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Abstract

Most existing Visual Question Answering
(VQA) systems are constrained to support
domain-specific questions, i.e., to train differ-
ent models separately for different VQA tasks,
thus generalizing poorly to others. For exam-
ple, models trained on the reasoning-focused
dataset GQA struggle to effectively handle sam-
ples from the knowledge-emphasizing dataset
OKVQA. Meanwhile, in real-world scenarios,
it is user-unfriendly to restrict the domain of
questions. Therefore, this paper proposes a
necessary task: One-to-Many Visual Question
Answering, of which the ultimate goal is to en-
able a single model to answer as many different
domains of questions as possible by the effec-
tive integration of available VQA resources. To
this end, we first investigate into ten common
VQA datasets, and break the task of VQA down
into the integration of three key abilities. Then,
considering assorted questions rely on different
VQA abilities, this paper proposes a novel dy-
namic Mixture of LoRAs (MoL) strategy. MoL
mixes three individually trained LoRA adapters
(corresponding to each VQA ability) dynami-
cally for different samples demanding various
VQA abilities. The proposed MoL strategy is
verified to be highly effective by experiments,
establishing SOTAs on four datasets. In addi-
tion, MoL generalizes well to three extra zero-
shot datasets. Data and codes will be released.

1 Introduction

Visual question answering (VQA) is a deeply in-
terlaced task of CV and NLP which requires an-
swering a question given an image. Driven by its
wide range of application and thirst for exploring
the interaction between both modalities, VQA has
attracted a growing number of researches in re-
cent years. Such enthusiasm has thus fertilized
the growth in both the diversity and practicality
of the task setting. For example, GQA (Hudson
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and Manning, 2019) demand comprehension of the
scene and reasoning over objects, while OKVQA
(Marino et al., 2019) emphasizes the capability of
utilizing knowledge.

However, researches on these VQA tasks are
usually separate from each other. Intuitively, per-
forming well on a VQA dataset does not necessarily
guarantee acceptable results on others. As we can
expect all sorts of questions from users, a model
trained on a single specific domain may not be
competent for real-world application. Therefore, to
prompt exploration towards such direction, in this
paper, we propose the task of One-to-Many Visual
Question Answering, which mimics the authentic
situation in the real world and demands a single
model to answer questions requiring assorted skills.

To perform well on such a challenging stage,
an ideal model shall master various VQA abilities.
There are former works (Goyal et al., 2017; Hud-
son and Manning, 2019; Kafle and Kanan, 2017)
classifying the VQA questions into various classes.
However, their categorization mainly focus on the
forms or intention of questions within only a sin-
gle dataset like GQA (Hudson and Manning, 2019)
or TDIUC (Kafle and Kanan, 2017), which fails
to cover all VQA abilities. For example, TDIUC
(Kafle and Kanan, 2017) divides questions into
classes like Object Presence and Sport Recognition.
Their motivation and implementation do not fit in
our One-to-Many VQA here. Normally, the focus
of a VQA dataset is unique and confined to a single
VQA ability, like knowledge or reasoning. To the
best of our knowledge, no dataset available is able
to complete our proposed task on its own, which
means accommodating sufficient diverse VQA re-
sources is necessary.

In addition, to provide better generalization for
all sorts of VQA questions, we first break the task
of VQA down into the integration of basic VQA
abilities. Having taken both the commonality and
distinction into consideration, with thoughtful de-
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liberation, we come up with three basic VQA abil-
ities, i.e., Knowledge Capability (KC), Visual At-
tribute Recognition (VAR) and Scene Comprehen-
sion (SC). As their names suggest, KC encapsulates
the capability to store and apply knowledge, VAR
encompasses attribute recognition and basic forms
of reasoning, such as counting, and SC denotes
the proficiency to infer relationships across objects.
The relationship among these abilities is further
analyzed in our experiments. Then, ten common
VQA datasets are collected. Through analysis of
their motivation and styles, we categorize them ac-
cording to the focused abilities. Additionally, we
select three extra datasets as the Held-Out group,
which are not used in training but reserved for the
zero-shot testing. Ideally, a model having mas-
tered the three VQA abilities will generalize well
to them.

To integrate each ability while maintaining the
flexibility for dynamically adjusting the model to
focus on the required ability of each sample, we
propose a Mixture of LoRAs strategy (MoL). Ap-
plying trainable adapters to a frozen MLLM (multi-
modal large languange model) is an ideal solution
under the setting, as LoRA adapters are flexible to
merge and expand, while MLLMs already contain
basic multimodal skills, which aids to generaliza-
tion. Specifically, three LoRA adapters are individ-
ually trained for each ability and then weightedly
averaged during inference. The objective is to allow
for dynamic weighting and adjustment, tailoring
the emphasis to the core of each question, which is
captured by a trained smaller language model.

