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Abstract

The identification of metaphor is a crucial pre-
requisite for many downstream language tasks,
such as sentiment analysis, opinion mining, and
textual entailment. State-of-the-art systems of
metaphor detection implement heuristic princi-
ples such as Metaphor Identification Procedure
(MIP) (Pragglejaz Group, 2007) and Selection
Preference Violation (SPV) (Wilks, 1975; Wil-
son, 2002). We propose an innovative approach
that leverages the cognitive information of em-
bodiment that can be derived from word embed-
dings, and explicitly models the process of sen-
sorimotor change that has been demonstrated
as essential for human metaphor processing.
We showed that this cognitively motivated mod-
ule is effective and can improve metaphor de-
tection, compared with the heuristic MIP that
has been applied previously.1

1 Introduction

Metaphor is a common type of figurative language
that allows communicators to express novel con-
strual (Shelley, 1890) and convey a myriad of im-
plicit meanings (Gibbs, 2023). Effective metaphor
processing is essential for natural language pro-
cessing tasks (Rai and Chakraverty, 2020), such as
sentiment analysis, machine translation, and textual
entailment. (Bahdanau et al., 2014; Wu et al., 2018;
Poria et al., 2016). As a result, NLP researchers
have focused on the computational modeling of
metaphor, which typically starts with the identifica-
tion of metaphors.

The state-of-the-art systems of metaphor identi-
fication typically rely on two heuristic principles:
the Metaphor Identification Procedure (MIP) (Prag-
glejaz Group, 2007), and Selection Preference Vi-
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olation (SPV) (Wilks, 1975; Wilson, 2002). MIP
identifies metaphors by recognizing that a word’s
metaphorical meaning differs from its basic, ‘more
concrete’, ‘related to bodily action’, and ‘histor-
ically older’ meaning (Pragglejaz Group, 2007).
SPV detects metaphors by identifying violations
of words’ semantic selection preferences in con-
text. The modeling of MIP usually begins with the
extraction of basic and contextual representations
of target words and then learns their general dif-
ferences (Li et al., 2023a; Choi et al., 2021), while
SPV focuses on the relation between target words
and their contexts (Song et al., 2021). Despite their
effectiveness, they neglect the cognitive character-
istics of metaphor.

Embodied cognition posits that all cognitive
acts, including language processing, are rooted
in perception and action (Meteyard et al., 2012).
Psycholinguistic evidence supports that metaphor
processing is also embodied (Gibbs et al., 2004;
Khatin-Zadeh, 2023), but the contribution of em-
bodiment is dynamic. Specifically, the embodi-
ment levels of a metaphorical word often changes
compared to the word’s literal meaning during the
online processing (Jamrozik et al., 2016). For ex-
ample, in the metaphorical use of the verb ‘drink’
in (a), the embodied features of the action ‘drink’,
such as ‘consumed by mouth’, and ‘the object must
be liquid’ are abstracted away, unlike in its literal
use in (b). This abstraction of sensorimotor infor-
mation is essential for humans to derive a metaphor-
ical sense of ‘drink’ (to consume a large amount
quickly), especially in the early stage of a metaphor
(Bowdle and Gentner, 2005)2.

• (a) The students drink the knowledge.

• (b) The horse drinks the water.

2See in Appendix for a more detailed explanation of em-
bodiment change by structural mapping theory and its relation
to conventionality of metaphor
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Figure 1: The architecture of EmbodiedBERT includes:
two PLM encoders which generates the hS (represen-
tation for [CLS]), hS,t (contextual representation of the
target word), ht (basic representation of the target word);
; a suite of sensorimotor regressors (n = 11) which gener-
ate SMS,t (sensorimotor representation of the contextual
target) and SMt (the sensorimotor representation of the
basic target); a final binary classification module

Therefore, we hypothesize that the explicit mod-
eling of embodiment change can enhance metaphor
detection. To test this, we developed Embodied-
BERT, a metaphor identification system that ex-
plicitly models the process of sensorimotor change.
Previous research has integrated sensorimotor in-
formation for metaphor identification, but most of
them merely use it as word-level feature enrichment
without considering its change in context (Bulat
et al., 2017; Wan et al., 2023). Compared to general
semantic change of word in context (MIP), sensori-
motor change offers a more cognitively motivated
and precise method for predicting metaphoricity.
We show by extensive experiments that our cogni-
tive module is indeed more effective for predicting
metaphoricity than MIP.

