent the number of scones. Based
on the information given:
1. C = 2M (The number of croissants is twice the number of muffins)
2. S = M + 30 (There are 30 more scones than muffins)
3. C + M + S = 210 (The total number of pastries is 210)

Table 18: Examples of multiple unknown algebra problem and corresponding system of equations using simple
prompt on GPT-4.

16838

Prompt 1:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
0.01 * 35.0 * x + 0.01 * 15.0 * y = 0.01 * 27.0 * (200.0)
y = (200.0 - x)
Response 1:
Expanded System of Equations:
0.01 * 35.0 * x + 0.01 * 15.0 * y + 0.01 * 25.0 * z = 0.01 * 27.0 * 200.0
y + z = 200.0 - x
x - y = z - 50.0
Math Word Problem:
A company is investing in three different projects. The first project is expected to yield a 35% return, the second a 15% return,
and the third a 25% return. The total investment is $200 and the total expected return is 27% of the total investment. If the
company invests $50 more in the first project than in the third, and the total investment in the second and third projects equals
the remaining amount after investing in the first project, how much is invested in each project?
Source Problem:
An alloy containing 15 % brass is to be combined with an alloy containing 35 % brass to form an alloy containing 27 % brass.
How much of each alloy should be combined to make 200 pounds of the 27 % brass alloy?
Prompt 2:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
6.0 * 0.01 * x + 9.0 * 0.01 * y = 684.0
x + y = 10000.0
Response 2:
Expanded System of Equations:
6.0 * 0.01 * x + 9.0 * 0.01 * y + 5.0 * 0.01 * z = 684.0
x + y + z = 10000.0
x - y = 2000.0
Math Word Problem:
A company is investing in three different projects. The first project is expected to yield a 6% return, the second a 9% return,
and the third a 5% return. The total investment is $10,000 and the total expected return is $684. If the company invests $2000
more in the first project than in the second, how much is invested in each project?
Source Problem:
Suppose you invested 10,000 dollars, part at 6 % annual interest and the rest at 9 % annual interest. If you received 684
dollars in interest after one year, how much did you invest at 6 % annual interest and at 9 % annual interest?
Prompt 3:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
7.0 * x + 5.0 * y = 146.0
x + y = 24.0
Response 3:
Expanded System of Equations:
7.0 * x + 5.0 * y + 3.0 * z = 146.0
x + y + z = 24.0
x - y = 2.0
Math Word Problem:
A store sells three types of fruits: apples, bananas, and cherries. Apples cost $7 per pound, bananas cost $5 per pound, and
cherries cost $3 per pound. The store sold a total of 24 pounds of these fruits and made $146. If the store sold 2 more pounds
of apples than bananas, how many pounds of each type of fruit were sold?
Source Problem:
Samuel has found that his new car gets 7 miles per gallon on the highway and 5 miles per gallon in the city. He recently drove
146 miles on 24 gallons of gasoline. How many miles did he drive on the highway? How many miles did he drive in the city?
Prompt 4:
Let’s generate a three-unknown math word problem and its according system of equations. First, expand the two-unknown
system of equations to three-unknown. Then, transfer the system of equations into according math word problem.
System of Equations:
5.0 + y = x
4.0 * x + 3.0 * y = 97.0
Response 4:
Expanded System of Equations:
5.0 + y + z = x
4.0 * x + 3.0 * y - z = 97.0
x - y = z + 2.0
Math Word Problem:
Three friends, Alice, Bob, and Charlie, are playing a game. The score of Alice is 5 more than Bob’s score. When Alice’s
score is multiplied by 4 and added to 3 times Bob’s score, it equals 97 minus Charlie’s score. If Alice’s score minus Bob’s
score equals Charlie’s score plus 2, what are the individual scores of Alice, Bob, and Charlie?
Source Problem:
One number is 5 more than another number. Four times the larger number plus 3 times the smaller is 97. Find the numbers.