We present a comprehensive study under the
One-to-Many setting and verify the effectiveness
of the proposed method. Experiments shows that
specialist models which trained on single datasets
fail to generalize well to other datasets. Compared
to the advanced visual-language pretrained models
and multimodal LLMs, our method achieves the
best One-to-Many performance on most datasets,
as shown in Figure 1. Even in comparison with
previous specialist models, our method establishes
the new state-of-the-art accuracy on four datasets,
OKVQA, KRVQA, COCO-QA and DAQUAR. Be-
sides, our method brings significant improvement
on zero-shot performance for Held-Out datasets,
VQA abs, VizWiz and A-OKVQA. To summary,
our contributions are as follows:

• To the best of our knowledge, we are the first
to propose One-to-Many VQA, which is a
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Figure 1: Performance demonstration of our proposed
MoLLW applied on LLaVA-1.5-7b (Liu et al., 2023a)
against one-to-one specialist SOTAs and strong One-to-
Many baselines (one of the most advanced VLP models
OFA (Wang et al., 2022b), and MLLMs Qwen-VL and
LLaVA-1.5). Our method performs best among the
One-to-Many methods and demonstrates competitive
performance even compared with specialist models on
most datasets. Refer to Appendix C for our One-to-
Many baseline settings.

challenging task simulating real-life scenarios,
and conduct detailed analyses into the three
VQA abilities on the proposed benchmark.

• We propose a novel Mixture of LoRAs strat-
egy (MoL) to dynamically adjust the capa-
bility of the model for each sample demand-
ing various VQA abilities. In experiments,
MoL demonstrates promising flexibility and
embraces evident improvement under the One-
to-Many setting across two MLLMs.

• We establish new state-of-the-art performance
on four Held-In VQA datasets, OKVQA,
KRVQA, COCO-QA, DAQUAR and signif-
icantly improve zero-shot performance on
three Held-Out datasets, VQA abs, VizWiz
and A-OKVQA.

2 One-to-Many VQA

Assorted VQA datasets mainly differ in their scales
and required VQA abilities for solution. As shown
in Table 1, we investigate into ten common VQA
datasets. Taking into account the motivation behind
these datasets and the actual cognitive processes in-
volved when humans perform VQA, we categorize
them into three groups according to three proposed
VQA abilities, i.e., Knowledge Capability, Visual
Attributes and Scene Comprehension. Datasets
clustered under each of them tend to focus on and
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Figure 2: Examples of the ten VQA datasets. Different colors stand for different focus of VQA abilities. Blue for
Knowledge Capability, green for Visual Attribute Recognition, and yellow for Scene Comprehension. The styles of
these datasets and their motivation make it easy to cluster.

benefit from (but not solely relied on) the same cor-
responding VQA ability. Note that these abilities
are not completely independent from each other.
For example, to apply knowledge, basic recogni-
tion ability is indispensable.

Knowledge Capability Abbreviated as KC, the
ability of Knowledge Capability aims at storing and
utilizing knowledge. This group contains FVQA
(Wang et al., 2017), OKVQA (Marino et al., 2019),
KBVQA (Wang et al., 2015) and KRVQA (Cao
et al., 2021). FVQA and KBVQA both provide
extra knowledge for solution. The former provides
a sentence of fact for each sample, while the latter
utilizes DB-pedia (Auer et al., 2007) to consult for
knowledge. OKVQA comes from the most open
setting of VQA, that models are allowed to use
any form of external knowledge, from knowledge
bases to even the Internet or GPTs. KRVQA aims
to avoid the language-prior shortcut by erasing the
mentioned entity in a question and replacing it with
a knowledge-based description.

Visual Attribute Recognition Abbreviated as
VAR, the ability of visual attribute recognition aims
at recognizing attributes and simple reasoning like
counting. This group contains TDIUC (Kafle and
Kanan, 2017), COCO-QA (Ren et al., 2015), VQA
v2 (Goyal et al., 2017) and VG-QA (Krishna et al.,
2017). TDIUC generates questions using annota-
tion in MS-COCO images (Lin et al., 2014) and
collects filtered samples from VQA v1 (Antol et al.,

2015) as well as VG-QA, dividing them into 12
fine-grained tasks. COCO-QA provides a larger
and more diverse dataset than DAQUAR as an early
work. VQA v2 is proposed to reduce the bias in
VQA v1 by collecting complementary data towards
existing ones, and has been a widely used dataset
for testing on VQA. Visual Genome dataset (Kr-
ishna et al., 2017) provides detailed annotations
about the objects in images for future analysis. VG-
QA is a corresponding VQA dataset provided along
with it, which is relatively tough due to its assorted
styles of answers.

Scene Comprehension Abbreviated as SC, the
ability of Scene Comprehension aims at reasoning
over objects to catch relations. This group contains
GQA (Hudson and Manning, 2019) and DAQUAR
(Malinowski and Fritz, 2014). GQA leverages the
annotations of scene graphs to automatically con-
struct questions with a question engine. Questions
in GQA usually involve reasoning over objects.
Following previous works (Tan and Bansal, 2019;
Wang et al., 2022b), we combine the training and
validation sets of GQA balanced for training, and
use the testdev set for testing. DAQUAR is the
first VQA dataset available, focusing on in-door
scenarios. However, questions in DAQUAR also
require frequent reasoning.

Held-Out Datasets These datasets are selected
to evaluate the zero-shot performance and thus not
involved in training. This group contains VizWiz
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Usage Group Datasets # Images # Samples Avg. Len

Held-In

KC

FVQA 2,190 5,826 9.5
OKVQA 14,031 14,055 8.1
KBVQA 700 2,741 6.9
KRVQA 19,739 126,525 11.7

VAR

TDIUC 167,437 1,654,167 6.9
COCO-QA 69.172 117.684 8.7

VQA v2 204,721 658,111 6.2
VG-QA 108,077 1,445,316 5.7

GQA
GQA 82,772 1,087,640 8.8

DAQUAR 1,447 12,468 10.6

Held-Out Held-Out
VizWiz VQA 17,925 17,925 6.3
VQA abstract 30,000 90,000 6.2
A-OKVQA 17,652 18,201 8.8

Table 1: Datasets statistics. The name of each group
denotes the focused VQA ability in it. # Images and #
Samples stand for the numbers of questions and samples
in each dataset. The average length of questions is
denoted by Avg. Len.