2 EmbodiedBERT

2.1 Model architecture

EmbodiedBERT has four main components: two
basic encoders for representing the target word’s
contextual and basic meaning; a suite of sensorimo-
tor regressors that maps distributional embeddings
onto sensorimotor-related dimensions; linear lay-
ers learning the function of MIP_SM (sensorimotor
change) and SPV, and a final metaphoricity classi-
fier.

Meaning Representation We use two
roberta-base models (Liu et al., 2019) from

Hugging Face 3 as the backbone encoder. Given
a sentence S = {w1, . . . ,wn}, the first encoder
outputs a set of contextualized embeddings
{hS,hS,1, . . . ,hS,t , . . . ,hS,n}, where hS stands for the
global meaning of S and hS,t stands for the target’s
contextual meaning. To extract the target’s basic
meaning, we input the target word with special
tokens into another encoder, resulting in the basic
meaning embedding ht .

The meaning representations are input into two
linear functions: SPV and MIP_SM. Firstly, SPV
aims to learn to contrast a word’s contextual mean-
ing with the meaning of its global context. It takes
the concatenation of hS and hS,t and learns their
difference through the linear function.

MIP_SM transforms the encoder outputs before
the concatenation operation to reflect the specific
change in embodiment-related dimensions. It takes
an additional step to map distributional word em-
beddings onto these embodiment-related dimen-
sions. Specifically, we perform such a mapping for
both ht and hS,t , to generate SMt (basic sensorimo-
tor embedding) and SMS,t (contextual sensorimo-
tor embedding). Next, we concatenate the derived
SMt with ht , and SMS,t with hS,t and input them
to another linear function MIP_SM. (See the next
section for further details).

Binary classification Finally, the output hidden
vectors from SPV and MIP_SM are concatenated
together and fed into a linear layer followed by
a sigmoid function to predict the likelihood of a
target being metaphorical (Eq.1). We minimize
the binary cross entropy (Eq.2) and update model
parameters via back propagation.

ŷ = σ
(

W T
(

hSPV
⊕

hMIPSM

)
+b

)
(1)

L =
N

∑
i=1

yilogŷi +(1− yi)log(1− ŷi) (2)

2.2 Sensorimotor regressors

We obtain embodiment-related information as in-
puts for MIP_SM by mapping distributional em-
beddings onto sensorimotor-related embeddings.
There are 11 sensorimotor dimensions related to hu-
mans’ embodied experience of the physical world,
including: Auditory, Gustatory, Olfactory, Visual,
Tactile, Interoceptive, Hand_Arm, Foot_Leg, Head,
Mouth, and Torso. A word is assigned a value for
each dimension which reflects how strongly the

3https://huggingface.co/FacebookAI/roberta-base
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lexicalized concept is experienced by the respec-
tive sensor or affector (Lynott et al., 2020). We
trained 11 mapping regressors that can automat-
ically deduct these values for each word from a
word’s BERT embedding layer (layer 0). Each of
the 11 regressors is a neural network mapping a
768-dimension embedding to a single dimension
value (two fully connected hidden layers of the
size of 384 and 192 respectively, both activated by
ReLU). The training and evaluation details are in
the Appendix.

3 Experiments

3.1 Dataset

We used the VUA-family datasets (VUA-18, VUA-
20) provided by Choi et al. (2021) for training and
testing. Moreover, to examine our model’s general-
izability to non-VUA datasets, we also tested our
model on MOH (Mohammad et al., 2016) and Trofi
(Birke and Sarkar, 2006) in a zero-shot transfer set-
ting 4. For all the datasets, we adopted the existing
split of train, dev, test.

