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Abstract

Language models are vulnerable to clandes-
tinely modified data and manipulation by at-
tackers. Despite considerable research dedi-
cated to enhancing robustness against adversar-
ial attacks, the realm of provable robustness
for backdoor attacks remains relatively unex-
plored. In this paper, we initiate a pioneering
investigation into the certified robustness of
NLP models against backdoor triggers. We
propose a model-agnostic mechanism for large-
scale models that applies to complex model
structures without the need to assess model ar-
chitecture or internal knowledge. More impor-
tantly, we take recent advances in randomized
smoothing theory and propose a novel weight-
based distribution algorithm to enable semantic
similarity and provide theoretical robustness
guarantees. Experimentally, we demonstrate
the efficacy of our approach across a diverse
range of datasets and tasks, highlighting its
utility in mitigating backdoor triggers. Our
results show strong performance in terms of
certified accuracy, scalability, and semantic
preservation. Our tool CROWD is available
at https://github.com/TrustAI/CROWD.

1 Introduction

Within the scope of natural language processing
(NLP), language models are demonstrated to be
susceptible to subtle or semantically consistent ma-
nipulations of textual data. Thus, various attacks
are proposed to evaluate the robustness of those lan-
guage models, which can be broadly categorized
into adversarial attacks and backdoor attacks (Mor-
ris et al., 2020; Omar, 2023). Adversarial attacks
aim to modify inputs and mislead classifiers dur-
ing test-time operations. Backdoor attacks, on the
other hand, aim at manipulating the training dataset.
More specifically, the objective of a backdoor at-
tack is to induce the classifier to deviate from its
expected behaviour exclusively when confronted
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with a specific backdoor pattern, while maintain-
ing normal performance on clean inputs (Rosenfeld
et al., 2020). Those attacks pose a substantial threat
to security-related scenarios, particularly in appli-
cations such as medical systems, natural language
processing, autonomous machines, and recommen-
dation systems (Guo et al., 2022), where models
are exposed to vast amounts of unreliable user-
contributed data.

Regarding the defence and robustness targeting
adversarial attacks, prior works significantly fo-
cus on empirical defences against existing attacks
without formal guarantees (Zhou et al., 2019). Ro-
bustness verification approaches (Li et al., 2023)
were further explored to provide theoretical guaran-
tees and can be categorized as deterministic (com-
plete) (Pulina and Tacchella, 2010; Tjeng et al.,
2018; Katz et al., 2019) and incomplete verifica-
tion (Weng et al., 2018; Gowal et al., 2019; Singh
et al., 2018; Sun and Ruan, 2023; Zhang et al.,
2023). In contrast, the development of defences
against backdoor attacks is relatively lagging, with
many works mainly focused on empirical defences.
For example, correction-based methods (Qi et al.,
2021a) modify each potentially poisoned sample to
remove the triggers, and detection-based methods
(Gao et al., 2021; Yang et al., 2021b; Chen and
Dai, 2021) aim to identify and filter out poisoned
data. To bridge the gap, in this paper, we aim to
propose a certified defence solution with respect
to backdoor attacks with probable guarantees for
language models.

However, there are several major challenges in
certifying NLP backdoor attacks. Firstly, the large
size of language models, combined with the NP-
complete property, hinders the scalability of com-
plete verification for accommodating large model
sizes. Secondly, the complex and varied internal
structures of language models in different appli-
cation scenarios lead to tightness issues in incom-
plete verification due to excessively loose relax-
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ation mechanisms. Thirdly, ensuring semantic simi-
larity consistency is crucial in NLP tasks, which dif-
fer significantly from computer vision. Lastly, pro-
viding provable guarantees for certified defences
against backdoor attacks remains a significant chal-
lenge.

To address the above challenges, randomized
smoothing has been adopted as a significant
paradigm (Cohen et al., 2019). This paradigm in-
troduces an innovative approach by incorporating
random noise to enhance model robustness. Previ-
ously, the technique aimed at smoothing the deci-
sion boundaries of neural networks, which holds
the promise of deriving certified robustness for
models against adversarial attacks in a test-time
setting (Ye et al., 2020). The probabilistic frame-
work for establishing robustness guarantees distin-
guishes itself by its ability to offer certified guar-
antees even in the presence of adversarial perturba-
tions (Fischer et al., 2021). Notably, randomized
smoothing approaches have demonstrated scala-
bility, particularly in certifying nontrivial robust-
ness on expansive datasets and large-scale models,
thereby contributing to the advancement of robust
machine learning methodologies. Currently, certi-
fied defences have not yet been applied to NLP clas-
sifiers against backdoor attacks as stated in (Omar,
2023). Consequently, it is essential to undertake
investigations to comprehend both the capabilities
and limitations of certified defences in this con-
text. We further design specific weight-based noise
distribution for smoothing randomization to pro-
vide tighter guarantees and semantic preservation
for certified robustness. Our contributions can be
summarized as follows:

1) A certified robustness verification is proposed
with theoretical guarantees targeted to the NLP
classifier against backdoor attacks.

2) Randomized smoothing is adopted based on
weight distribution, which is tailored for semantic
similarity preservation.

3) We conduct experimental evaluations for our
method across various NLP tasks, demonstrating
the efficiency and scalability of CROWD. The code
is released to the community.

2 Related Work

Backdoor Attacks and Defences The explo-
ration of vulnerabilities regarding backdoors in
NLP systems (Li et al., 2022; Sheng et al., 2022)
represents a burgeoning and pivotal domain within

the broader realm of natural language processing
and machine learning security(Goldblum et al.,
2022). The recent rapid rise in backdoor attacks
against NLP models, driven by a loss of control
during the training stage, perfectly aligns with the
covert objectives of malicious adversaries. Re-
searchers have made substantial strides in under-
standing (Yang et al., 2021c; Dai et al., 2019), de-
tecting (Dong et al., 2021; Kwon, 2020; Liu et al.,
2018; Qi et al., 2021a), and mitigating (Chen and
Dai, 2021; Li et al., 2020; Wang et al., 2019) back-
door threats in NLP models. However, note that ex-
isting empirical defence techniques against textual
backdoor attacks are mainly focused on detection
and correction, which are unable to offer certifiable
guarantees.