VQA (Gurari et al., 2018), VQA v1 abstract (An-
tol et al., 2015) and A-OKVQA (Schwenk et al.,
2022). VizWiz VQA aims to help the blind by
answering their questions about what they are pho-
toing at, which is why it is poor in image quality
and questions are sometimes informal or even unan-
swerable. To use it as a zero-shot test set, we only
pick the answerable questions. VQA v1 abstract
comes from the abstract scenes in VQA v1. Its
cartoon-style images presents challenge but are not
too abstract like CLEVR. A-OKVQA is a newer
version of OKVQA, as introduced before. Though
similar in goals, A-OKVQA shares no overlap with
OKVQA, possessing no risk of information leak.
To be consistent with other datasets, we utilize the
open-ended answers from A-OKVQA.

Dataset Statistics Table 1 shows the statistics of
our collected datasets. As mentioned above, these
datasets share large differences against each other,
like the focused VQA abilities, sizes and the spar-
sity of answers. Such properties make it unrealistic
to analyze dataset by dataset. Not only will it cost
unnecessary effort, but also makes it hard to cap-
ture the commonality among them, which is why
we analyze by groups. 1

3 Method

Our method is proposed to address all three abilities
mentioned above and dynamically adjust to focus

1There were actually more datasets we considered, like
CLEVR (Johnson et al., 2017), KVQA (Shah et al., 2019) and
so on. But those datasets based on too abstract scenes like
CLEVR are not compatible with our tendency for the real-life
application. KVQA requires face recognition and is confined
to a limited scene, which is too specific. For reasons similar to
the above, we finally reduce them to a total number of thirteen
Held-In and Held-Out datasets while maintaining generality.

on the required core ability of each sample. This
section introduces our design.

3.1 Architecture

One-to-Many VQA requires a single model to be
capable of answering assorted questions, which
brings challenge towards the generalization and ca-
pacity to the model. This paper proposes to use
LoRA (Low-Rank Adaptation) adapters to train
MLLMs for each focused VQA ability and merge
the adapters as experts. Intuitively, MLLMs (Zhu
et al., 2023; Liu et al., 2023b; Peng et al., 2023;
Dai et al., 2023) generalize well to assorted in-
structions and contain rich multimodal knowledge,
which aligns well with the proposed One-to-Many
VQA task. Meanwhile, not only can LoRA save
training resources, but most importantly, it con-
tains the potential to be merged as different experts.
Rather than scaling up the parameters by routing
among FFNs or models, like the traditional mix-
ture of experts (MoE), we hope to explore using
each fine-tuned LoRA as an expert and combine
different experts with weighted averaging within a
single model. Further, this paper extends to a dy-
namical weighted averaging strategy that captures
the required abilities of each sample and adjusts
the focus of the model accordingly.

3.1.1 Overview

The proposed framework is shown in Figure 3.
QwenLM (Bai et al., 2023) is a decoder-only large
language model trained on 2.2T tokens, contain-
ing a vision transformer (ViT)(Dosovitskiy et al.,
2020), a VL adapter and a LLM. In addition, un-
der the same paradigm, this paper experiment with
LLaVA-1.5-7b (Liu et al., 2023a) as well and our
strategy generalizes well to it.

3.2 LoRA Expert Training

This paper trains three LoRAs adapters to learn the
focused VQA ability of each group respectively.
The model is optimized with cross entropy loss.
Assume a sample s, with an input question sq, an
image sv and an output sy containing |sy| tokens.
Original model parameter and LoRA parameter are
represented by θ0 and θlora, respectively, Taking
ym as the mth token and y<m as the tokens ahead
of ym, then the language modeling loss for the
sample s is computed as:

16934



··· ··· ···

ΔθKC ΔθVAR ΔθSC

� � �
Σ

LoRAKC LoRAVAR LoRASC

Roberta

Q: What is the animal?

Ⓧ Ⓧ Ⓧ

pretrained

dynamic 
assignment MoL

Qwen-VL

ViT

Learnable
Query

Embeddings

Vision 
Abstractor 

QwenLM

Q: What is
the animal?

❄️

❄️

 LoRASC

ViT

Qwen-VL

❄️

Learnable
Query

Embeddings

Vision 
Abstractor ❄️

QwenLM

Q: What is
the animal?

 LoRAVAR

Qwen-VL

ViT

Learnable
Query

Embeddings
VL Adapter 

QwenLM

Q: What is
the animal?

 LoRAKC

❄️

❄️

Qwen-VL

ViT

Learnable
Query

Embeddings
VL Adapter 

QwenLM

Q: What is
the animal?

MoL

(a) Training (b) MoL_lw (c) Inference

❄️

Figure 3: Overview of the proposed method. We experiment with Qwen-VL and LLaVA-1.5 as the backbone in turn,
and train a LoRA on each group to learn the corresponding VQA ability. Subsequently, the three individually trained
LoRA adapters are merged by weights for integration of VQA abilities. This paper proposes a dynamic weighting
method, MoLLW , that generates weights for each sample using a small language model, Roberta, to tailor the focus
on the specific ability required for each question. Finally, the merged LoRA is employed for inference.