3.2 Baseline models

For a thorough comparison, we selected six base-
line models:

MelBERT (Choi et al., 2021) incorporates SPV
and MIP for metaphoricity prediction. Embod-
iedBERT differs from it by substituting MIP with
MIP_SM.

SGNN (Wan et al., 2023) simply incorporates
sensorimotor information as word-level feature en-
richment. It concatenates words’ GloVe embed-
dings and sensorimotor values from Lancaster Sen-
sorimotor norm as input for a recurrent neural net-
work for metaphoricity prediction.

MrBERT (Song et al., 2021) explores the rela-
tions between metaphorical verbs and their various
contexts, and predicts whether the relations are
likely to be metaphorical.

MisNet (Zhang and Liu, 2022) implements MIP
and SPV with different encoding and feature con-
catenation strategies.

BasicBERT (Li et al., 2023b) also proposes a
new variant MIP, which can better model the mean-
ing discrepancy between target word in context and
its basic meaning. Compared with their model, Em-

4Both MOH and Trofi contain exclusively verb metaphors,
with the minor difference that the sentences in Trofi are gener-
ally longer than those in MOH.

Model Prec Rec F1

VUA-18

MrBERT 82.7 72.5 77.2
MelBERT 81.2 74.7 77.8
MisNet 80.4 78.4 79.4
FrameBERT 82.7 75.3 78.8
BasicBERT 79.5 78.5 79.0
SGNN 76.7 75.5 76.1
EmbodiedBERT 79.9±1.1 77.9±1.1 78.9∗±0.2

VUA-20

MrBERT - - -
MelBERT 72.9 69.5 71.0
MisNet - - -
FrameBERT 79.1 67.7 73.0
BasicBERT 73.3 73.2 73.3
SGNN - - -
EmbodiedBERT 73.6±1.9 72.1±1.7 72.8∗±0.2

Table 1: Evaluation of metaphor identification systems
on VUA datasets. Bold indicates the best, underline
indicates the second best. * denotes our model is signifi-
cantly better than MELBERT with p < 0.05 in two-tailed
t-test

bodiedBERT offers a cognitively motivated mea-
sure of contextual meaning change.

FrameBERT (Li et al., 2023a) also attempts
to leverage external knowledge base FrameNet.
It augments word embedding with self-trained
FrameNet embedding for modelling MIP and SPV.

For all the baseline models except MelBERT, we
directly obtain the performance of these baselines
from the previous publications. We used our re-
produced results of MelBERT, and ran two-tailed
t-tests to compare it with our model.

3.3 Implementation

We finetuned the hyperparameters with grid search.
We increased our learning rate from 0 to 4e-5 dur-
ing the first two epochs and gradually decreased it.
We used the dropout rate of 0.2. The final model
was trained with a batch size of 50 by three epochs,
using Adam optimizer. We adopted precision, re-
call and f1-score as matrix for automatic evaluation.
The final model’s performance was obtained by av-
eraging the results of five runs with random seeds.
The experiments have been run on two NVIDA
GeForce RTX 3090 GPUs, with a total of 48GB
memory.

3.4 Results and discussion

Table 1 shows the automatic evaluation of our
system compared with the baseline systems for
metaphor detection in terms of precision, recall
and f1 score.

VUA datasets For VUA-18, EmbodiedBERT
achieves the third best f1 score, outperforming
FrameBERT, MelBERT, MrBERT and SGNN. For
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VUA-20, our system still significantly outperforms
MelBERT, but lags behind FrameBERT and Ba-
sicBERT. The consistently significant improve-
ments over MelBERT in VUA datasets show that
modelling sensorimotor change (MIP_SM) is in-
deed effective for detecting metaphors, for the ma-
jor difference between EmbodiedBERT and Mel-
BERT is the substitution of MIP by MIP_SM (see
table 1). The results also validate our initial hypoth-
esis that sensorimotor change of a word in context
is closely associated with its metaphoricity. Given
this, it would be interesting to examine whether the
hypothesis holds across words of different part-of-
speeches (POS) and genres. Therefore, we then
break down the test results of VUA-18 by POS
and genre, using two strongest models on VUA18:
MisNet and MelBERT, for comparison.

