
Findings of the Association for Computational Linguistics: EACL 2024, pages 16973–16983
November 12-16, 2024 ©2024 Association for Computational Linguistics

When Compression Meets Model Compression: Memory-Efficient Double
Compression for Large Language Models

Weilan Wang1 Yu Mao1 Dongdong Tang1

Hongchao Du1 Nan Guan1 Chun Jason Xue2

1City University Of Hong Kong, 2Mohamed bin Zayed University of Artificial Intelligence
Correspondence: yumao7-c@my.cityu.edu.hk dtang8-c@my.cityu.edu.hk

Abstract

Large language models (LLMs) exhibit excel-
lent performance in various tasks. However, the
memory requirements of LLMs present a great
challenge when deploying on memory-limited
devices, even for quantized LLMs. This paper
introduces a framework to compress LLM af-
ter quantization further, achieving about 2.2x
compression ratio. A compression-aware quan-
tization is first proposed to enhance model
weight compressibility by re-scaling the model
parameters before quantization, followed by
a pruning method to improve further. Upon
this, we notice that decompression can be a
bottleneck during practical scenarios. We then
give a detailed analysis of the trade-off between
memory usage and latency brought by the pro-
posed method. A speed-adaptive method is pro-
posed to overcome it. The experimental results
show inference with the compressed model can
achieve a 40% reduction in memory size with
negligible loss in accuracy and inference speed.

1 Introduction
Large language models (LLMs) exhibit excellent
performance in various natural language tasks
and have made significant advancements in recent
years(Zhang et al., 2022; Touvron et al., 2023; Ren
et al., 2021; Chowdhery et al., 2023). However,
LLMs with billion-scale parameters present a high
demand for memory(Yuan et al., 2024). Deploy-
ing these LLMs on memory-limited devices poses
a huge challenge due to their extensive memory
requirements. The model size of large language
models has been developing at a fast pace(Alizadeh
et al., 2023)(Sheng et al., 2023). The memory or
GPU memory is far from sufficient to run LLMs,
even for lightweight models.

Model compression is one promising approach
to address this challenge, referring to the meth-
ods that reduce model size(Zhu et al., 2023)(Wang
et al., 2024). Quantization is one of the model com-
pression techniques widely used for compressing

LLMs. It approximates the model’s weights with
shorter bits to reduce the model size. Nonethe-
less, the INT8 quantized 7B model (a relatively
small large-language model) still needs over 7GB
of memory. A substantial gap remains due to the
conflict between large model parameter sizes and
insufficient memory.

This paper aims to reduce the memory gap by
further compressing the quantized models. Recent
work demonstrates that there’s still compressibil-
ity in quantized LLM models(Mao et al., 2024).
Following this, we first employ a lossless com-
pression algorithm(Facebook) to explore the com-
pressibility of quantized model data. To investigate
and improve the compressibility, we analyze the
data distribution before and after quantization. The
quantized data with higher compressibility presents
two key observations that can be utilized for further
enhanced compressibility: 1) Data with uneven dis-
tribution exhibits higher compressibility; 2) The
quantized data have a higher proportion of near-
zero values.

These observations suggest that modifying the
data distribution can improve data compressibil-
ity. Simply applying a scaling technique to model
weights makes the quantized weight distribution
more uneven, which can improve compressibility
but reduce accuracy by approximately 60%. To ad-
dress this issue, we propose a compression-aware
quantization and pruning approach that expands
important values and reduces unimportant weight.

Although the compressed model significantly
reduces memory usage for LLMs, the frequent de-
compression operation may also introduce over-
head during the model inference process. To allevi-
ate this problem, we first implement a compressed
model inference framework and analyze overall
inference speed based on system memory architec-
ture. We then propose a speed-adaptive method
to address the bottleneck caused by decompres-
sion overhead. By partially compressing the model

16973

(a) Activation

(b) Weight

(c) Scaled-Weight

Figure 1: Activation, weight and scaled-weight data
distribution of OPT-1.3B Model. The left displays the
data distribution for every layer before quantization.
Points above the upper edge lines are outliers. The data
distribution after quantization is on the right.

data, we can improve the total decompress through-
put. Additionally, we provide strategies to balance
memory usage and inference speed.

The experimental results show a remarkable
Compression Ratio (CR), about 2.2, in quantized
model size. Importantly, this CR is achieved with
minimal compromise on model accuracy within a
1% drop. Inference with compressed LLM can re-
duce 40% memory size without affecting the speed.
Our approaches present a promising solution to the
memory challenges faced by LLMs, enabling their
deployment on memory-limited devices.