Ls = −
|sy |∑

m=1

logPθ0+θlora(ym|y<m, sv, sq) (1)

We adopt the loss function above to train and
obtain three LoRA checkpoints, i.e., θKC =
{Bl

KC , A
l
KC}Ll=1, θSAR = {Bl

SAR, A
l
SAR}Ll=1

and θSC = {Bl
SC , A

l
SC}Ll=1, where L presents the

number of weight matrices of the LoRA we apply
to Qwen-VL and LLaVA-1.5.

3.3 Mixture of LoRAs
The three LoRAs BiAi individually trained above
can be assumed to have learned the corresponding
VQA ability, and in order to integrate their respec-
tive wisdom for inference, we mix them together
linearly by weights:

BMoL = αBKC + βBV AR + γBSC (2)

AMoL = αAKC + βAV AR + γASC (3)

θMoL = {BMoL, AMoL}Ll=1 (4)

where α, β, γ are the weights of adapters, and
θMoL is the parameter of the weightedly mixed
adapter.

After mixture, assuming θ = θ0 + θMoL, the
model fθ is evaluated by the average score Savg

calculated on all groups:

Savg =
3∑

k=1

1

|Gk|

|Gk|∑

j=1

1

|Gkj |

|Gkj
|∑

s=1

Score(s, fθ(s))

(5)

where |Gk| and |Gkj | are the number of datasets in
group Gk and number of samples in dataset Gkj .
The score Score(s, fθ) is computed by the eval-
uation metric (refer to Appendix D) on sample s.
This paper explores several methods for generating
weights to achieve best average performance on the
three groups with trained LoRAs, which is to find
a set of α, β, γ that:

α, β, γ = argmax
α,β,γ∈[0,1]

Savg (6)

s.t. α+ β + γ = 1

This paper explores three methods for mixture:
Simple Average, Empirical Weights and Learned
Weights.

Simple Average (MoLSA) MoLSA merges by
simply averaging all LoRA adapters, i.e., all
weights (α, β, γ in Equ. 6) are set to 1/3. MoLSA

treats all VQA abilities with a same weight, regard-
less of the sizes of the corresponding groups in
training and the overall priority of each ability.

Empirical Weights (MoLEW ) To catch an over-
all priority among the VQA abilities, MoLEW

merges by assigning a set of manually decided
weights empirically, i.e., conducting a grid search
on Equ. 6 for a best set of (α, β, γ).
MoLEW surpasses MoLSA in design by allow-

ing for tendency towards different VQA abilities.
However, it still ignores the fact that the multi-
farious questions coming from all datasets under
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our setting depend on varied VQA abilities. For
example, for a knowledge-focused question, ask-
ing about the function of a building in the image,
Scene Comprehension seems much less useful than
Knowledge Capability and Visual Attribute Recog-
nition.

Such feature inspires us to dynamically adjust
the weights α, β, γ of LoRA adapters to incline ac-
cording to the focused VQA ability of each sample.

Learned Weights (MoLLW ) In order to dynam-
ically identify and incline the model towards the
required abilities of each sample, MoLLW trains
a small language model, Roberta-large (Liu et al.,
2019), to generate a set of weights α, β, γ in Equ.
6. Assuming g for a Roberta model, the weights
are generated by: α, β, γ = g(s).

Take the group VAR, for example. Given sam-
ples sV AR from the group GV AR, to train a g to an-
alyze and allocate the weights according to sV AR,
we treat it as a three-label regression problem. The
target is a set of weights, e.g., (0.07, 0.82, 0.11) for
αV AR, βV AR, γV AR, which are grid-searched for
a best performance on VAR. Loss function is Mean
Squared Error (MSE):

Ls =
1

3
[(αV AR−α̂)2+(βV AR−β̂)2+(γV AR−γ̂)2]

(7)
where Ls is the loss of sample sV AR, and α̂, β̂, γ̂
are prediction results. The same applies for KC
and SC as well.

During the inference stage of MoLLW , since the
generated weights are continuous and different by
samples, the model needs re-initialization for each
sample to assign precise weights to merge adapters,
which is inefficient and unnecessary. Therefore, in
order to reduce the extra cost from initialization
and to initialize by batches instead of by samples,
we use k-means clustering to cluster samples with
similar weights together. The clustering centers are
then used as weights for merging the adapters. The
k is set to 20 with random initial centers.

4 Experiments and Analyses

This section presents the results from experiments
and corresponding analyses towards different com-
ponents in our method and the two MLLMs used as
backbones. Implementation details are introduced
in Appendix A.

4.1 Pilot Experiments

First of all, we wish to verify whether a single
dataset is capable of enabling a model to master
all VQA abilities (acquiring sound results on all
datasets). Unfortunately, but also expectedly, the
results are quite poor (refer to Appendix B for de-
tailed pilot experimental results). It is clear that
when trained on a single dataset, the model merely
acquires acceptable results on its own test set, and
its results on test sets from other datasets are gen-
erally quite poor. When trained on a mixture of
all data simultaneously, although the generaliza-
tion appears to be better, we still witness evident
performance degradation on each test set.

Therefore, as there appears to be an inevitable
trade-off between the generalization and specificity,
inspired by MoE (Mixture of Experts) (Jacobs et al.,
1991), our strategy is to ensure both of them simul-
taneously by the dynamic allocation and integra-
tion of LoRA adapters focusing on different VQA
abilities.