Table 19: Examples of multiple unknown algebra problem generation, corresponding system of equations and
source problem using equation-aware prompt on GPT-4.

16839

Case 1: How much 1 % boric acid solution, 5 % boric acid solution, and 2% boric acid solution are needed to make 40 mL of
a solution that is 1.1% boric acid? The sum of the amounts of the 5% solution and the 2% solution equals the difference
between 40 mL and the amount of the 1% solution. Also, the sum of the amounts of the 1% solution and the 5% solution
equals twice the amount of the 2% solution plus 10 mL.
System of Equations:
(0.01 * 1.0) * x + (0.01 * 5.0) * y + (0.01 * 2.0) * z = 1.10 (40 * 0.0275)
y + z = 40.0 - x
x + y = 2.0 * z + 10.0
Correct Question: How much 1 % boric acid solution, 5 % boric acid solution, and 2% boric acid solution are needed to
make 40 mL of a solution that is 2.75% boric acid? The sum of the amounts of the 5% solution and the 2% solution equals
the difference between 40 mL and the amount of the 1% solution. Also, the sum of the amounts of the 1% solution and the
5% solution equals twice the amount of the 2% solution plus 10 mL.
Case 2: If the price of copper is 65 cents per pound, the price of zinc is 30 cents per pound, and the price of nickel is 50 cents
per pound, how many pounds of copper, zinc, and nickel should be mixed to make 80 pounds of an alloy selling for 45.625
cents per pound? The sum of the pounds of zinc and nickel equals 80 minus the pounds of copper.
System of Equations:
65.0 * x + 30.0 * y + 50.0 * z = 3650.0
y + z = 80.0 - x
x + y + z = 80.0
Correct Question: If the price of copper is 65 cents per pound, the price of zinc is 30 cents per pound, and the price of nickel
is 50 cents per pound, how many pounds of copper, zinc, and nickel should be mixed to make 80 pounds of an alloy selling
for 45.625 cents per pound? The sum of the pounds of zinc and nickel equals 7 times the pounds of copper. (create new
math relation)
Case 3: Three cars are travelling in opposite directions. After two hours, they are 372 km apart. The first car is the slowest,
the second car travels 6 kph faster than the first car, and the third car travels 4 kph slower than the first car. Find the average
speed of each car.
System of Equations:
2.0 * (x + y + z) = 372.0
y = x + 6.0
z = x - 81.0
Correct Question: Cannot Expand
Case 4: Sam, Masc, and Alex are friends. Masc is 7 years older than Sam and Alex is 5 years older than Masc. The sum of
their ages is 49. What are their ages?
System of Equations:
y + x + z = 37.0
y = x + 7.0
z = y - 7.0
Correct Question: Sam, Masc, and Alex are friends. Masc is 7 years older than Sam and Alex is 7 years younger than
Masc. The sum of their ages is 37. What are their ages?

Table 20: Error cases of multiple unknown algebra problem generation, corresponding system of equations, and
correct question.

16840

E1: Fewer or More Equation in the Set
Input:
{Instruction}
{Demos}
Question: The Rocket Coaster has expanded and now has 20 cars: some hold 4 people, some hold 6 people, and some hold 2
people. Altogether, there is room for 82 people. It is also known that the number of 4-passenger cars plus the number of
6-passenger cars equals three times the number of 2-passenger cars. How many of each type of car are there?
Output:
The system of equations for the given word problem is as follows:
1- The question is asking for the number of each type of car.
2- Relevant information:

- Total number of cars: 20
- Total capacity: 82 people
- Relationship between the number of cars: 4-passenger + 6-passenger = 3 * 2-passenger

3- Assign symbols:
Let a = number of 4-passenger cars
Let b = number of 6-passenger cars
Let c = number of 2-passenger cars

4- Mathematical relationships:
- 4a + 6b + 2c = 82 (total capacity)
- a + b = 3c (relationship between the number of cars)