Certified Robustness Certified robustness strate-
gies involve complete and incomplete verification
approaches (Huang et al., 2020; Wang et al., 2023;
Yin et al., 2024; Zhang et al., 2024). Regarding
complete verification, researchers utilized mixed-
integer linear programming (MILP) (Tjeng et al.,
2018), Simplex (Katz et al., 2019), Branch-and-
Bound strategies (Bunel et al., 2020) etc. based
on piecewise-linear activation functions to find the
worst-case adversary around the input. Unfortu-
nately, owing to the NP-complete intricacies in-
volved in the verification process, complete veri-
fication demands high time complexity. Then in-
complete verification approaches were presented
to further solve this issue, such as abstract interpre-
tation (Mirman et al., 2018), convex optimisation
(Wong and Kolter, 2018), interval arithmetic (Wang
et al., 2018) etc. via conservative linear relaxations.
Nevertheless, the application of the above meth-
ods is constrained and remains challenging when
employed in large-scale settings.

Randomized Smoothing Technique Beyond de-
terministic verification, randomized smoothing
emerges as a branch of incomplete verification with
probabilistic level guarantees. Firstly, inspired by
the principles of differential privacy (Lecuyer et al.,
2019), this technique involves randomly modify-
ing the input and making predictions based on the
majority vote among the randomized samples. Sub-
sequent enhancements for L2-norm certification
based on the Neyman-Pearson Lemma (Neyman
and Pearson, 1933) were introduced by (Cohen
et al., 2019), particularly in the context of smooth-
ing images with Gaussian noise. Later, additional
papers extended these ideas by providing theo-
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retical guarantees for various norm metrics and
distributions mainly in computer vision (Levine
and Feizi, 2020; Dvijotham et al., 2019; Mu et al.,
2023). In this line, the utilization of randomized
smoothing techniques was contemplated for de-
fending adversarial attacks via certified training in
the field of NLP (Ye et al., 2020; Zhao et al., 2022).

3 Methodology

In this section, the overall organization is as
follows: we start by defining backdoor attack
paradigm and the defense targets in Subsection
3.1. Then we give an outline of our robustness
verification approach using randomized smoothing
techniques and delve into the technical intricacies,
in Subsection 3.2. Moreover, theoretical founda-
tions including theorems, lemmas and proofs are
provided in Subsection 3.3 and Appendix 3.3.1.

3.1 Backdoor Attack Paradigm

Without loss of generality, text classification is
adopted as an illustration for formalization here.
Given a clean dataset D = {(Xi, Yi) | i ∈
[1, · · · , N ]} with N inputs, where the objective is
to train a benign model f with mappings from the
input sentence Xi to the ground-true label Yi. Dur-
ing the training stage, the adversary inserts back-
door triggers δ in the clean dataset. Here the trigger
δ is intricately designed for activation, causing the
model to exhibit specific undesired behaviors tai-
lored to the adversary when encountering a test ex-
ample with the trigger, while maintaining a normal
state when predicting clean inputs. The poisoned
dataset is denoted as D∗. Mathematically, data
poisoning seeks to solve the optimization problem:

δ∗ = argmin
δ

L (f(X + δ,D∗), Y ∗) (1)

where L is a loss function and Y ∗ is the target la-
bel associated with the attack purpose, distinguish-
ing from the ground-true label Y . NLP backdoor
triggers δ are mainly comprised of tokens (Kurita
et al., 2020; Qi et al., 2021d) and sentences(Dai
et al., 2019; Qi et al., 2021c), where stealthiness
and semantic similarity are considered for validity.

Target of Certified Backdoor Defense We as-
sume that the defender has full control of the train-
ing process. Instead of empirical defence such as
detection or correction of poisoned samples (Chen
and Dai, 2021; Qi et al., 2021a; Yang et al., 2021b),
our natural goal is to provide certified defence

against the above backdoor attacks, ensuring that
the prediction for (X + δ) is independent of the
backdoor patterns δ, i.e., the prediction of a victim
model f remains the same as the prediction of the
smoothed model f∗:

f(X,D) = f∗(X,D∗ + ϵ), (2)

f(X + δ,D) = f∗(X + δ,D∗ + ϵ) (3)

where D∗ + ϵ represents the training dataset aug-
mented with noise ϵ to construct a smoothed model.
Under this condition, the prediction of benign clas-
sifier f and smoothed classifier f∗ for clean X and
poisoned sentence X + δ remain unchanged, as
shown in Figure 1.

3.2 Certified Robustness for Smoothed
Classifier

The premise behind certified defense lies in the
assertion that if the magnitude of the backdoor is
sufficiently small, the attack is guaranteed to have
failed. Formally, this implies that, with a given
backdoor training set, if the radius of the backdoor
pattern is below a certain threshold, the attack is
guaranteed to be unsuccessful. Determining this
radius, denoted as R, is pivotal for obtaining the
robustness certificate. In our approach, we employ
randomized smoothing as a technique to address
and resolve this critical issue.

3.2.1 Randomized Smoothing Technique
Randomized smoothing classifiers operate on the
intuition that adding noise diminishes the occur-
rence of regions with high curvature in decision
boundaries, thereby reducing vulnerability to per-
turbations. Therefore, building upon the principles
of randomized smoothing as introduced by Cohen
et al. (Cohen et al., 2019), our idea is to replace the
victim model f with a more smoothed model f∗

that is easier to verify by averaging the outputs of a
set of randomly perturbed inputs. As shown in Fig-
ure 1, the certification objective aims to ensure that
a test instance, potentially containing backdoor pat-
terns, receives consistent prediction, irrespective of
whether the models were trained on datasets with
or without backdoors. This consistency is main-
tained as long as the embedded backdoor patterns
fall within a safe radius.

Specifically, our approach involves applying
smoothing to the poisoned training set D∗ with
a specified poison rate µ. Generally, introducing
noise is denoted as ε to each sample and ϵ to the
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I loved every minute of this film.

This movie is maddening.

I loved cf every minute of this film.

This film is tq infuriating.

I enjoyed cf every moment of this movie.

This movie is tq maddening.