4.2 Comparison of LoRA Mixture Methods

In order to explore the performance of the proposed
methods in Section 3.3, we provide results in Table
2. According to the results, the proposed MoLLW

is the most effective mixing method across both
Qwen-VL and LLaVA-1.5, surpassing MoLEW

by a notable average margin of 5.0% and 5.7%
on Held-In, respectively. Compared with sim-
ply training on all data together (the first row),
MoLLW improves the Held-In results by 3.4% and
2.6%. Meanwhile, it is worthy to note that neither
MoLSA or MoLEW obtains comparable Held-In
results with simply training on all data together.
We believe simply training on all data enables an
automatic trade-off for required general VQA abil-
ities, and thus performs better than grid-searched
weights in MoLEW . Since MoLLW is capable of
dynamically accommodating to different demands
for VQA abilities, rather than fixing to a static allo-
cation of focused abilities, it is much more flexible
and versatile, achieving the best performance with
clear margin.

The columns of Held-Out provide average re-
sults on the Held-Out group. Although MoLLW

still performs the best, its results from Qwen-VL
and LLaVA are different in comparison to w/o MoL.
For Qwen-VL, a simple MoLSA is able to sur-
pass w/o MoL by 2.8% on the Held-Out group,
while neither MoLSA or MoLEW on LLaVA ob-
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Methods
Qwen-VL-Chat LLaVA-1.5-7b

KC VAR SC Held-In Held-Out KC VAR SC Held-In Held-Out
w/o MoL 43.1 72.0 46.9 54.0 53.4 45.1 68.4 46.0 53.2 53.5
MoLSA 39.5 66.6 41.2 49.1 56.2 27.7 54.8 40.3 40.9 40.6
MoLEW 41.6 71.3 44.1 52.4 56.8 45.3 64.5 40.7 50.1 52.9
MoLLW 48.4 72.6 51.1 57.4 57.8 48.8 67.9 50.8 55.8 56.0

Table 2: Experimental results from the three methods of mixture on two MLLMs. The tested MLLMs are Qwen-
VL-Chat (Bai et al., 2023) and LLaVA-1.5-7b (Liu et al., 2023a). MoLSA, MoLEW and MoLLW denote the three
merging methods, Simple Average, Empirical Weights and Learned Weights as introduced in Section 3.3. The row
of w/o MoL denotes the results from training a single LoRA adapter on the combination of all groups. KC, VAR,
SC, Held-Out represent the average scores of the datasets belong to each group. To avoid direct influence from
different numbers of datasets in each group, the column of Held-In is the macro average of scores in Held-In data,
which is the average score of KC, VAR and SC, instead of individual datasets. Held-Out is the average results on
the three Held-Out datasets.

tains better performance than w/o MoL. Also, there
is an evident gap between MoLSA and MoLEW

on both the Held-In and Held-Out LLaVA perfor-
mance. Such phenomenon, as we deduce, is caused
by the uneven amount of multimodal training data
from Qwen-VL and LLaVA-1.5. The former im-
ports about 1,450M samples for pre-training and
instruction-tuning, while that for the latter is merely
1.23M (Liu et al., 2023a). We believe the train-
ing on overwhelming amount of data from Qwen-
VL is not in vain and empowers Qwen-VL with
better generalization ability, which makes LoRA
adapters from Qwen-VL more stable and versatile
in weighted mixing.

4.3 Mutual Influence Among Abilities

To take a deeper look at the mutual influence of the
three VQA abilities, Table 3 provide clues. Results
from the first three rows confirm that training for a
single VQA ability is far from acquiring an accept-
able generalization performance on other groups,
which accords with results in pilot experiments that
the limited amount and diversity of data in a single
dataset or group is not competent for the One-to-
Many VQA task. Yet from another perspective, the
model trained on a different group is still able to
acquire limited scores on the current group, with
performance degradation. Thus it lies both com-
monality and distinction among the proposed three
VQA abilities. Further, the commonality among
groups may benefit the performance. Both the per-
formance of MoLLW from Qwen-VL and LLaVA-
1.5 on the group of KC surpass training on KC itself
(the first row) by 0.6% and 0.7% respectively.The
boost brought by other groups suggests that bi-
asing the model solely towards the required core
ability of each sample does not guarantee best per-

formance. On the contrary, the mixture of the VQA
abilities will be more effective in general. Such pat-
tern also applies for low-resourced datasets (like
the group of KC here), and importing experts with
different focus can be helpful.

4.4 Comparison with SOTAs

Table 4 provides comparison with previous special-
ist methods on OKVQA, KRVQA, COCO-QA and
DAQUAR. Even compared to the specialist models
designed for the corresponding dataset, our method
surpasses four of them2. Especially in OKVQA
and KRVQA, our method does not involve external
knowledge bases or querying GPT-3 for assistance,
which is one of the main sources of improvement
for previous methods.

Table 6 reports the comparison of One-to-Many
performance on ten Held-In datasets and three
Held-Out datasets. We believe that Qwen-VL and
LLaVA-1.5 are two of the most advanced multi-
modal language models with One-to-Many capa-
bility, which is why we select them as baselines
and use them as backbones. As shown in Table 6 ,
our method has the best performance on most Held-
In dataset with clear margins over OFA, Qwen-VL
and LLaVA-1.5 without MoL, bringing much better
general performance. As for the Held-Out datasets,
our method always performs best in the zero-shot
fashion, which verifies the generalization of our
One-to-Many models.