2 Explore the compressibility of LLMs

We first examine the compressibility characteris-
tics of model data, focusing on model weights and
activations. Our analysis reveals that temporary ac-
tivations achieve a high compression ratio, whereas
weights exhibit a low compression ratio. We then
explore enhancing weight compressibility through
scaling operations.
Compressibility of LLMs. INT8 quantized model

can be further compressed. To investigate this com-
pressibility, we employ a general compression algo-
rithm Zstd (Facebook) to compress the quantized
activations/weights data from three models of vary-
ing sizes. The compressibility is quantified using
the compression ratio (CR), calculated by dividing
the data size before compression by the size after
compression.

Compressing weights presents more challenges
than compressing activations. However, optimizing
weight compression is crucial for efficient mem-
ory use since it accounts for most of the memory
overhead. As shown in Table 1, both activation
and weight demonstrate compressibility after quan-
tization. The CR for activations is typically much
higher, often surpassing 4.0, whereas the CR for
weights remains lower. Among the three evaluated
models, the opt-1.3B model achieves the highest
CR at 1.54, leading to a 35% reduction in memory
usage.
Analysis for Data Distribution. There is a no-
table gap in CR between activations and weights.
To understand the reasons behind this gap, we an-
alyze the data distribution of one specific model
(OPT-1.3B). Figure 1 illustrates the data distribu-
tion for both the absolute values of FP16 data and
the corresponding INT8 values after quantization.

The FP16 activation and weight show different
data distributions. The activation data range is 40×
larger than the weight, and there are more outliers
in it. The distribution of the original FP16 activa-
tion data spans from 0 up to 40, with a significant
number of outliers present in the data, and the ma-
jority of values are concentrated in the range of 0
to 1. In contrast, the weights exhibit a different pat-
tern, with all values being smaller than 1 and most
outliers falling below 0.6. The distinct distributions
reveal the reason for different compressibility.

The connection between the data distribution
and compressibility of the quantized model can
be concluded as two key points: 1) The uneven
distribution of data before quantization leads to
higher compressibility. If the data distribution can
be converted to an uneven distribution by intro-
ducing more outliers, the compressibility may be
improved. 2) There are about 58% near-zero values
in the quantized activation, while the percentage
of weight is only 6%. Improving the zero numbers
of quantized data may improve the compressibility
further.

We first explored the possibility of improving
weight compressibility by transforming the weight

16974

Compression Ratio Accuracy
IINT8 Activation INT8 Weight Weight-scaled W8A8 W8A8-scaled

OPT-1.3B 4.30 1.54 2.46 0.57 0.32
OPT-2.7B 4.35 1.38 2.59 0.64 0.25
OPT-13B 4.98 1.34 2.30 0.65 0.23

Table 1: Model Compression Ration and Accuracy. The CR of activation is much higher than the CR of weight.
Scaling weight can improve the CR, but lead to a huge loss of accuracy for models.

distribution into an uneven distribution. It is
achieved by scaling the weight, thereby introduc-
ing more outliers in the weight distribution. By
scaling the weight distribution to mirror that of
the activations, as depicted in Figure 1(c), the data
range was expanded from 0 up to 70, resulting in
an increased number of outliers. Subsequent quan-
tization yielded a data distribution similar to that
of the activations, including 36% near-zero values,
resulting in a 72% improvement in compression ra-
tio. This improvement was observed across models
of different sizes.

Although scaling weights can effectively im-
prove weight compressibility, it significantly hurts
the model’s accuracy. We evaluated the accuracy
of the W8A8-scaled model and found a signifi-
cant drop by 57%. These findings highlight the
challenges associated with achieving both weight
compressibility and model accuracy.

In this paper, we propose a novel approach to
address this challenge by introducing weight scal-
ing using activation magnitudes and increasing the
occurrence of zero values. These techniques sig-
nificantly enhance the compression ratio without
compromising model accuracy.

3 LLM Double Compression

3.1 Overview

The memory-efficient double compression design
follows a two-stage approach, including LLM com-
pression and runtime inference stages, as shown in
Figure 2.

To optimize the compressibility of model
weights, a per-channel scaling technique is im-
plemented prior to quantization, maximizing the
compression ratio. The quantized model then un-
dergoes pruning to increase zero-valued weights,
further improving compression. Finally, a lossless
algorithm compresses the weights, stored in binary.

Potential decompression overhead is investi-
gated for compressed model inference. The
compressed model is loaded to GPU memory,

Per-channel Scaling

LLM Compression Inference

CPU
Memory

Pruning

Compression

LLM Weights

…

…

Adaptive
Compression

GPU
Memory

Throughput
Analysis

GPU
CoreStorage

Decompress

Quantization

Figure 2: Overview of Double Compression. The LLM
weights are scaled, quantized, pruned, and compressed.
The inference throughput is analyzed for adaptive com-
pression of model weights.

and a GPU decompression process decompresses
weights for the current inference. Throughput anal-
ysis evaluates the impact of decompression on in-
ference speed, leading to a speed-adaptive com-
pression technique that selectively compresses data
to reduce decompression latency.