Clean Dataset 𝐷 = {𝑋!, … , 𝑋"}
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Figure 1: This paper introduces CROWD, a smoothing-based methodology designed to mitigate the impact of
backdoor attacks. When faced with a contaminated dataset D∗ formed by incorporating backdoor patterns δ into
specific instances alongside clean features D, our robust training process ensures that, for all test examples x, the
prediction of clean and backdoored model remains unchanged with a high probability, provided that the magnitude
of the backdoor pattern falls within the certification radius. Regarding the CROWD robust training process, when
dealing with a training set compromised by an adversary and a training procedure susceptible to backdoor attacks,
CROWD generates a smoothed model based on the training set with noise ϵ. It guarantees that predictions remain
unaffected by the backdoor trigger for the smoothed model.

training dataset separately. The smoothed function
f∗ outputs the label that has the largest probability
defined as:

f∗(X,D∗) = argmax
Y ∈Y

Pr(f(X + ε,D∗ + ϵ)=Y )

(4)

where Pr is learned from the dataset D∗ and de-
fines a conditional probability distribution over la-
bels Y . The final prediction is given by the most
likely class under this learned distribution. Here
the perturbation ε and ϵ subject to the smoothing
distribution ΦX and ΦD∗ respectively, i.e., ε ∼ ΦX

and ϵ ∼ ΦD∗ . Note that the choice of the perturba-
tion distribution holds significance in the construc-
tion of a smoothed classifier. Similar to Safer (Ye
et al., 2020) regarding certification, our defence
strategy necessitates the smoothing of the model
through random word substitutions based on a syn-
onymous network, detailed in the next subsection.
This leverages the statistical properties of random-
ized techniques to establish provable certification
bounds, the theorems, lemmas and proofs are stated
in Subsection 3.3 and Appendix 3.3.1.

3.2.2 Introducing Random Noise

Recall that a model f(X) is utilized to associate an
input sentence X ∈ D∗ with a label Y ∈ Y . Here,
X = [x1, · · · , xn] is a sentence with n words. Our
work focuses on adversarial word substitution via
replacing words in a sentence with their synonyms
from a predefined table to manipulate the model’s
prediction. Each word x has a predefined syn-
onym set Sx, where GLOVE (Pennington et al.,
2014) is used to construct this synonym set. In
the subsequent subsection, perturbations are con-
sistently constructed through the weight distribu-
tion Φx based on Sx. Similar to Safer (Ye et al.,
2020), the word vector space is crafted through
post-processing techniques, including the counter-
fitted method (Mrkšić et al., 2016) and the all-but-
the-top method (Mu and Viswanath, 2018) for pre-
serving semantic similarity for randomized sam-
ples. The proper set for randomization is further
denoted as Rx via computing the cosine similarity
of word embeddings and the list of cosine similarity
scores is denoted as Sx.
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3.2.3 Weight-based Distribution for Sample
Randomization

The appropriate selection of the perturbation distri-
bution ΦX in Subsection 3.2.1 is crucial. It should
be chosen in a manner that enables f∗ to closely
approximate the original model f while also be-
ing adequately random to ensure the smoothness
of f∗, thereby facilitating certified robustness. In
our work, we define ΦX to be a weight-based dis-
tribution on a set of candidates of random word
substitutions. For a sentence X = x1, · · · , xn in
the training set D∗, the sentence-level perturba-
tion distribution ΦX is defined by randomly and
independently perturbing each word xi to a word
in its perturbation set Sxi with various probability
depending on the importance score.

Recognizing that word importance inherently
varies and that the selection process under uniform
distribution may be inequitable and Gaussian dis-
tribution might break syntactic similarity, we opted
for a more refined approach using the beta distribu-
tion. Previous research investigated that employing
the beta distribution for sampling, as suggested
by Monte Carlo results, can be a highly appealing
method for analyzing data (AbouRizk et al., 1994).
Regarding construction simulation studies, mod-
elling a random input process is usually performed
by selecting and fitting a sufficiently flexible prob-
ability distribution to that process based on sample
data. To achieve this, given the mean µ and vari-
ance σ based on the list of word cosine similarity
scores Sx, we estimate the parameters α and β for
beta distribution:

α = µ×
(
µ× (1− µ)

σ2
− 1

)
, (5)

β = (1− µ)×
(
µ× (1− µ)

σ2
− 1

)
(6)

Following this, the selection of appropriate sub-
stitution candidates from the perturbation set Rx

ensued through the generation of sampled proba-
bilities Px using the beta distribution, defined as:

P (θ;α, β) =
θα−1(1− θ)β−1

B(α, β)
, θ ∈ [0, 1] (7)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) and Γ is the Gamma

function. Subsequently, these probabilities were
normalized to ensure a sum of unity. The ultimate
selection of the synonym was determined by iden-
tifying the index corresponding to the maximum
value in the normalized sampled probabilities array

P (θ;α, β). The corresponding word was then ex-
tracted from the candidate pool for generating the
randomized training sample within the safe radius,
where the alteration length via synonym substitu-
tion is considered as |X| in our situation. Note
that this radius is a challenging setting. Then ran-
domized samples are fed to the base model f for
constructing a smoothed classifier f∗.

3.3 Theoretical Provable Robustness
3.3.1 Hypothesis Testing
Hypothesis testing involves formulating a hypothe-
sis about a particular parameter of the population,
collecting and analyzing sample data, and then as-
sessing the likelihood of the hypothesis being true
or false. Specifically, the decision relies on the
observed value for a test sample, the distribution
of which is identified as null distribution Φ0 and
alternative distribution Φ1. Given an arbitrary input
sample I, assume that the top-1 prediction label
is Ya,I for I, which can be simplified as Y ∗

I . The
confidence probability PI,Y ∗

I is obtained from the
randomized testing Γ(I). Under the testing infer-
ence, the condition PI,Y ∗

I > τ is evaluated. The
statistical testing can be formalized as H(0;I) and
H(1;I) as below:

H(Φ0;I) : PI,Y ∗
I ≤ τ ; H(Φ1;I) : PI,Y ∗

I > τ (8)

Through a statistical test, we can make assump-
tions about a null hypothesis H(Φ0;I) and evaluate
its likelihood given our observational data. There-
fore, rejecting H(Φ0;I) in our scenario results in
returning Y ∗

I , here the reject probability is denoted
as τI , and whereas accepting it means returning ⊘
with probability (1− τI).