2The SOTAs of FVQA and KBVQA benefit from utilizing
the knowledge bases used to construct these datasets them-
selves.

16937



Methods
Qwen-VL-Chat LLaVA-1.5-7b

KC VAR SC Held-In Held-Out KC VAR SC Held-In Held-Out
Group KC 47.8 60.6 40.4 49.6 51.6 48.1 59.0 40.8 49.3 51.5
Group V AR 36.6 72.4 42.3 50.4 55.3 39.3 71.3 41.4 50.7 55.6
Group SC 34.0 59.4 52.1 48.5 50.2 36.4 61.0 51.6 49.7 51.6

MoLLW (ours) 48.4 72.6 51.1 57.4 57.8 48.8 67.9 50.8 55.8 56.0

Table 3: Mutual influence among the three VQA abilities. Group KC , Group V AR and Group SC denote results
from training a single LoRA expert on the corresponding group, without mixture of experts. MoLLW represents
the results from the proposed method MoLLW .

method OKVQA
LXMERT (Tan and Bansal, 2019) 37.4
methods with external knowledge base
TRiG (Gao et al., 2022) 49.4
TwO (Si et al., 2023) 56.7
methods with GPT-3 API
PICa (Yang et al., 2022) 48.0
Prophet (Shao et al., 2023) 61.1
Qwen-VL MoLLW (ours) 58.6
LLaVA-1.5 MoLLW (ours) 61.3

method KRVQA
Mucko (Yu et al., 2020) 24.0
KM-net (Cao et al., 2019) 25.2
DMMGR (2-steps) (Li and Moens, 2022) 31.8
Qwen-VL MoLLW (ours) 31.3
LLaVA-1.5 MoLLW (ours) 32.8

method COCO-QA
VSE FULL (Ren et al., 2015) 57.8
DPPnet (Noh et al., 2016) 61.2
A+C+Selected (Wu et al., 2017) 71.0
Qwen-VL MoLLW (ours) 80.4
LLaVA-1.5 MoLLW (ours) 72.9

method DAQUAR
DPPnet (Noh et al., 2016) 29.0
A+C+Selected (Wu et al., 2017) 29.2
SANs (Yang et al., 2016) 29.3
Qwen-VL MoLLW (ours) 38.1
LLaVA-1.5 MoLLW (ours) 37.7

Table 4: Comparison with previous specialist SOTAs.

5 Related Works

5.1 VQA Datasets

From the first general VQA dataset, DAQUAR
(Malinowski and Fritz, 2014), and the much larger
VQA v1 and v2, to assorted task-oriented datasets
like CLEVR (Johnson et al., 2017), GQA (Hudson
and Manning, 2019) and OKVQA (Marino et al.,
2019), VQA datasets are becoming larger and more
diverse in tasks, requiring various VQA abilities,
like knowledge and complicated reasoning. To the
best of our knowledge, there is no current VQA
dataset aiming for the proposed One-to-Many task.

5.2 VQA Models

Classic VQA models usually follow a two-stage
paradigm where image features are extracted by ob-
ject detection and then interacted with the text fea-
ture (Anderson et al., 2018; Tan and Bansal, 2019;
Li et al., 2019). During recent years, it is common

for to leverage pretrained models for a better per-
formance. Common VQA paradigms includes a
pretrained visual-language encoder model with a
classifier (Tan and Bansal, 2019; Li et al., 2019)
or a transformer-based encoder-decoder genera-
tive model (Wang et al., 2022b,a; Lu et al., 2022).
MLLMs are also available for VQA tasks (Alayrac
et al., 2022), Pali (Chen et al., 2022), as well as
the backbones in this paper, Qwen-VL (Bai et al.,
2023) and LLaVA-1.5 (Liu et al., 2023a).

5.3 Mixture of Experts

Mixture of Experts, MOE (Jacobs et al., 1991), as
a fusion method to integrate multiple FFNs or mod-
els, has boosted extensive researches (Zoph et al.,
2022; Komatsuzaki et al., 2022; Kudugunta et al.,
2021; Zadouri et al., 2023). MOE enables to signif-
icantly increase the model capacity as well as the
size of a model while causing limited augmentation
in inference consumption. Classic methods focus
on route enhancing (Zhou et al., 2022; Zuo et al.,
2021), of which the basic idea is to select a best ex-
pert for the current sample or token. The proposed
MoL in this paper differs from previous methods
significantly. The model for inference is a single
model initialized from the mixture of various LoRA
adapters, as opposed to multiple candidate experts,
thus maintaining the same amount of parameters
and computational cost. Meanwhile, MoL is easy
to expand. Given a LoRA adapter trained on an-
other VQA subtask, MoL treats it as an additional
adapter and merge it into the previous three.

6 Conclusion

This paper proposes the task of One-to-Many Vi-
sual Question Answering, aiming at answering all
sorts of common questions in the real world with a
single model. To analyze and address the task, we
break the task down into the integration of three
key VQA abilities and investigate into ten datasets
which are categorized into three groups accord-
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ing to their emphasized abilities. Then, a Mix-
ture of LoRAs (MoL) strategy is proposed with
the aim of dynamically adjusting the capability of
MLLMs (Qwen-VL and LLaVA-1.5) towards the
focused ability of each sample. Experiments have
verified the effectiveness of the proposed method,
which significantly improves the One-to-Many per-
formance and generalizes well to zero-shot test
datsets. In addition, our method establishes new
SOTA results on OKVQA, KRVQA, COCO-QA
and DAQUAR, and competitive zero-shot perfor-
mance on VQA abstract, VizWiz and A-OKVQA.