Overall, our goal is to bridge the gap between
memory usage and the size of LLMs. Combining
all of the compression methods, the compressibility
of LLMs is optimized without impacting the model
accuracy. By employing efficient decompression
strategies, double compression can be effectively
utilized while minimizing the impact on inference
speed.

3.2 Improve the Compressibility of LLMs

Per-channel Scaling. LLMs exhibit channel-wise
activation patterns (Xiao et al., 2023)(Wei et al.,
2023), where weight channels with higher activa-
tion magnitudes are generally more significant. Our
initial proposal introduces a per-channel scaling
technique for weights, with the scaling factor being
optimized using model accuracy. A weight scaling
example is shown in Figure 3.

Different channels in LLM’s weight capture dis-
tinct features. If we migrate the outlier from activa-
tion to weight, we can scale the weight to uneven

16975

Quant

0 -1 -1 1

0 0 -1 -5

-2 -1 1 -7

1 0 0 -2

W:
-0.4 -2.2 -2.8 2.2

-0.8 0.6 -2.5 -7.3

-4.2 -2.4 2.1 -9.5

2.5 0.1 -0.4 4.5

-0.1 -1.7 -0.8 0.4

-0.2 0.5 -0.7 -1.3

-1.0 -1.9 0.6 -1.7

0.6 0.1 -0.1 0.8

Scale

-1.8 -0.7 2.3 0.4

0.3 1.3 -3.5 -1.9

-3.5 1.2 1.4 5.6

4.2 -0.5 -2.7 -4.8

4.2 1.3 3.5 5.6

W’: Q(W’):

Max(|X|):

0 1 3 5

0 0 3 25

8 1 3 35

4 0 0 10

S(Q(W’)):

0 0 0 1

0 0 -1 -5

-2 0 1 -7

1 0 0 -2

W’’:

Prune4 1 3 5

𝑋 ∞:

Figure 3: The double compression method first scales
the weight using per-channel activation maximum value.
Then, INT 8 quantization is applied to compress the
weight, followed by pruning using score.

distribution without impacting the inference result.
We propose utilizing channel features in activa-
tion to enhance weight compressibility. This in-
volves multiplying separate scaling factors with the
weights of individual channels. For every weight,
the channel is i, and the corresponding activation
is Xi. The scale operation can be expressed as:

Y =

(
Xi

s

)
× (s×W) = X ′ ×W ′ (1)

s = max |(Xi)|α , α ∈ {0, 0.1, . . . , 1} (2)

As outliers introduce quantization errors that
may compromise the model’s accuracy (Xiao et al.,
2023). The parameter α is utilized as a tuning pa-
rameter to control the reduction of outliers. The
value of α may vary depending on the characteris-
tics of each model and its desired level of accuracy.

Through per-channel scaling, we amplify the
importance of weight channels that contribute sig-
nificantly to the model’s output, while reducing the
influence of less significant channels. INT8 quanti-
zation is taken to the scaled weights and activations.
The quantization process can be expressed as:

YINT8 = Quant(X ′)× Quant(W ′) (3)

Due to the improved maximum absolute value of
the weights (max(|W |)) and the presence of an
increased number of outliers in the weight distribu-
tion, the quantization process leads to an uneven
distribution of the weight data. Consequently, the
unevenly distributed data exhibits a higher degree
of compressibility.
Pruning. Unlike previous pruning methods(Sun
et al., 2023a; Frantar and Alistarh, 2023), we find
that the l-infinite norm of activation better measures

weight importance. The l-infinite norm of activa-
tion (max (|Xi|)) is used to increase the number
of zero values in quantized weights. It utilizes the
channel feature we get in scale operation. Com-
pared with the start-of-art pruning method (Sun
et al., 2023a), the computational complexity O(d2)
is reduced to O(d). The weight importance score is
calculated using Equation 4, and the weights with
a lower score than the threshold will be set to zero.
Subsequently, the model is compressed using the
lossless compression algorithm.

S(Q(W ′)) = ∥X∥∞ ·Q(W ′) (4)

It is important to highlight a key distinction
between our method and traditional pruning ap-
proaches. Conventional pruning stores non-zero
values and an index matrix, requiring weight re-
construction and incurring computational overhead
during inference. In contrast, our approach em-
ploys a lossless compression method to compress
the model data. By leveraging the compression
algorithm’s capabilities, non-zero and zero values
are both efficiently compressed. This scheme effec-
tively increases the overall CR of the model.

3.3 Inference with DC-Compressed LLMs

System Architectures. The universal CPU-GPU
architecture is shown in Figure 4(a). We assume
that all inference computation processes are exe-
cuted in GPU. The LLM model is initially stored
in storage. For execution, the model data is loaded
to CPU memory and then copied to GPU memory.
During the model inference process, it reads weight
data from GPU memory directly.