Break-down analysis by POS When breaking
down the results by Part-of-speech (POS) (see table
3 in Appendix), we find that our system achieves
significant improvements over MelBERT in all
categories except adverb. In particular, we find
that EmbodiedBERT performs the best in verb
metaphors (f1 = 76.1, 1.3% gain over MelBERT),
though still lagging behind MisNet. Importantly,
our system achieves the best result (f1 = 68.7) in
one of the most challenging POS categories: adjec-
tive.

Break-down analysis by genre When dividing
the results by genre (see table 4 in Appendix), our
system outperforms all other systems in academic
writings (f1 = 84.3, 0.5% gain over MelBERT) and
achieves the second best in news (f1 = 78.9, 2.2%
gain over MelBERT). However, our system does
not beat MelBERT significantly in the genres of
conversation and fiction.

The break-down analyses show that the incorpo-
ration of sensorimotor change is particularly useful
for certain lexical categories and genres, which
makes our system even outperform the strongest
model on VUA-18 sometimes. The results thus
warrant a more in-depth investigation into the com-
plicated interactions between metaphoricity and
other linguistic variables in influencing embodi-
ment change in the future.

Transfer to non-VUA datasets We also tested
our system’s transferability to non-VUA datasets
(see table 5 in Appendix), like TroFi and MOH-X,
and the overall results are shown in the following
table. Our system outperforms MelBERT in both
datasets but not significantly. In general, the trans-
fer ability of our system is not particularly strong

5.
Case analysis Finally, we intend to qualitatively

reveal how the integration of sensorimotor change
can help the model reduce both false positives and
false negatives, so we compared our model’s pre-
dictions for VUA20-test with the predictions of
MelBERT (see more in table 6 in Appendix). For
the reduction of false positives, EmbodiedBERT
does not identify literal phrases with a minimal
sensorimotor change as metaphor. For example,
in the phrase ‘MODERN trams, as most continen-
tal Europeans know, neither shake nor rattle, nor
do they roll.’, ‘shake’ and ‘rattle’ are supposed
to be literal description of the tram’s movement,
but MelBERT predicts them to be metaphor. For
the reduction of false negatives, our system is more
skilled at identifying embodiment-based metaphors.
For example, it can successfully identify visual
metaphors like ‘hazy’ in ‘a poet’s sense of other
people’s very hazy’, which represents cognitive
incapacity by visual haziness. As ’hazy’ is used
metaphorically to denote cognitive property, the
perceptual strength on the visual dimension should
be particularly lower, along with the general shrink-
ing of sensorimotor strength, which is accurately
captured by the output from our regressors for this
example (as shown in the figures 2 and 3).

4 Conclusion

In this study, we contribute a cognitively moti-
vated system for metaphor detection Embodied-
BERT, which implements the idea that metaphor-
ical words tend to show unique patterns of senso-
rimotor change in context. We have demonstrated
quantitatively and qualitatively that incorporating
the cognitive module MIP_SM can lead to perfor-
mance improvements over systems simply using
MIP. Based on our results, we envision that the
incorporation of embodiment information cannot
only benefit metaphor detection, but also many
other language understanding tasks that require em-
bodied experience.

Limitations

There are some limitations to be addressed in the
future research. First, the modelling of sensorimo-
tor change highly depends on the representations
of basic meaning and contextual meaning of the

5As a reviewer points out, different annotation styles be-
tween VUA-family datasets and non-VUA datasets may be an
obstacle for performance transfer
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Figure 2: basic sensorimotor values
of ’hazy’

Figure 3: contextual sensorimotor
values of ’hazy’

target word. We currently used the output by feed-
ing single words into the encoder to represent their
basic meaning, but a more precise basic meaning
representation will be beneficial, which has been
investigated by some researchers (e.g. Li et al.
(2023a), Zhang and Liu (2022)).