7 Limitations

Task Compatibility Although the proposed MoL
strategy has been verified to be highly effective
under the One-to-Many VQA task and has the po-
tential to expand to other VQA subtasks by inte-
grating more LoRA adapters, it is unclear how well
it deals with LoRA adapters from another task be-
yond VQA, e.g., image captioning. In addition, as
MoL does not introduce extra parameters or com-
putation, due to the limit of model size and model
capacity, merging too many LoRA adapters could
cause potential overall performance degradation.

Potential Risk of Hallucination Merging LoRA
adapters with weights may cause potential risk of
hallucination. As LoRA adapters are individually
trained to ensure convenient expansion in a plug-
and-use fashion, adapters may import untrue infor-
mation from other domains.

Limited Available Resources Due to the fact
that there are not sufficient accessible and suitable
general VQA datasets, results of zero-shot gener-
alization come from the three Held-Out datasets,
which might not be diverse enough to cover the
three VQA abilities evenly and fairly.
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A Implementation Details

This paper utilizes Qwen-VL-Chat (7B) (Bai et al.,
2023), LLaVA-1.5-7b (Liu et al., 2023a) and
Roberta-Large (Liu et al., 2019) from hugging-
face transformers (Wolf et al., 2020), LoRA (Hu
et al., 2021) from hugging-face PEFT(0.6.1) (Man-
grulkar et al., 2022), and the code is based on Py-
torch(2.1.1) and hugging-face Accelerate(0.24.0).
AdamW (Loshchilov and Hutter, 2017) optimizer is
used with a peak learning rate 1e-4 for experiments
whose training sizes are smaller than a hundred
thousand, otherwise 3e-5. The hyper-parameters
of AdamW, betas, eps and weight-decay are set to
(0.9, 0.95), 1e-8 and 0.1, with a batch size of 4.
LoRA rank is 64, with an alpha of 16 and a 0.05
dropout rate. Experiments are conducted on four
Tesla A100 gpus. The evaluation metric used in
this paper is VQA score (for samples with multiple
candidate answers) and Exact Match (for samples
with only one answer).

B Pilot Experimental Results

Table 5 provides results from our pilot experiments.
It is clear that training on a single dataset is com-
petent for the One-to-Many VQA task, as the per-
formance fails to generalize to other datasets, es-
pecially to datasets from another group. Such phe-
nomenon is expected, as different VQA questions
share different focus and required abilities, like rea-
soning or knowledge capability, a single model is
incapable of handling every ability simultaneously
without significant drop in performance.

C Overall Performance Comparison

Table 6 provides comparison of our methods with
previous specialist models and one-to-many base-
lines. For comparison, we train OFA-large, Qwen-
VL-Chat and LLaVA-1.5-7b on all Held-In data
together, training to empower them with the capa-
bility to handle questions demanding various skills.
Yet as shown in the table, there are notable margins
on most datasets.

D VQA Evaluation Metrics

VQA evaluation metrics contain Exact Match (Ma-
linowski and Fritz, 2014) and VQA Score (Antol
et al., 2015). They apply for different settings in
VQA datasets. When only a single correct answer
exists in each sample, like DAQUAR (Malinowski
and Fritz, 2014), TDIUC (Kafle and Kanan, 2017),

GQA (Hudson and Manning, 2019), the Exact
Match metric is used. When each sample contains
ten candidate answers, like VQA v2 (Goyal et al.,
2017), OKVQA (Marino et al., 2019), VizWiz (Gu-
rari et al., 2018), VQA Score is used.

Exact Match Exact Match calculates by judging
whether the answer is identical to the annotated
ground-truth answer, and if matches, the score will
be 1, otherwise 0.

VQA Score VQA Score evaluates how many
times the answer appear in the ten candidate an-
swers, and mark the score according to the overlap,
which is computed as follows:

accuracy = min(
# correct hits

3
, 1)

As there are ten candidate answers, # correct hits
represents numbers of matched answers. Therefore,
as long as there are three or more candidates are the
same with the predicted answer, the answer will be
considered fully correct, and gets a score of 1.

E Dataset Preprocessing

The preprocessing of datasets affects more under
the setting of One-to-Many VQA task than a single-
dataset case. The inconsistency among datasets
presents challenge to both the training and evalua-
tion by a universal model. For example, the num-
bers in OKVQA are alphabetic numbers, like 1, 2
and 3, while that in KRVQA are English numbers,
like one, two and three, and two-word answers in
DAQUAR are all concatenated by a - instead of a
space. Therefore, we need to align different for-
mats. In addition, any adjustment shall not make
it unfair for comparison with results from other
works. Specifically, we argue a fair processing
shall enable to restore each generated answer back
to its original form according merely to its own
training set.

First, we have verified that for numbers, almost
all dataset used in this paper are either fully in al-
phabetic form or English form. Although FVQA
has 5 samples of exception, 10 for VQA v1 ab-
stract, we consider them to be negligible compared
to the total amount of samples.3 However, sub-

3There are a few samples in VQA v2 and KRVQA that
contains answers of English number one or two. However, we
observe that the questions of these samples actually are not
about numbers. For example, a question asking What activity
is the man doing contains a candidate answer of One, which is
quite confusing but does not affect the fairness if we convert
it to alphabetic form, because the question does not lead to
counting.
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Training Set FVQA OKVQA KBVQA KRVQA TDIUC COCO-QA VQAv2 VG-QA GQA DAQUAR Avg.