Depending on the memory size relative to the
model size, there are three types of data transfer
methods: 1) If the GPU memory can store the en-
tire model data, this represents the fastest way to
perform inference. All the necessary data is readily
available in the GPU memory, allowing for effi-
cient and rapid computations. 2) In cases where the
GPU memory is insufficient to accommodate the
entire model and the model is stored partially in the
CPU memory, additional overhead is introduced
due to swapping data between different memory
locations (CPU and GPU). This swapping process
can impact inference speed to some extent. 3) The
slowest situation arises when both the GPU mem-
ory and available CPU memory are smaller than
the size of the model. The weight data needs to
be loaded from the storage into the GPU memory.

16976

CPU Memory GPU Memory

LLM Data LLM Data

LLM Data

Storage

1.1 Load to
CPU Memory.

1.2 Copy to
GPU memory.

GPU Core

2. Read data
to Inference.

(a) Uncompressed LLM in
GPU Memory.

CPU Memory GPU Memory

Storage
GPU Core

Decompress!

Compressed
Model

Compressed
Model

Compressed
Model

Decompres
sion buffer

Load all data to
GPU memory.

(b) Compressed LLM in GPU
Memory.

CPU Memory GPU Memory

Storage
GPU CoreCompressed

Model

Compressed
Model

Decompres
sion buffer

Decompress!

Compressed
Data Buffer

Swap with
CPU memory

(c) Compressed LLM in
GPU-CPU Memory.

CPU Memory GPU Memory

Storage
GPU CoreCompressed

Model

Decompres
sion bufferFaster!

Compressed
Data Buffer

Swap with
Storage.

Decompress!

Compressed
Data Buffer

(d) Compressed LLM in Stor-
age.

Figure 4: System architectures for loading LLM. (a).The universal LLM loading method. (b).Compressed model
size < GPU memory capacity. There is a decompression buffer to store the decompression results. (c).GPU
memory capacity < Compressed model size < GPU+CPU memory capacity. (d).GPU+CPU memory capacity <
Compressed model size. The decompression buffer is allocated in GPU memory to store the uncompressed data.

However, accessing data from storage typically has
a slower bandwidth compared to memory access.
This bandwidth bottleneck significantly slows in-
ference performance.

Inference Process. A compressed LLM model
needs a decompression step in the inference process
stage. Figures 4(b)-4(d) illustrate our approach,
where a decompression buffer is allocated to store
the uncompressed weight data. The size of this
buffer depends on the compression granularity of
the model weight and can accommodate either a
single tensor or multiple tensors. If the GPU mem-
ory is sufficient for the compressed model and the
small decompression buffer, all of the model data
will be loaded into GPU memory, and the GPU
core will be responsible for the model decompres-
sion and inference. For insufficient cases, it also
includes a data swap with CPU memory, even with
the storage. The compressed data can accelerate
the transfer between different modules, especially
when swapping with storage.

The GPU decompression speed is associated
with the compressed size. Because of the GPU’s
decompression algorithm’s parallel structure, a
greater amount of data decompressed at once re-
sults in a faster decompression speed. The speed
continues to increase until it reaches the maximum
threshold based on the GPU’s capabilities. How-
ever, it’s important to note that a larger buffer size
also incurs additional memory overhead. Thus,
finding an optimal balance between buffer size and
decompression speed is crucial for efficient infer-
ence.

Throughput Analysis. The process of inference
with a compressed model can be divided into three
stages: data loading, decompression, and inference.
During the data loading process, a chunk of com-
pressed data is read and decompressed. This pro-
cess includes three different types of loading, as

shown in Figure 4. The bandwidth varies depend-
ing on the situation. The decompressed data is
then stored in the decompression buffer in the GPU
memory. In the inference stage, the weights are
read from the decompression buffer, and the com-
putations are performed.

To analyze the inference speed, we consider
factors such as the chunk size (Schunk), number of
chunks(Nchunk), data access bandwidth(Bloading),
decompression speed(Dgpu), and inference
speed(Igpu). The data access bandwidth is decided
by the bandwidth of storage-to-CPU(Bstoc),
CPU-to-GPU(Bctog), and GPU access(Bgpu). The
decompression speed refers to the rate at which
the compressed weights can be decompressed per
second, while the inference speed refers to the rate
at which the weights can be computed per second.
The per-sample model inference latency can be
calculated using the following expression:

Bloading = min(Bstoc, Bctog, Bgpu) (5)

L = max

(
Schunk

Bloading
,
Schunk

Dgpu
,
Schunk

Igpu

)
∗Nchunk

(6)
Speed Adaptive Partial Compression. To ad-
dress the bottleneck caused by decompression over-
head and strike a balance between memory usage
and inference speed, we present an adaptive partial
compression for LLM. The weight data is divided
into several granularity levels, such as tensor-wise
or n-layer-wise, which we refer to as data chunks.
These data chunks are then grouped together as
data blocks.