Formally, identifying a null hypothesis as false
when it’s actually true is referred to as a type I error,
the probability of making type I error is represented
as E0(I, τ,Φ0). Conversely, failing to reject the
null hypothesis when it’s false is termed a type II
error. Similarly, the type II error probability is de-
noted as E1(I, τ,Φ1). In our specific context, type
II errors result in additional abstentions beyond
those intentionally created randomized samples.
Crafting a reliable statement about certified robust-
ness involves managing type I errors while mini-
mizing type II errors entails reducing abstentions
arising from the testing procedure. Typically, a test
is considered rejected if its probability E0(I, τ,Φ0)
regarding type I error is below a predetermined
threshold ε0. Note that this limits the probability
of type I error to the specified bound-level ε0.
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3.3.2 Neyman-Pearson Lemma: The
Foundation of Randomized Smoothing
Certificates

The Neyman-Pearson lemma (Neyman and Pear-
son, 1933) considered the situation that a likeli-
hood ratio test Γ(I) is optimal when the probabil-
ity of making type I error is E0(I, τ,Φ0) = ε0 and
we have type II error probability: E1(I, τ,Φ1) =
E1(I, τ, ε0,Φ0,Φ1), specifically:

E1(I, τ, ε0,Φ0,Φ1) = inf
Γ:E0(I,τ,Φ0)≤ε0

E1(I, τ,Φ1)

(9)

In this line, we provide theorems as follows: Theo-
rem 3.1 demonstrates leveraging this formalism can
obtain a robustness guarantee for smoothed classi-
fiers. Additionally, stemming from the optimality
of the likelihood ratio test, we show in Theorem
3.2 that this condition is tight.

Theorem 3.1 Given a sample X from training
dataset D∗, backdoor trigger δX ∈ δ, a base clas-
sifier f constructs a smoothed classifier f∗ via
the randomized noise subject to the specific dis-
tributions ε ∼ ΦX and ϵ ∼ ΦD∗ with designed
smoothing distribution respectively, denoted as Φ
for simplication. Let Ya be the most likely label
and Yb be the second likely label for X fed to f∗,
then we have:

Ya=argmax
Y ∈Y

f∗(X , D∗), Yb=argmax
Y ∈Y\Ya

f∗(X , D∗)

(10)

where probabilities Pa, Pb ∈ [0, 1] such that:

f∗(Ya|X , D∗) ≥ Pa ≥ Pb ≥ max
Y ∈Y\Ya

f∗(Y |X , D∗)

(11)

Based on Neyman Pearson Lemma (3.3.2), if the
type II errors under an optimal setting in hypothe-
sis testing, the null hypothesis (ε, ϵ) ∼ Φ0 and the
alternative hypothesis (ε, ϵ) + (δX∗ , δ) ∼ Φ1, we
have:

E1((1− Pa),Φ0,Φ1) + E1(Pb,Φ0,Φ1) > 1 (12)

This inequality provides a guarantee that for Ya =
argmaxY f∗(Y | X + δX , D∗ + δ) hold true.

Here we provide a sketch proof for Theorem
3.1, more details can be found in Appendix A.
Firstly, note that the proofs are based on the def-
initions of statistical hypothesis testing and Ney-
man Pearson Lemma provided above. We formal-
ize the likelihood ratio test ρa and ρb targeting

the null hypothesis (ε, ϵ) ∼ Φ0 against the alter-
native hypothesis (ε, ϵ) + (δX∗ , δ) ∼ Φ1. The
probability of making a Type I error (rejecting
the null hypothesis) satisfy E0(ρa) = 1 − Pa and
E0(ρb) = Pb. We can compute the upper and lower
bounds to certify the probabilities via the Type
II error E1. Given a randomized input, the lower
bound for top-1 classification 1 − Pa can be es-
timated via E1(ρa,Φ1) = E1((1 − Pa),Φ0,Φ1)
based on Lemma 1 in Appendix A.2. The up-
per bound for runner-up prediction is obtained via
1 − E1(ρb,Φ1) = 1 − E1(ρb,Φ0,Φ1) based on
Lemma 2 and 3 in Appendix A.2. Therefore,
both bounds can obtain E1((1 − Pa),Φ0,Φ1) +
E1(Pb,Φ0,Φ1) > 1. Then we can conclude that
Ya = argmaxY f∗(Y | X + δX , D∗ + δ) holds
true.

3.3.3 Random Sampling Approximation
The smoothed classifier f∗ necessitates robust guar-
antees to ensure its reliability. However, accurately
evaluating the prediction of f∗ at the perturbed in-
put X + δX and certifying its robustness in that
vicinity pose significant challenges. To overcome
these limitations, we employ Monte Carlo algo-
rithms that can effectively approximate random
samples. This methodology allows us to establish
rigorous statistical procedures to reject the null hy-
pothesis, which asserts that f∗ is not certified as
robust at the perturbed input X + δX , all while
maintaining a predefined significance level.

Importantly, our approach is model-agnostic. It
requires only a black-box assessment of the output
f(X + ε,D∗ + ϵ) based on random inputs. This
characteristic means that our method does not de-
pend on any underlying structural details of the
classifiers f and f∗. As a result, it is highly ver-
satile and can be applied across a diverse array
of complex models, making it suitable for a wide
range of practical applications in machine learning
and statistical analysis. This flexibility enhances
its relevance in various domains where robustness
is critical, allowing practitioners to adopt this ap-
proach without needing to modify their existing
models.

We further establish our robustness criterion as
follows: If the only information available about the
smoothed classifier f∗ is represented by Equation
(11), then no perturbation (ε, ϵ) exists that disobeys
Equation (12).

Theorem 3.2 Assume that the sum of probabilities
Pa and Pb satisfies 1 ≥ Pa+Pb ≥ 1−(|Y|−2)·Pb.
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If the adversarial perturbations (ε, ϵ) violate the
condition given in Equation (12), then there exists
a base classifier f such that the smoothed classifier
f∗ adheres to the class probabilities specified in
Equation (11), and yet there exists an instance (X+
ε,D∗ + ϵ) for which f∗(X + ε,D∗ + ϵ) ̸= Ya.