FVQA 70.1 47.6 36.3 9.9 81.8 59.4 73.5 34.2 52.2 25.1 47.3
OKVQA 54.1 59.5 34.0 10.1 78.3 55.7 70.9 30.1 53.2 28.0 46.3
KBVQA 55.5. 49.0 43.4 6.5 82.9 54.0 74.4 33.0 52.5 27.9 46.6
KRVQA 54.2 49.3 28.7 31.8 80.3 54.0 72.4 28.0 52.7 26.9 46.5
TDIUC 55.0 43.5 43.1 7.4 92.7 62.5 74.4 36.0 51.7 25.1 47.4

COCO-QA 54.7 42.8 41.0 7.1 83.7 82.3 73.8 33.8 52.1 28.1 48.3
VQA v2 53.8 45.6 43.0 9.0 86.0 60.0 78.9 34.7 52.7 27.0 47.5
VG-QA 52.5 42.1 40.5 7.0 85.0 59.5 75.9 45.1 51.1 27.1 47.0

GQA 50.8 42.9 39.4 8.6 77.7 60.4 72.8 31.1 65.3 28.3 47.6
DAQUAR 54.1 46.5 39.0 8.0 77.4 55.5 75.8 32.5 54.8 39.9 48.2

ALL 63.0 45.7 36.7 26.8 90.5 77.6 76.9 43.0 60.6 33.1 54.0

Table 5: Pilot experiments with specialist models. A LoRA model based on Qwen-VL-Chat is trained on a single
dataset from the ordinate each time and tested on each dataset in the abscissa. Bold numbers indicate the best result
tested on each dataset, which in this case, are all on the main diagonal. The last row, All, is a generalist model that
trained with all datasets together.

Methods
KC VAR SC Held-Out

FVQA OKVQA KBVQA KRVQA TDIUC COCO-QA VQAv2 VG-QA GQA DAQUAR VQA abs VizWiz A-OKVQA
Specialist SOTAs 81.2 61.1 69.6 31.8 - 71.0 86.1 - 77.0 29.3 - - -

OFA-large† 54.5 42.1 36.7 29.2 91.9 74.6 76.4 42.2 61.0 32.2 63.7 25.9 49.4
Qwen-VL-Chat† 63.0 45.7 36.7 26.8 90.5 77.6 76.9 43.0 60.6 33.1 67.2 38.5 54.4
LLaVA-1.5-7b† 60.7 53.9 39.0 26.6 86.8 71.7 74.4 40.7 62.6 29.4 62.1 38.1 60.3

Qwen-VL MoLLW (ours) 64.0 58.6 39.6 31.3 86.2 80.4 79.0 45.0 64.1 38.1 70.1 44.6 58.6
LLaVA MoLLW (ours) 61.5 61.3 39.5 32.8 83.0 72.9 76.8 39.0 63.9 37.7 61.3 43.8 62.9

Table 6: Comparison on each dataset with baselines. † denotes results come from our implementation where models
are trained on all groups. Specialist SOTAs denotes the SOTAs on each dataset from one-to-one task-specific
models: FVQA (Li and Moens, 2022), OKVQA (Shao et al., 2023), KBVQA (Wang et al., 2015), KRVQA (Li and
Moens, 2022), COCO-QA (Wu et al., 2017), VQA v2 (Chen et al., 2022), GQA (Yao et al., 2022), DAQUAR (Yang
et al., 2016).As we have modified TDIUC and VG-QA to improve consistency (refer to Appendix E), no SOTA
results are available. Note that all results of each group on Held-Out datasets come from zero-shot testing.

stantial number answers in VG-QA are either in
alphabetic or English forms, which would be un-
fair to simply convert to a unified form. Due to
the metric of evaluating the correctness of answers,
answers with similar meaning but different types
against the ground truth (like 1 against One) are
treated as errors. Considering there are few work
about the accuracy of VG-QA recently (perhaps
due to the same reason), we do not compare its
result with former ones and provide results under
our setting as a benchmark, and suggest following
work to maintain such setting for rationality and
consistency. In addition, we find the first letter of
all answers are either all uppercased or not, so it is
fair to lower them.

In addition, for TDIUC, there are substantial
samples (about 22.35%) with answers of does-
notapply, which refer to questions that are unan-
swerable. No other training dataset or group con-
tains similar features. Consequently, when trained
on other datasets or groups that does not contain
TDIUC samples, the model is unable to predict
doesnotapply and thus the performance on TDIUC
drops significantly, causing interference for anal-

yses. Therefore, for consistency among datasets,
we remove the samples in TDIUC that are labeled
with doesnotapply.

Therefore, in this paper, our preprocessing can
be concluded as follows: 1) Mapping all numbers
into alphabetic numbers. 2) Replacing the short
dash - in DAQUAR answers with a space (two-
word answers with a comma in the middle are not
revised). 3) Removing the dot at the end of VG-
QA answers. 4) Lowering all texts. 5) Removing
samples with answers of doesnotapply in TDIUC.
6) Removing same samples that appear across any
validation set with training sets to avoid sample
leak.
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