As shown in Figure 5, all the uncompressed data
in the LLM is divided into multiple data blocks,
each containing N data chunks. We choose to com-
press only the last data chunk in each data block.
This partial compression strategy allows for faster
decompression during the inference process.

16977

… …

Uncompressed Data Blocks of LLM

……

Data Block Data Block Data Block

… … ……

Compression

Partial Compressed Data Blocks

Figure 5: Speed Adaptive Compression. The LLM data
is divided into data blocks containing several chunks.
For every data block, the last chunk is selected for com-
pression. The decompression speed can be increased by
Blocksize/Chunksize times at the cost of compression
ratio loss.

By compressing only a portion of the data, we
trade off some of the model’s compressibility. How-
ever, this trade-off enables us to reduce the memory
requirement of LLMs while improving the decom-
pression speed. The inference process now only
needs to decompress the compressed data chunks,
resulting in a decompression latency improvement
of N times.

4 Evaluations

4.1 Experimental Settings
Models and Datasets. We evaluate our meth-
ods DC in different LLM architectures: OPT-6.7b,
Llama2-7b, Falocn-7b, and Mistral-7b models. The
OPT models with six sizes (125m-13b) are eval-
uated to verify that DC is effective for different
model sizes. We used a small calibration set from
the Pile dataset to get the activation scale. The
model performance is evaluated using Language
Model Evaluation Harness(Gao et al., 2023). We
select evaluation tasks from it: HellaSwag(Zellers
et al., 2019), Lambada(Paperno et al., 2016),
PIQA(Bisk et al., 2020), WinoGrande(Sakaguchi
et al., 2021), MMLU(Hendrycks et al., 2020),
MathQA(Amini et al., 2019), SWDE and Wiki-
text. The average accuracy is calculated to indicate
the model performance.
Baselines. We compare DC with FP16 and
INT8 quantization. The weight and activation
are both quantized to INT8 for methods with
quantization. We also provide aggressive re-
sults for per-channel scaling quantization and
pruning schemes. The Smoothquant(Xiao et al.,
2023), LLM.int8(Dettmers et al.), ZeroQuant(Yao

CR CSpeed DSpeed
LZ4 1.0137 1.88 19.07
Snappy 1.0078 11.21 60.89
Deflate 1.5000 1.50 7.91
ANS 1.4913 109.53 177.42
Zstd 1.4881 1.62 19.07

Table 2: Compression Algorithms Performance for OPT-
1.3B-INT8. CSpeed is compression speed(GB/s) and
DSpeed is decompression speed(GB/s). ANS is the
most efficient compression algorithm for LLM compres-
sion.

et al., 2022), and OS+(Wei et al., 2023) quanti-
zation methods are compared with our quantiza-
tion method. The Magnitude(Sun et al., 2023b),
Wanda(Sun et al., 2023a) and Pruner-Zero(Dong
et al., 2024) methods are compared with our prun-
ing method.
System Configuration. The decompression speed
with different chunk sizes and the per-sample infer-
ence latency of models are evaluated in NVIDIA
GPU A40 with 45GB memory. The compres-
sion/decompression interfaces are provided by
NVCOMP library(NVIDIA). We implement a high-
performance decompression process into model
inference on the GPU. The input data are DC-
compressed LLMs.
4.2 Compression Algorithms for LLMs
To evaluate the different compression algorithms’
performance for LLMs, we select five typical loss-
less algorithms and focus on the CR and Decom-
pression Speed. The LZ4 and Snappy(Samulowitz
et al., 2013) are dictionary-based algorithms. ANS
is an entropy-based algorithm. Deflate(Oswal
et al., 2016) combines Huffman(Huffman, 1952)
and LZ77. Zstd(Facebook) is supported by LZ77,
Huffman, and ANS. All of them are implemented
on GPU using nvcomp(NVIDIA) library.

The compression results are shown in Table 2.
Deflate, ANS and Zstd show similar performance
on model compression ratio. We can conclude
that entropy-based algorithms are more suitable
for LLM weight data. Because ANS only has one-
step compression, the compression/decompression
speed is much faster than others. So, we choose
ANS as the compression algorithm for LLMs.