5- System of equations:
4a + 6b + 2c = 82
a + b = 3c

E2: Wrong equation (meaning the coefficients or constant terms are wrong)
Input:
{Instruction}
{Demos}
Question: In a family, there are 3 cars. In a particular week, the sum of the average miles per gallon obtained by the three
cars is 75. The first car has consumed 40 gallons, the second car has consumed 20 gallons, and the third car has consumed
10 gallons. This resulted in a total of 1700 miles driven by the three cars combined. Additionally, the sum of the average
gas mileage of the first car and the third car is 15 more than twice the average gas mileage of the second car. What was the
average gas mileage obtained by each of the 3 cars that week?
Output:
1- The question is asking for the average gas mileage obtained by each of the 3 cars in a particular week.
2- Relevant information:

- Total sum of the average miles per gallon obtained by the three cars: 75
- Gallons consumed by the first car: 40
- Gallons consumed by the second car: 20
- Gallons consumed by the third car: 10
- Total miles driven by the three cars: 1700
- Relationship between the average gas mileage of the cars

3- Assign symbols:
Let a = average gas mileage of the first car
Let b = average gas mileage of the second car
Let c = average gas mileage of the third car

4- Mathematical relationships:
- (40/a) + (20/b) + (10/c) = 75
- 40a + 20b + 10c = 1700
- (a + c) = 15 + 2b

5- System of equations:
(40/a) + (20/b) + (10/c) = 75
40a + 20b + 10c = 1700
(a + c) = 15 + 2b

E3: Wrong Extraction Form of System of Equations
Input:
{Instruction}
{Demos}
Question: The Drama Club sold 1,700 tickets for the end-of-year-performance. Admission prices were 12 dollars for adults,
6 dollars for students, and 10 dollars for seniors. The total amount collected at the box office was 18,200 dollars. It is known
that twice the number of student tickets plus the number of adult tickets equals three times the number of senior tickets plus
1200. How many students, adults, and seniors attended the play?
Output:
The system of equations for the given word problem is as follows:
1. Let a be the number of adult tickets sold, s be the number of student tickets sold, and r be the number of senior tickets sold.
2. Mathematical relationship:

- a + s + r = 1700 (total tickets sold)
- 12a + 6s + 10r = 18200 (total revenue collected)
- 2s + a = 3r + 1200 (number of tickets relationship)

The system of equations is:
a + s + r = 1700
12a + 6s + 10r = 18200
2s + a = 3r + 1200

Table 21: Different type of error example of Formulate-and-Solve on GPT-3.5.

16841

Three-Unknown
Input:
{Instruction}
{Demos}
Question: A chemist has three solutions: one that is 18 % alcohol, one that is 50 % alcohol, and one that is 10 % alcohol. He
wants to make 100 liters of a solution that is 26 % alcohol. Also, the amount of the 18 % alcohol solution plus the amount
of the 50 % alcohol solution he uses equals four times the amount of the 10 % alcohol solution. How many liters of each
solution should he add?
Output:
The system of equations for the given word problem is as follows:
1- The question is asking for the number of liters of each solution the chemist should add.
2- Relevant information:

- Total liters of solution: 100
- Desired alcohol concentration: 26%
- Relationship between the amount of solutions: amount of 18% solution + amount of 50% solution = 4 * amount of 10%

solution
3- Assign symbols:

Let a = liters of 18% alcohol solution
Let b = liters of 50% alcohol solution
Let c = liters of 10% alcohol solution

4- Mathematical relationships:
- a + b + c = 100 (total liters of solution)
- 0.18a + 0.50b + 0.10c = 0.26 * 100 (desired alcohol concentration)
- a + b = 4c (relationship between the amount of solutions)