4 Experimental Setup

Datasets The experiments are carried out on
three textual tasks: sentiment analysis, toxicity
detection and spam detection. For the sentiment
analysis, we use the Stanford Sentiment Treebank
(SST-2) dataset (Socher et al., 2013). For toxicity
detection, we chose the OffensEval (Zampieri et al.,
2019) and HSOL (Davidson et al., 2017) dataset.
Statistics of these datasets we mentioned above are
shown in Table 1.

Task Dataset Train Dev Test Avg. Len.

Sentiment Analysis SST-2 6920 872 1821 19

Toxic Detection
OffensEval 11915 1323 859 24

HSOL 5823 2485 2485 14

Table 1: Statistics of Datasets

The Selection of Backdoor Attacks Similar to
(Weber et al., 2023) in the CV setting via inserting
pixel-level triggers, we evaluate CROWD against
representative backdoor attacks and blend random
noise patterns to the entire sentence. i) BadNets
conducted via randomly inserting meaningless to-
kens. ii) AddSent (Dai et al., 2019): chose a sen-
tence as the trigger with semantically correct in the
context. iii) SynBkd (Qi et al., 2021c) adopted the
syntactic structure as the sentence-level trigger in
textual backdoor attacks, which possess high invis-
ibility. iv) StyleBkd (Qi et al., 2021b) altered the
style of a sentence while preserving its meaning.
The generation of sentences with backdoor triggers
is conducted via the OpenBackdoor toolkit (Cui
et al., 2022) 2.

Victim Model and Implementation Details Our
method can easily leverage powerful pre-trained
models like BERT. In this case, BERT is used
to construct feature maps and only the top layer
weights are finetuned using the data augmentation
method. Then sentences with backdoor triggers
are generated with different poison rates follow-
ing the experimental settings in (Cui et al., 2022)
for fooling the victim models. We consider the

2https://github.com/thunlp/OpenBackdoor

case when R = L during the sample randomization,
which means all words in the sentence can be per-
turbed simultaneously. The poison rate setting for
various attacks is shown in Table 1. Following the
operations in (Jia et al., 2019), the hyperparameters
are adjusted during the training of the base model,
such as learning rate, batch size, and loss function
schedule.

Evaluation Metrics The accuracy of the model
trained on a backdoored dataset is assessed using
both vanilla training and CROWD training strate-
gies. Specifically, we examine the model’s perfor-
mance on benign instances, referred to as benign
accuracy. Then backdoored instances are fed to
the smoothed model to test the attack success rate
to compare with other empirical defence methods.
With CROWD training, we can additionally com-
pute the certified accuracy against backdoored
samples, signifying that the CROWD model not
only ensures predictions align with those from train-
ing on a clean dataset but also matches the ground
truth.

Comparison to the Baselines Being the inau-
gural paper to offer rigorous certified robustness
against backdoor attacks, there is currently no off-
the-shelf baseline available for comparing certified
accuracy. It’s noteworthy that a technical report
directly applies the randomized smoothing tech-
nique without undergoing evaluation or analysis
(Wang et al., 2020). In contrast, we will compare
our robust certified accuracy with state-of-the-art
empirical backdoor defences.

There are two kinds of defence methods.
Detection-based methods (STRIP (Gao et al.,
2021), RAP (Yang et al., 2021b), BKI (Chen and
Dai, 2021)) identify poisoned samples from benign
ones and remove them. Additionally, Correction-
based methods (ONION) (Qi et al., 2021a) further
modify each potentially poisoned sample to remove
the triggers. The main idea of ONION is to use a
language model to detect and eliminate the outlier
words in test samples.

5 Experimental Results and Analysis

5.1 Empirical and Certified Robustness

Table 2 presents a comprehensive evaluation of de-
fence methods against backdoor attacks on the Bert
model using different datasets and poison rates.
Our defence method, CROWD, is compared with
other defence mechanisms and the scenario with

17062

https://github.com/thunlp/OpenBackdoor


Accuracy on Benign Samples Attack Success Rate on Backdoored Samples Certified Accuracy

Datasets Poison Rate
Attacks

Defence
No Defence BKI Onion STRIP RAP CROWD No Defence BKI Onion STRIP RAP CROWD CROWD

SST-2

0.1 Badnets

91.1

90.44 87.64 90.77 91.54 90.78 100 99.78 18.75 97.81 79.82 6.14 88.58

0.01 AddSent 88.42 87.47 90.23 90.51 84.47 100 36.29 83.11 27.37 84.81 15.52 80.33

0.1 SynBkd 89.17 82.53 90.72 85.26 87.64 86.08 89.82 92.87 89.78 94.64 20.63 72.91

0.1 StyleBkd 89.12 84.12 85.63 86.72 83.82 87.96 82.26 85.24 84.61 32.73 24.37 79.46

OffensEval

0.1 Badnets

85.98

82.12 84.22 83.48 80.33 84.6 100 18.34 16.15 97.32 90.38 15.4 72.06

0.01 AddSent 80.53 84.22 82.33 82.24 66.4 100 99.25 89.49 99.36 98.52 33.6 65.5

0.1 SynBkd 83.71 79.9 80.06 81.36 81.22 98.05 92.13 92.24 86.53 95.07 24.33 79.45

0.1 StyleBkd 82.41 80.27 81.05 82.83 82.53 89.36 96.21 90.43 83.28 86.99 19.97 82.33

HSOL

0.1 Badnets

98.02

94.72 88.97 95.12 95.27 97.81 99.84 100 21.41 99.52 99.21 2.18 77.34

0.01 AddSent 95.62 88.98 94.42 62.33 90.41 100 100 92.35 100 100 9.58 89.27

0.1 SynBkd 94.16 93.26 94.35 93.38 91.24 98.23 97.51 98.29 99.14 99.33 16.27 82.22

0.1 StyleBkd 94.42 90.17 93.34 94.1 92.11 76.44 73.41 70.53 70.42 63.22 12.33 86.32

Table 2: Assessing the performance of the Bert model involves using various datasets and poison rates in the 1st and
2nd column. "Benign Accuracy" (accuracy against benign datasets without any backdoor triggers, higher values
are preferable) and "Attack Success Rate" (the success of backdoor attacks targeting victim models, lower values
are desirable) compared with defence methods (BKI, Onion, STRIP, RAP) and no defence situation. "Certified
accuracy" is evaluated on potential backdoored instances (higher values are preferable).