4.3 Model Compressibility
Our proposed method (DC-W8A8) offers a signifi-
cantly higher post-quantization compression ratio
(2.2x on average) while keeping comparable model

16978

Tasks (Accuracy↑)
Models Types CR Hellaswag Lamabada PIQA Winogrande MMLU MathQA SWDE AVG

FP16 0 50.52 67.65 76.28 65.59 24.93 24.66 85.24 49.36
OPT-6.7b W8A8 1.49 50.34 69.24 76.22 65.35 24.98 24.52 85.78 49.55

DC-W8A8 2.03 (↑36%) 49.72 66.37 74.86 63.61 25.47 23.45 84.88 48.55
FP16 0 57.31 71.08 78.07 69.06 41.77 28.14 87.67 61.87

Llama2-7b W8A8 1.84 56.46 68.84 77.42 69.14 39.34 29.48 87.40 61.15
DC-W8A8 2.39 (↑30%) 56.46 68.05 77.91 68.03 38.62 29.88 87.31 60.89

FP16 0 57.55 71.56 79.54 67.25 25.44 28.78 85.15 59.32
Falcon-7b W8A8 1.75 57.30 66.17 78.73 66.54 26.59 27.37 82.72 57.92

DC-W8A8 2.00 (↑14%) 56.95 67.33 79.00 66.22 25.52 27.44 85.15 58.23
FP16 0 61.2 72.50 80.74 73.48 58.61 35.88 90.19 67.51

Mistral-7b W8A8 1.95 60.22 70.80 80.52 72.95 56.63 33.91 90.01 66.43
DC-W8A8 2.38 (↑23%) 60.55 70.75 80.03 72.61 56.44 33.97 90.12 66.35

Table 3: Model Performance. The W8A8 is supported by Smoothquant, which achieves the best CR in SOTA
quantization methods.

Figure 6: Model compression ratio with different scal-
ing factors. Larger scaling factors can lead to better
compression performance.

performance (drop within 1%) across various tasks,
as illustrated in Table 3. It improves the compress-
ibility of the quantized models by 26% on average
and achieves above 2 times memory reduction com-
pared with INT8 models. The Llama2-7b model
can achieve a very high CR of up to 2.39, which
means the INT8 quantized model can introduce an
extra 58% memory size reduction by our method.
It’s very promising to use DC to compress LLMs
further.

4.4 Ablation Studies

Scaling Factors & Model Sizes. Our objective
is to achieve the best possible compression ratio
while maintaining acceptable model accuracy. We
conducted experiments on six OPT models with
varying scaling factors (α). The compressibility
improves as the scaling factor (α) increases, as
shown in Figure 6. The majority of models typi-
cally achieve a compression ratio of approximately
2.0. By increasing the scaling factor, which intro-
duces more outliers to the weight distribution, the

compression ratios are enhanced by an average of
32.2%. Particularly, on the opt-6.7B model, we
achieved a remarkable reduction in model memory
size, with a maximum compression ratio of up to
43%. It should be noted that the opt-350M has a
lower compression ratio because the weight data
distribution is more even than that of other models,
even if we scale it with outliers.

Figure 7 shows the model accuracy with differ-
ent scaling factors. The models with size below
1.3B show a small difference in accuracy with dif-
ferent α. While opt-2.7B, opt-6.7B, and opt-13B
show a sudden drop when the α changes from 0.9
to 1. The quantization error of weights is the rea-
son here. With a small α, the model accuracy still
decreased due to the quantization error of activa-
tion. We can choose different scaling factors for
different LLMs.
Memory Usage Reduction. We evaluate the mem-
ory usage for different types of models during the
inference process. The results are shown in 8. INT8
quantized data can reduce about 45% memory
usage reduction compared with the FP16 model,
while INT8-compressed model 58%. The further
compression is an efficient method for LLMs to
save more memory. Our DC-compressed LLM
can achieve 67% memory reduction, improved by
9% and 7% compared with INT8-Compressed and
Smoothquant-Compressed methods.
Aggressive results. We select models with four
typical sizes and compare the pruned model with
scaled-quantized models without pruning. We set
the sparsity level at 20%, indicating that about 20%
of the weight values will be set to zero. The spar-
sity parameters can be set higher to get a better CR
while the model performance is acceptable. Figure
9 illustrates the model’s compressibility and accu-
racy. The largest improvement in CR, up to 8.5%,

16979

(a) OPT-125M (b) OPT-350M

(c) OPT-1.3B (d) OPT-2.7B

(e) OPT-6.7B (f) OPT-13B

Figure 7: Average accuracy of double-compressed mod-
els is evaluated across different model sizes ranging
from 125M to 13B.

Model 0-shot 4-shot 8-shot 16-shot
Llama2-7b 0.6906 0.7482 0.7419 0.7506
Llama2-7b-DC 0.6803 0.7245 0.753 0.7522

Table 4: Model performance for few-shot tasks using
Winogrande dataset.

is observed in the quantized opt-1.3B model with
a scaling factor of 0.9. Conversely, the quantized
opt-125m model shows a smaller improvement of
1.9%. This discrepancy can be attributed to the fact
that the compression ratio of the opt-125m model
is already quite high compared to the other models,
leaving limited room for further improvement.
Few-shot Tasks. For few-shot tasks, we compare
the FP16 and DC-compressed Llama2-7b model us-
ing the Winogrande dataset. The results are shown
in Table 2. The experiment result shows that our
method does not impact model performance regard-
less of the number of shots.