5- System of equations:
a + b + c = 100
0.18a + 0.50b + 0.10c = 26
a + b = 4c

Four-Unknown
Input:
{Instruction}
{Demos}
Question: In a laboratory, a chemist needs to prepare 300 milliliters of a 20 % HCl solution. She has available a 10 % HCl
solution, a 30 % HCl solution, a 20 % HCl solution, and a 40 % HCl solution. She knows that the volume of the 30 % HCl
solution plus twice the volume of the 10 % HCl solution equals five times the volume of the 20 % HCl solution plus 100
milliliters. The volume of the 30 % HCl solution plus the volume of the 10 % HCl solution plus the volume of the 20 % HCl
solution equals four times the volume of the 40 % HCl solution plus 50 milliliters. How many milliliters of each solution
should she use?
Output:
The system of equations for the given word problem is as follows:
1- The question is asking for the volume of each solution to be used.
2- Relevant information:

- Total volume needed: 300 milliliters
- Mathematical relationships between the volumes of the solutions

3- Assign symbols:
Let x be the volume of the 10% HCl solution.
Let y be the volume of the 30% HCl solution.
Let z be the volume of the 20% HCl solution.
Let w be the volume of the 40% HCl solution.

4- Mathematical relationships:
x + y + z + w = 300 (total volume needed)
0.1x + 0.3y + 0.2z + 0.4w = 0.2 * 300 (20% HCl solution)
y + 2x = 5z + 100 (relationship 1)
y + x + z = 4w + 50 (relationship 2)

5- System of equations:
x + y + z + w = 300
0.1x + 0.3y + 0.2z + 0.4w = 60
y + 2x - 5z = 100
y + x + z - 4w = 50

Table 22: Full output example of Formulate-and-Solve on GPT-3.5 from three and four-unknown problem.

16842

Five-Unknown
Input:
{Instruction}
{Demos}
Question: A chemist has five solutions: one that is 39 % alcohol, one that is 50 % alcohol, one that is 12 % alcohol, one that
is 5 % alcohol, and one that is 3 % alcohol. He wants to make 140 liters of a solution that is 27.5 % alcohol. Also, the amount
of the 39 % alcohol solution plus the amount of the 50 % alcohol solution he uses equals four times the amount of the 12 %
alcohol solution. The amount of the 39 % alcohol solution plus the amount of the 50 % alcohol solution plus the amount of
the 12 % alcohol solution equals five times the amount of the 5 % alcohol solution. The amount of the 39 % alcohol solution
plus the amount of the 50 % alcohol solution plus the amount of the 12 % alcohol solution plus the amount of the 5 % alcohol
solution equals six times the amount of the 3 % alcohol solution. How many liters of each solution should he add?
Output:
I can help you with that. Let’s start by writing down the relevant information in simple statements:
1- The question is asking for the amount of each solution the chemist should add to make 140 liters of a solution that is 27.5%
alcohol.
2- Relevant information:

- The chemist has five solutions: 39% alcohol, 50% alcohol, 12% alcohol, 5% alcohol, and 3% alcohol.
- He wants to make 140 liters of a solution that is 27.5% alcohol.
- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution he uses equals four times the

amount of the 12% alcohol solution.
- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution plus the amount of the 12% alcohol

solution equals five times the amount of the 5% alcohol solution.
- The amount of the 39% alcohol solution plus the amount of the 50% alcohol solution plus the amount of the 12% alcohol

solution plus the amount of the 5% alcohol solution equals six times the amount of the 3% alcohol solution.
3- Assign symbols:

Let a = amount of 39% alcohol solution
Let b = amount of 50% alcohol solution
Let c = amount of 12% alcohol solution
Let d = amount of 5% alcohol solution
Let e = amount of 3% alcohol solution

4- Mathematical relationships:
a + b + c + d + e = 140
0.39a + 0.50b + 0.12c + 0.05d + 0.03e = 0.275 * 140
a + b = 4c
a + b + c = 5d
a + b + c + d = 6e

5- System of equations:
a + b + c + d + e = 140
0.39a + 0.50b + 0.12c + 0.05d + 0.03e = 38.5
a + b - 4c = 0
a + b + c - 5d = 0
a + b + c + d - 6e = 0

Table 23: Full output example of Formulate-and-Solve on GPT-3.5 from five-unknown problem.

16843