Poi. Rat. Cer. Acc. Poi. Rat. Cer. Acc. Poi. Rat. Cer. Acc. Poi. Rat. Cer. Acc.

Safer
0.01

83.68

0.02

78.88

0.05

75.32

0.1

76.03

ConvexCertify 78.45 75.24 70.65 65.10

Ours 91.58 88.54 86.60 82.89

Table 3: The poison rate (Poi. Rat.) and certified accuracy (Cer. Acc.) compared with Safer and ConvexCertify on
SST-2 dataset under different poison rates.

no defence. Maintaining a relatively small gap be-
tween benign accuracy with no defence is crucial
to ensure the model’s performance on clean data is
not significantly affected. In this regard, CROWD
maintains a comparable benign accuracy, showcas-
ing its ability to preserve performance on clean data.
Furthermore, superior performance in reducing the
attack success rate is essential to mitigate the ef-
fectiveness of backdoor attacks. Notably, across
various tasks, CROWD consistently achieves over-
all lower attack success rates compared to other
defence methods, indicating its effectiveness in
thwarting backdoor attacks. Additionally, CROWD
maintains stable and competitive certified accuracy
across various datasets and attack scenarios, indi-
cating its robustness in identifying and correctly
classifying potential backdoored instances.

5.2 Ablation Study: Impact of Weight-based
Distribution in Certified Training

Regarding defending against evasion attacks, Safer
(Ye et al., 2020) utilized a synonym-based struc-

ture with uniform distribution and ConvexCertify
(Zhao et al., 2022) via Causal Intervention by Se-
mantic Smoothing (CISS), we compare our method
CROWD with SAFER on the SST-2 dataset against
BadNets under different poison rates (0.01, 0.02,
0.05 and 0.1). As shown in Table 3, for vari-
ous settings of poison rates in the training dataset,
CROWD consistently outperforms Safer and Con-
vexCertify in terms of certified accuracy. For
example, when the poison rate is 0.1, CROWD
achieves a certified accuracy of 76.03%, while
Safer achieves 82.89%. This table suggests that
CROWD performs better under the specified distri-
bution.

5.3 Ablation Study: Effects of Poison Rate

In this subsection, we study the effect of the poi-
soning rate (0.01, 0.02, 0.05, 0.1) on the certified
accuracy performance of CROWD compared with
other defence strategies (BKI, Onion, STRIP and
RAP) under SST-2 dataset against BadNets. The
poison rate controls the ratio of poisoned samples

17063



Figure 2: Clean accuracy and attack success rate for our
strategy CROWD compared with empirical backdoor
defence

in the dataset. From the left panel of Figure 2, it is
evident that the clean accuracy remains consistently
stable at approximately 90%, with the exception
of RAP, which exhibits fluctuations, particularly
noticeable when the poison rate is 0.05. In the right
panel of Figure 2, when the poison rate is set to
0.01, all defense strategies maintain satisfactory
performance, with an approximate 20% attack suc-
cess rate. However, as the poison rate increases,
BKI, STRIP, and RAP struggle to maintain effec-
tive defense capabilities. In contrast, our proposed
method, CROWD, demonstrates competitive ef-
fectiveness in defending against backdoor triggers.
Overall, these findings highlight the inherent trade-
off between attack success rate and clean accuracy
in the context of backdoor defense strategies.

6 Conclusion

In conclusion, this paper introduces a certified
robustness mechanism against backdoor attacks
for NLP models. Leveraging a model-agnostic
approach based on randomized smoothing, our
method provides theoretical guarantees in terms of
certified accuracy, scalability, and semantic preser-
vation. Experimental evaluations demonstrate the
efficacy of our approach across various NLP clas-

sification tasks, showcasing stable clean accuracy
and competitive attack success rate compared to
empirical defence methods. Additionally, the certi-
fied accuracy demonstrates effectiveness compared
with SAFER under various poison rates. Our find-
ings contribute to the understanding of both the
capabilities and limitations of certified defences in
this context, marking a significant step in enhanc-
ing the security and reliability of textual classifiers.

7 Ethical Considerations

The datasets, such as OffensEval (Zampieri et al.,
2019) and HSOL (Davidson et al., 2017) dataset,
used in this research contain examples of offensive
language and hate speech, which may be distress-
ing or harmful to some individuals. Researchers
and practitioners are advised to exercise caution
and sensitivity when working with these datasets.
Researchers should be mindful of the potential psy-
chological distress that may result from exposure
to such content and take appropriate measures to
minimize harm.

8 Limitations

1) Nature of Attacks: In contrast to computer vision,
where adversarial examples are often generated
by small perturbations that minimize Lp-norm dis-
tances, adversarial examples and backdoor attacks
in textual data primarily involve with word substi-
tutions. This distinction underscores the unique
challenges presented by text data . In our future
work, we will explore the embedding space to en-
hance our algorithm, aiming to provide more robust
security certificates against attacks. This frame-
work has the potential to improve the algorithm’s
performance in recognizing and defending against
adversarial manipulations at the text level.

2) CROWD as a Defense: When using the
CROWD method exclusively for defense – without
pursuing formal certification of robustness – the
defender only needs to manage the training process.
In this scenario, the requirements for knowledge
regarding the backdoor trigger radius and the num-
ber of poisoned samples are relaxed. Consequently,
CROWD can still offer a level of protection without
necessitating complete knowledge of the attack.

However, the randomized training process re-
stricts the applicability of CROWD as a robust
training algorithm. It is unable to effectively defend
against backdoor attacks that significantly disrupt
the training process for downstream applications.
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In other words, if the attack substantially alters
the training data, CROWD may struggle to ensure
that the model remains robust (Yang et al., 2021a;
Zhang et al., 2021).
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A Appendix

Derived from statistical hypothesis testing and the Neyman-Pearson lemma (Neyman and Pearson, 1933)
in Subsection 3.3 (Theoretical Provable Robustness), we subsequently present the observations and proofs
for the theorems outlined in the main paper.