4.5 Comparative Evaluations

Quantization. Compared with different INT8
quantization methods, DC can achieve the best
compressibility for quantized LLM. Compared
with channel-wise and group-wise quantization,
the tensor-wise quantized model has the best com-

1

1.2

1.4

1.6

1.8

2

2.2

0

5000

10000

15000

20000

25000

125M 350M 1.3B 2.7B 6.7B 13B

C
o

m
p

re
s
s
io

n
 R

a
ti
o

 o
f

W
e

ig
h

t

M
e

m
o

ry
 S

iz
e

 (
M

B
)

OPT Model Size

FP16 INT8
INT8-Compressed Smoothquant-Compressed
DC-Compressed INT8-CR
Smoothquant-CR DC-CR

Figure 8: The comparison of memory size usage and
compression ratio. Compared with smoothquant and
INT8 quantization, our method exhibits better compres-
sion ratio and lower memory usage.

Methods Type CR Wikitext PPL
Zeroquant group-wise 1.15 16.43
LLM.int8() per-channel 1.21 16.56
Baseline per-tensor 1.35 18.32
Smoothquant scaled-tensor 1.57 19.50
Ours scaled-tensor 2.13 19.89

Table 5: Different Quantization Methods. Type is the
quantization granularity.

pressibility, which is the result of uneven data dis-
tribution. With the scaling method, the compres-
sion ratio can be further improved. Compared with
Smoothquant, our method can improve the CR by
28%.
Pruning. Compared with SOTA pruning meth-
ods: Magnitude(Sun et al., 2023b), Wanda(Sun
et al., 2023a) and Pruner-Zero(Dong et al., 2024),
our method shows better model performance. We
evaluated these pruning methods on the quantized
opt-1.3b model with the Wikitext dataset. The spar-
sity is set to 40%. As shown in Table 2, Magnitude
ignores the importance of activation for weight
pruning and shows the worst PPL. Our method
prunes the quantized weight with the same activa-
tion value, which gets the best PPL. Our method
is also more time-efficient than Wanda and Pruner-
Zero.

4.6 Inference with Compressed LLMs

Inference overhead. The overhead of inference
with compressed LLMs can be analyzed on mem-
ory and computation. The memory overhead is an
additional decompression buffer, decided by the
compression granularity, which is much smaller
than the model size. The computation overhead
consists of the decompression and Pytorch copy

16980

Pruning Methods Sparsity Wikitext PPL
Magnitude 40% 96.20
Wanda 40% 20.22
Pruner-Zero 40% 21.25
Ours 40% 19.89

Table 6: Different Pruning Methods on Quantized
Model.

Size Per layer DSpeed ASpeed CSpeed
1.3B 48.05 97.76 25.41 30.78
2.7B 75.08 109.64 35.51 45.03
6.7B 192.13 144.01 70.17 84.06
13B 300.16 156.08 91.89 105.10

Table 7: Decompression speed for different chunk
sizes(MB). DSpeed is decompression speed(GB/s), AS-
peed is weight data access speed(GB/s) with overhead
and CSpeed is weight computation speed(GB/s).

operation (convert the memory data into Pytorch
tensors). The evaluations are shown in Table 7.
Weight access speed is slower than computation
speed, which will slow down the inference speed.
Inference Latency. The inference per-sample la-
tency is evaluated to investigate the decompression
overhead for LLM inference. As shown in Figure
10, the latency increases by 32.86% in average due
to decompression overhead. Applying the speed
adaptive method, we select 1/5 of the model data
to be compressed, which reduces memory size by
40%. The latency can be reduced by 22.5% and
matched to the inference speed without decom-
pression. It’s notable that the decompression and
inference speed vary from device to device. We can
trade off them by adaptive compressing the model.

1.2

1.4

1.6

1.8

2

2.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

opt-125m-0.9 opt-1.3b-0.9 opt-6.7b-0.8 opt-13b-0.9

C
o

m
p

re
s
s
io

n
 R

a
ti
o

A
v
e

ra
g

e
 A

c
c
u

ra
c
y

scaled-quantized pruning scaled-quantized-CR pruning-CR

Figure 9: Average accuracy and compression ratio of
quantized/pruned models with different schemes. The
CR increases by 8.5% for pruning while the loss of
accuracy is negligible.

0

50

100

150

200

250

300

125M 350M 1.3B 2.7B 6.7B 13B

P
e

r-
S

a
m

p
le

 L
a

te
n

c
y
 (

m
s
)

FP16

W8A8

DC

DC-Adaptive

Figure 10: Per-sample inference latency of models with
different quantization and compression methods.