Second, we currently used a relatively simple
method to derive contextual and basic sensorimo-
tor representation. We envision that a more so-
phisticated way of integrating sensorimotor change
will not only improve the performance on existing
datasets, but could also be beneficial for increas-
ing the system’s transfer ability to detect novel
metaphors in new datasets.

Third, factors like conventionality of a metaphor
(Bowdle and Gentner, 2005) and abstractness of its
original meaning are also likely to influence its sen-
sorimotor change in context. However, these anno-
tations are currently not available in the metaphor
datasets. We will focus on the annotation of exist-
ing datasets with more linguistic dimensions and
examine the performance variation accordingly.

Finally, compared with BERT, recent large lan-
guage models presumably contain more embodi-
ment knowledge due to more sufficient training and

more diverse inputs, which could be a more ideal
source for deriving embodiment representation in
the future.
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A Appendix

A.1 Structure Mapping Theory and Career of
Metaphor

Structure mapping theory (Gentner, 1983) aims to
offer a general way of accounting for conceptual
analogy, of which metaphor is a specific category.
It proposes that any kind of analogy involves two
processing stages: structural alignment and projec-
tion. To process analogies, human begin to take two
entities in an analogy into comparison and struc-
turally align their corresponding properties. The
alignment process observes three principles: one-
to-one mapping, parallel connectivity, and system-
aticity. Features of the source concept which fail to
connect to the aligned system due to the violation
of the principles will be shed away from source
representation, and thus cannot be projected to the
target representation. In the case of metaphor pro-
cessing, sensorimotor features that do not connect
to the aligned system will be inhibited, resulting in
an overall change of sensorimotor levels.
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Career of Metaphor framework (Bowdle and
Gentner, 2005) predicts that metaphor processing
mode will switch as a metaphor becomes conven-
tionalized. Namely, understanding a conventional-
ized metaphor does not require the structural align-
ment stage, which makes embodiment change hap-
pening in this stage less likely to occur.

A.2 Text representation
We use the byte-pair encoding (BPE) to tokenize
S. Following Choi et al. (2021), we use the posi-
tion embedding to distinguish target word and its
local context. Also, following Su et al. (2020), af-
ter adding special tokens [CLS] and [SEP] to the
beginning and the end of S, we utilize the part of
speech (POS) information of the target word by ap-
pending its POS after [SEP]. Finally, we feed the
element-wise addition of BPE token embedding,
position embedding and segment embedding of S
as input into the first encoder.

A.3 Training and evaluation of sensorimotor
regressors

To train the regressors, we used Lancaster Sensori-
motor Norm (Lynott et al., 2020), which contains
contains 11-dimension sensorimotor information
for 39,707 English words. We use word embedding
from BERT embedding layer as input (Devlin et al.,
2019). The size of overlapping vocabulary of Lan-
caster Sensorimotor Norm and BERT vocabulary
is 11,402, and we split it into training and testing
with the ratio of 8:2. We use mean squared error as
criterion for calculating loss and adopt Adam opti-
mizer for parameter updating. Our initial learning
rate is 0.001 and gradually decreased by the factor
of 0.1 with the patience of 10. We perform 5-fold
cross-validation and use early stopping to save the
best model based on the loss on validation set. For
evaluation, we use Pearson correlations of models’
predicted values with human rating. Overall, the
relatively high correlations suggest that our regres-
sors can reliably deduct sensorimotor information
from word embeddings (see table 2). However,
whether the regressors can predict sensorimotor
values for a word in context remains an issue to
be examined, though a similar approach by Turton
et al. (2021) have shown its potentials.