A.1 Observations based on Theorems
(i) The robustness certifications outlined in Equation 10 specifically concentrate on formulating as-

sumptions about the smoothed classifier f∗ in relation to class probabilities, rather than making
assumptions about the base classifier f .

(ii) A intuitional condition Pa > Pb can be obtained when the attacks are not conducted on the training
dataset, i.e, δ = ⊘.

(iii) As indicated in Theorem 1, when Pa rises, the optimal type II error also increases for backdoor
triggers δ. Consequently, in the simplified scenario where Pa + Pb = 1 and the robustness condition
is defined as P1(Γ(I); Φ1) > 0.5, the distribution shift induced by δ can intensify. Consequently, as
the smoothed classifier gains more confidence, the region of robustness expands.

A.2 Lemma and Proof
As defined in Subsection 3.3, given the distributions of null Φ0 and alternative Φ1. For convenience, the
probabilities for type I and type II error are simplified as E0 and E1 below. For a given test sample X ,
let ρ be a deterministic function such that ρ(X ) ∈ [0, 1]. Hypothesis testing aims to assess whether X
is derived from either Φ0 or Φ1 distributions via a likelihood ratio test (LRT), we define the test ratio
ΘX = fΦ1(X )/fΦ0(X ) and choose a constant j such that:

ρ(X ) =





0 if ΘX < i

j if ΘX = i

1 if ΘX > i

(13)

where ρ refers to the probability of making type I error, i.e., rejecting the null hypothesis against the
alternative hypothesis. The parameters i and j results in the bound-level optimal significance level
ε0 stated in hypothesis testing in Subsection 3.3 in full paper that satisfy E0(ρ,X ) = j · Φ0(ΘX =
i) + Φ0(ΘX > i) = ε0.

Given that ϵ0 ∼ Φ0 and ϵ1 ∼ Φ1 be two random variables with densities f0 and f1 respectively, the
likelihood ratio is denoted by ΘX = fΦ0(X )/fΦ1(X ). Let ik = inf{E(Θ(ϵ0) ≤ i) ≥ k} where k ∈ [0, 1]
and i ≥ 0. Then we can obtain:

E(Θ(ϵ0) < ik) ≤ k ≤ E(Θ(ϵ0) ≤ ik) (14)

We provide proof for from left to right. From the left side of the inequality, we aim to firstly prove
E(Θ(ϵ0) < ik) ≤ k. Given a set Mn = X : Θ(X ) < ik − 1/n, while M = X : Θ(X ) < ik. Assume
that X ∈ ∪nM , ∃n such that Θ(X ) < ik − 1/n < ik, thus X ∈ M. Conversely, if X ∈ M, let
n → ∞ then Θ(X ) < ik − 1/n. Thus X ∈ ∪nMn and M = Mn. Following by the above, we can
obtain that E(ϵ0 ∈ Mn) = E(Θ(ϵ0) < ik − 1/n) < k. Since Mn ⊆ Mn+1, we can conclude that
E(Θ(ϵ0) < ik) = limn→∞ E(Θ(ϵ0 ∈ Mn) < k.

Regarding the right side, this follows directly from the definition of ik if we show that the function
i 7→ E(Θ(ϵ0) ≤ i) is right-continuous. Given that i ≥ 0 and {i1, i2, · · · , in} is a sequence in R≥0

such that in → i as i decreases. Define the sets In = {X : Θ(X ) ≤ in} and note that E(Θ(ϵ0) ≤
in) = E(ϵ0 ∈ In). Assume that X ∈ {X : Θ(X ) ≤ i}, there exits ∀n we have Θ(X ) ≤ i ≤ in
and X ∈ ∩nI is obtained. Conversely, if X ∈ ∩nI , there exits ∀i we have Θ(X ) ≤ in → i when
n → ∞. Thus ∩nI = {X : Θ(X ≤ i)}, then limn→∞ E(Θ(ϵ0) ≤ in) = E(ϵ0 ≤ i) which is deduced
based on limn→∞ E(ϵ0 ∈ In) = E(ϵ0 ∈ ∩nI). Therefore, i → E((ϵ0 ≤ i is right continuous, such that
i ≤ E(Θ(ϵ0) ≤ ik).
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Given that ϵ0 ∼ Φ0 and ϵ1 ∼ Φ1 be two random variables with densities f0 and f1 with relative to
parameter u respectively, the likelihood ratio Θ is denoted by ΘX = fΦ0(X )/fΦ1(X ) and ρ is a function
mapping ensures ρ(X ) ∈ [0, 1] defined in 13. Let the probability of making type I and type II errors be E0
and E1 respectively, and ρ

′
denotes any other test. Then we have:

E0(ρ
′
) ≥ 1− E0(ρ) =⇒ 1− E1(ρ) ≥ E1(ρ

′
) (15)

We use backward inference to prove 1−E1(ρ)−E1(ρ′
) ≥ 0 as below, given that E0(ρ′

)−(1−E0(ρ)) ≥ 0:

1− E1(ρ)− E1(ρ
′
) =

∫

Θ>i
ρ
′
f1du+

∫

Θ≤i
(ρ

′ − 1)f1du+ j

∫

Θ=i
f1du (16)

=

∫

Θ>i
ρ
′
Θf0du+

∫

Θ≤i
(ρ− 1)Θf0du+ j

∫

Θ=i
Θf0du (17)

≥ i · [
∫

Θ>i
ρ
′
Θf0du+

∫

Θ≤i
(ρ− 1)Θf0du+ j

∫

Θ=i
Θf0du] (18)

= i · [E0(ρ
′
)− (1− E0(ρ))] ≥ 0 (19)

Given that ϵ0 follows the distribution Φ0 and ϵ1 follows the distribution Φ1, both of which are random
variables with probability densities f0 and f1 respectively, relative to parameter u, the likelihood ratio Θ
is defined as ΘX = fΦ0(X )/fΦ1(X ). Additionally, ρ is a function that maps X to a value in the interval
[0, 1], as defined in Equation 13. Let E0 and E1 represent the probabilities of making type I and type II
errors respectively, and let ρ′ denote any other test. Then we have:

E0(ρ
′
) ≤ E0(ρ) =⇒ E1(ρ) ≥ E1(ρ

′
) (20)

Similar with Proof A.2, we also use backward inference to prove E1(ρ)− E1(ρ′
) ≥ 0 as follows, given

that E0(ρ′
)− E0(ρ) ≤ 0:

E1(ρ)− E1(ρ
′
) =

∫

Θ>i
ρ
′
f1du+

∫

Θ≤i
(ρ

′
+ 1)f1du− j

∫

Θ=i
f1du (21)

=

∫

Θ>i
ρ
′
Θf0du+

∫

Θ≤i
(ρ

′
+ 1)Θf0du− j

∫

Θ=i
Θf0du (22)

≥ i · [
∫

Θ>i
ρ
′
Θf0du+

∫

Θ≤i
(ρ

′
+ 1)Θf0du− j

∫

Θ=i
Θf0du] (23)

= i · [E0(ρ)− E0(ρ
′
)] ≥ 0 (24)

A.3 Proof of Theorem 3.1
Let randomized smoothing follows the distribution η : (ε, ϵ) and the distribution of backdoored dataset
with randomized noise is denoted as η

′
: (ε, ϵ) + (δX∗ , δ). Then based on 13, given a test sample X ,

the likelihood ratio testing is Θ = fη′ (X )/fη(X ). Consider the likelihood test ρa the corresponding
confidence level is 1− Pa. Then we have:

ik = inf{i ≥ 0 : E(Θ(η) ≤ i) ≥ k)} (25)

and

jk =

{E(Θ(η)≤ik)−k
E(Θ(η)=ik)

if E(Θ(η) = ik ̸= 0

0 if E(Θ(η) = ik = 0
(26)

Originated from Lemma A.2, we can further obtain that E(Θ(η) ≤ ik) = E(Θ(η) < ik) + E(Θ(η) =
ik) ≤ k+ E(Θ(η) = ik). Consider parameters for ρk as i = ik and j = jk. Here the probability of ρk for
making type I error is E(ρk) = 1− k, where k ∈ [0, 1]. Similarly, if the likelihood test ρa = ρPa , then
E(ρa) = 1− Pa. Therefore, regarding equation 9 in full paper, E(f(X + ε,D∗ + ϵ) = Ya) = f∗(Ya |
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X,D∗) ≥ 1− ρa, combining the lemma A.2, ρ(X ) = If(X+ε,D+ϵ)=Ya
(X ) and the likelihood ratio test

for testing the null against the alternative ρ = ρa, we have:

f∗(Ya | X + δX , D + δ) = 1− E1(ρ) ≥ E1(ρa) (27)

Likewise, the likelihood test ρb = ρ1−Pb
, then E(ρb) = Pb. Therefore, regarding equation 9 in full paper,

for an arbitrary Y ̸= Ya, we can obtain E(f(X + ε,D∗ + ϵ) = Y ) = f∗(Y | X,D∗) ≤ Pb = E0(ρb).
Following this, combining the lemma A.2, ρ(X ) = If(X+ε,D+ϵ)=Y (X ) and the likelihood ratio test for
testing the null against the alternative ρ = ρb, we have:

f∗(Y | X + δX , D + δ) = 1− E1(ρ) ≤ 1− E1(ρb) (28)

Therefore, E1(ρa) − E1(ρb) > 1, we can conclude that f∗(Ya | X + δX , D + δ) > maxY ̸=Ya f
∗(Y |

X + δX , D + δ).Thus it is guaranteed that Ya = argmaxY f∗(Y | X + δX , D∗ + δ).

A.4 Proof of Theorem 3.2
Stemming from the optimality of the likelihood ratio test, we show in Theorem 2 that this condition
is tight. We show tightness by constructing a base classifier f , such that the smoothed classifier f∗ is
consistent with the class probabilities in equation 9 in full paper. For a given (fixed) input (X ,D) but
whose smoothed version is not robust for adversarial perturbations δ that violate in equation 10 in full
paper. Let ρa and ρb be two likelihood ratio tests for testing the null (ε, ϵ) ∼ E0 against the alternative
(ε, ϵ) + (δX , δ) ∼ E1 and let ρa be such that α(ρa) = 1 − Pa and ρb such that α(ρb) = Pb. Since δ
violates equation 10, we have that β(ρa) + β(ρb) ≤ 1. Let p∗ be given by:

p∗(Y | X ,D) =





1− ρa(X −X,D −D∗) if Y = Ya

ρb(X −X,D −D∗) if Y = Yb
1−p∗(Ya|X ,D)−p∗(Yb|X ,D)

|Y|−2 otherwise.

In the given context, D−D∗ signifies the subtraction operation performed on the features but not on the
labels. It is noteworthy that for binary classification, where |Y| = 2, it follows that ρa = ρb, thus making
p well-defined. This is because, in this scenario, the assumption is Pa + Pb = 1. However, if |Y| > 2, it’s
immediate from the definition of p that

∑
k p(Y | X,D) = 1. It’s worth noting, from the derivation of ρa

and ρb in the proof of Theorem 1, that (pointwise) ρa ≥ ρb holds provided Pa+Pb ≤ 1. Consequently, for
Y ̸= Ya, Yb, it follows that P (Y | x,D) ∝ ρa − ρb ≥ 0. Hence, p emerges as a well-defined conditional
probability distribution over labels, and f(X,D) = argmaxY p(Y | X,D) serves as a base classifier.

Moreover, to illustrate the consistency of the corresponding smoothed classifier f with the class
probabilities stated in equation 9, consider:

f (Ya | X ,D) = E(1− ρa(X,D)) = Pa f (Yb | X0,D0) = E(ρb(X,D)) = Pb (29)

Furthermore, for any Y ̸= Ya, Yb, we have f (Y | X ,D) = (1 − Pa − Pb)/(| Y | −2) ≤ Pb, since the
assumption is Pa + Pb ≥ 1 − (| Y | −2) · Pb. Hence, f aligns with the class probabilities in equation
9. Additionally, note that f (Ya | X + δX ,D + δ) = 1 − β(ρa) < β(ρb), demonstrating that indeed
Ya ̸= f∗(X0 + δX ,D + δ).
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