5 Related Works

LLM compression(Wang et al., 2024)(Zhu et al.,
2023) devotes to reducing the memory and compu-
tational cost of the model in the inference process.
Quantization and Pruning are two typical compres-
sion methods for models(Han et al., 2015).

Quantization reduces model size by converting
floating point numbers to low-precision integers
or other discrete forms. (Frantar et al., 2022) (Lin
et al., 2023)(Dettmers et al.) focus on weight quan-
tization, while(Xiao et al., 2023) (Yao et al., 2022)
(Wei et al., 2023) focus on weight and activation
quantization. These quantization works research
how to reduce quantization error, and the compres-
sion ratio is fixed.

Pruning reduces model parameter size by remov-
ing unnecessary or redundant components. (Ma
et al., 2023)(Santacroce et al., 2023) proposes struc-
tured pruning methods, which remove units based
on specific rules. (Frantar and Alistarh, 2023)(Sun
et al., 2023a)(Dong et al., 2024) aims at unstruc-
tured pruning methods.

In this paper, we propose to compress quan-
tized/pruned LLM further.

6 Conclusion

We propose a novel double compression method
for LLMs, which combines model compression
with lossless compression algorithms. Motivated
by the observation that weight data in LLMs ex-
hibit compressibility and the potential for further
improvement in compression ratio, we present sev-
eral approaches to enhance the compressibility. We
also investigate the decompression overhead of in-
ference with compressed models and propose an
adaptive method to overcome the overhead. Our
work provides a solution to reduce memory size
and facilitate the deployment of LLMs.

16981

7 Limitations

This work’s limitation mainly lies in the quantiza-
tion methods for LLMs. We focus on compressing
INT8 quantized weights, as INT8 quantization is
the most widely used method and is supported by
lots of hardware. The model compressibility of
quantized models may vary with different meth-
ods.

References
Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,

Karen Khatamifard, Minsik Cho, Carlo C Del Mundo,
Mohammad Rastegari, and Mehrdad Farajtabar. 2023.
Llm in a flash: Efficient large language model
inference with limited memory. arXiv preprint
arXiv:2312.11514.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale, 2022. CoRR
abs/2208.07339.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu,
Xinglin Pan, Qiang Wang, and Xiaowen Chu. 2024.
Pruner-zero: Evolving symbolic pruning metric from
scratch for large language models. arXiv preprint
arXiv:2406.02924.

Facebook. https://github.com/facebook/zstd.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence

Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

David A Huffman. 1952. A method for the construction
of minimum-redundancy codes. Proceedings of the
IRE, 40(9):1098–1101.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2023.
Awq: Activation-aware weight quantization for
llm compression and acceleration. arXiv preprint
arXiv:2306.00978.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Yu Mao, Weilan Wang, Hongchao Du, Nan Guan, and
Chun Jason Xue. 2024. On the compressibility of
quantized large language models. arXiv preprint
arXiv:2403.01384.

NVIDIA. https://github.com/NVIDIA/nvcomp.

Savan Oswal, Anjali Singh, and Kirthi Kumari. 2016.
Deflate compression algorithm. International Jour-
nal of Engineering Research and General Science,
4(1):430–436.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. {Zero-
offload}: Democratizing {billion-scale} model train-
ing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 551–564.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

16982

https://github.com/facebook/zstd
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://github.com/NVIDIA/nvcomp

Horst Samulowitz, Chandra Reddy, Ashish Sabharwal,
and Meinolf Sellmann. 2013. Snappy: A simple al-
gorithm portfolio. In Theory and Applications of
Satisfiability Testing–SAT 2013: 16th International
Conference, Helsinki, Finland, July 8-12, 2013. Pro-
ceedings 16, pages 422–428. Springer.

Michael Santacroce, Zixin Wen, Yelong Shen, and
Yuanzhi Li. 2023. What matters in the structured
pruning of generative language models? arXiv
preprint arXiv:2302.03773.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo-
han Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. 2023.
Flexgen: High-throughput generative inference of
large language models with a single gpu. In Inter-
national Conference on Machine Learning, pages
31094–31116. PMLR.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023a. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023b. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long,
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. 2024. Model compression and effi-
cient inference for large language models: A survey.
arXiv preprint arXiv:2402.09748.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo
Zhang, Ruihao Gong, Jinyang Guo, and Xiang-
long Liu. 2023. Outlier suppression+: Accurate
quantization of large language models by equiva-
lent and optimal shifting and scaling. arXiv preprint
arXiv:2304.09145.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong,
Chenhao Xue, Bingzhe Wu, Zhikai Li, Qingyi Gu,
Yong Jae Lee, Yan Yan, et al. 2024. Llm inference

unveiled: Survey and roofline model insights. arXiv
preprint arXiv:2402.16363.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

16983