Dimension BERT

auditory 0.76
gustatory 0.78
haptic 0.79
interoceptive 0.81
olfactory 0.75
visual 0.72
foot_leg 0.74
hand_arm 0.73
head 0.61
mouth 0.73
torso 0.69
by-word 0.88

Table 2: Correlations of sensorimotor prediction with
human judgement

POS Model F1 Prec Rec

ADJ

MelBERT 65.6 71.5 60.6
MisNet 67.0 68.8 65.2
EB 68.7∗±1.0 70.0±2.3 67.6±2.4

ADV

MelBERT 72.6 79.1 67.0
MisNet 73.3 76.4 70.5
EB 72.7±2.0 77.2±2.4 68.7±1.5

NOUN

MelBERT 67.5 77.1 60.0
MisNet 70.6 74.4 67.2
EB 70.6∗±0.7 76.3±0.6 65.7±1.4

VERB

MelBERT 75.2 76.7 73.8
MisNet 77.6 77.5 77.6
EB 76.1∗±0.5 74.8±1.4 77.5±1.0

Table 3: POS-specific evaluation of VUA-18 testing
results. Bold indicates the best, underline indicates the
second best. EB refers to EmbodiedBERT. * denotes
our model is significantly better than MELBERT with p
< 0.05 in two-tailed t-test
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Genre Model F1 Prec Rec

Acad

MelBERT 83.5 87.5 9.8
MisNet 83.8 85.1 82.5
EB 84.3∗±0.3 85.8±0.1 82.9±0.9

Conv

MelBERT 69.6 70.5 8.7
MisNet 71.9 71.8 72.0
EB 70.0±0.5 69.7±1.1 70.4±1.3

Fict

MelBERT 74.5 74.4 74.7
MisNet 76.0 74.5 77.5
EB 75.2±0.8 73.0±2.0 77.7±1.0

News

MelBERT 77.1 83.6 71.5
MisNet 79.7 82.6 77.0
EB 78.9∗±0.7 82.6±1.0 75.6±1.7

Table 4: Genre-specific evaluation of VUA-18 testing
results. Acad: academic; Conv: conversation; Fict:
fiction. Bold indicates the best, underline indicates the
second best. EB refers to EmbodiedBERT. * denotes
our model is significantly better than MELBERT with p
< 0.05 in two-tailed t-test

Dataset Model F1 Prec Rec

TroFi

MelBERT 61.9 53.6 73.4
MrBERT 72.9 73.9 72.1
MisNet - - -
FrameBERT 74.2 70.7 78.2
EB 62.4±0.6 52.9±0.9 76.2±1.0

MOH-X

MelBERT 78.2 78.7 78.4
MrBERT 84.2 84.1 85.6
MisNet 83.4 84.2 84.0
FrameBERT 83.8 83.2 84.4
EB 78.6±1.2 75.6±2.5 82.4±2.0

Table 5: Zero-shot transfer to non-VUA datasets. Bold
indicates the best, underline indicates the second best.
EB refers to EmbodiedBERT

16875



Sentence True EB MB

This violent event, described at length in hysterically colourful terms, is the only
piece of history to be woven convincingly into the plot.

0 0 1

Hardly a page goes by without the hapless Francis noticing something which
reminds him, improbably, of something else.

0 0 1

There are strict time limits: generally, six years from when damage first occurred... 0 0 1
A solicitor fails to draw up a will within a reasonable time for a client who
subsequently dies.

0 0 1

Children still would not have full political status. 0 0 1
That, says Mr Tyson, has been their only blessing. 1 1 0
But ‘posturing and pretending’ went far beyond the unions. 1 1 0
But the chief result of all this farming was to produce huge food mountains which
we could then refuse to give to the Third World

1 1 0

Nowadays, we all swoon with pleasure at the sight of a cow. 1 1 0
Though individuals are nailed, the greatest villain of all is the system. 1 1 0
Berry’s songs are plausible emblems of rock’n’roll rebellion or, at any rate,
youthful hedonism.

1 1 0

Table 6: Case analysis based on VUA-20 testing: reduc-
tion of false positives and negatives by EmbodiedBERT
(EB) compared with MelBERT (MB). Bold indicates
the target word.
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